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FREE GROUPS AND UNIFICATION IN 9Am 2

MICHAEL H. ALBERT AND DAVID PATRICK

1. Introduction

In [3], the order of the free r-generated group in the variety generated by a
dihedral group D of order 2d/le (where e is odd) is determined to be 2r/ser’

where

r’= 2r(r- 1) + 1

s= _,(d+l-t)(t-1) r+l

t=2 t

(there is a typographical error in the definition of r’ in [3]).
The proof of this result depends on a structure theorem for the variety

generated by D;

when d < 2,
var D

96e2 V ( 2d-1 2 / fd) when d > 2.

Here the notation is as in [7]; in particular 9A, is the variety of abelian groups
of exponent dividing n, 92 is the variety of nilpotent groups of class c, and if
9A and are varieties, then 96 is the variety of all groups which are an
extension of a group in 96 by one in

In the case d > 2 the calculation of the order then depends on the results
in [4] which give a normal form description for elements of the free groups in
the varieties p9.p (where p is a prime).

In this paper we will restrict our attention to the first case, d < 2. As a
matter of personal preference we use m rather than e for the odd part, and
so our goals are to describe the free groups of the variety

where m is odd, and to determine the unification type of this variety, which in
this context amounts to describing a single most general solution to any
system of equations

,S_, {tl(X) 1, t2(x) 1,..., tn(X) 1}
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in a finite sequence of variables

X --XI X2...Xk.

When giving a presentation or description of a free group, it has been
traditional (as in [4]) to do so by means of some sort of "normal form"
description of the elements in terms of the free generators. However, such a
description may or may not lead to a clear understanding of the free group as
a whole, for example in terms which permit one to understand the structure
of the lattice of normal subgroups (and hence presumably the structure of all
k-generated groups in the variety). We give a description which is heavily
weighted towards these kinds of questions and not incidentally towards a
description which allows us to determine solutions to equations.
The next section is devoted to this description, and the following section

addresses the question of solving equations in these groups.

2. Presentation of the free groups

Let Gk be the k-generated free group in the variety 9[m[ 2. Then Gk
contains a normal subgroup A which is a direct sum of 2k(k 1) + 1 copies
of Zm, and the group Gk/A which is isomorphic to Z2 acts on A by
conjugation. In fact as the projection Gk Gk/A splits, we may identify
Gk/A with some subgroup U of Gk. We write A additively, and U multi-
plicatively. Let

U UIu2... Uk

be a sequence of generators for U. There exists for each sequence

a subgroup A, < A such that

aUj a7

for all a, A,. We say that the signature of a,
write e sig(a,, u). Furthermore

with respect to u is e and

A=A.

For J
___

{1, 2,..., k} we define

Uj
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Then for a A, we have

where

1
a, 2--; - e’JaUJ"

ujU

Finally we can say that if e 1 is the sequence of all l’s (so that A, Z(G))
then A is isomorphic to Zm while for any other signature, A, --- Zm (this
is where the representation theory comes into its own, but again the result
can be proven in an elementary way by considering automorphisms of Gk
which permute the A).

All this can be obtained from integral representation theory [1], [2] or more
easily by direct arguments akin to elementary linear algebra, involving the
"diagonalization" of the actions of the u on A by conjugation, and then a
consideration of the permutations of the A, induced by various automor-
phisms of U.
For the record, we can write down an explicit set of free generators for G..

If e contains a -1 let N(e)denote the position of the first occurrence of
-1 in e and let N(1) 0. Choose generators

a,j, 1 <j < k, j =/= N(e)

for A, and for 1 < < k define

x (, {a,," N(e) #: i})u i.

Then it can be verified that these k elements generate Gk and hence form a
set of free generators for Gk.

3. Unification in dihedral varieties

Let E be a system of equations of the form:

t(x) 1

where is a term in the language of groups, and

X =XI X2...Xk.

Notice in particular that these equations do not contain any parameters. We
consider the set of solutions to X in the group Go, the countably generated
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free group of var Dm. Henceforth we will denote this group simply by G. A
solution to is really just a homomorphism a" F, G such that ker c
for each equation t(x) 1 in E. Here Fk is the absolutely free group on k
generators. However, all such maps factor through Gk, so we usually consider
solutions to be homomorphisms from G, to G. With this in mind it is natural
to make the following definition:

DEFINITION 1. When a and are solutions to , we say that a generalizes
iffor some endomorphism 0 of G, Oa 1.

When a generalizes /3 we write a </3. Of course < is not a partial
order, but it is reflexive and transitive. We say that a is a most general
solution to if a </3 for every solution /3.
We will show that every system of equations has a most general solution

for G. In the general context of varieties of groups this is somewhat unusual
behavior. The corresponding result is true (and we shall make use of it) for
any abelian variety, but it fails in any non-abelian nilpotent variety, and also
in the .variety of all groups. In the first case there are equations for which
every solution has a proper generalization. In the latter case there are
equations such as

xyx-y-1 1

which have an infinite family of solutions, none of which has a proper
generalization, and all of which are incomparable with respect to <.

In the case of an abelian variety m, for the sake of illustration, consider
the equation

2x + 3y 0.

if rn is odd, we get at most general solution

y=a, x=(-3a)/2.

If rn is not a multiple of 3 we get a most general solution

x=b, y=(-2b)/3.

If rn is a multiple of 6 then the most general solution is

x= (m/2)a +3b, y (m/3)c 2b.

Finally, in ?I itself, the most general solution is

x=3a, y= -2a.
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In each case, in order for the solution to be most general, the parameters
a, b, c are to be generators of the countably generated free group in the
variety. Of course there are also other most general solutions such as

x 3a 6c y -2a + 4c

which involve one (or more) redundant parameters. However, all such
solutions are equivalent to one another and so any one of them can de-
servedly be called "most general." The solutions which we construct for
systems of equations in the varieties generated by dihedral groups will almost
certainly contain such redundant parameters.
We need a little preparatory work before we can construct most general

solutions in G. The main idea is to take a general solution in the Sylow
2-subgroup of G and to modify it to take into account the remainder of G.

Fix a Sylow 2-subgroup U of G. Note that U is a countably generated
elementary abelian 2-group, and this is the countably generated free group in
the variety of elementary abelian 2-groups. Let A [G, G] be the subgroup
of G consisting of all elements of order dividing m, So A is isomorphic to a
direct sum of countably many copies of Zm. Again we write A additively. The
arguments of the preceding section are easily modified to obtain:

PROPOSITION 2. Let b be any sequence of k elements in U. For any a A
there exists a unique set of elements

such that

{as"e{--1,1}k}_A

a .,a8 and sig(as,b) e.

In fact

1
a 2-7 ,jabJ

J___{1,2 k}

where

b,= I-Ibm. = 1-Ij.
jJ jJ

What we really have here is

A= As(b)
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where

A(b) {a , A: sig(a,b) }.

However, we will also have cause to use the exact formula for a below.
Let a system of equations X be given. We first construct a solution c and

then verify that it is a most general solution. Considering E as a set of
equations in U take a most general solution

where u is some chosen finite subset of a free generating set for U. The
solution a which we construct will have

a( xi) aiwi(u )

where a A. By the above proposition each a can be uniquely decomposed
into elements as, of signature e with respect to the sequence

Now we view the as, as indeterminates and formally compute each term

ct(x) t(alwl(u), a2w2,..., akWk(U)).

paying attention to the relations

aWj(U) a8, i"

We find that in order to have a solution to , it is necessary and sufficient
that the a,, satisfy certain equations of the form

(1) _As, ia, =0

(one of these arises from each and each ). These are equations in A8, an
abelian group of exponent m, and so they have a most general solution

(2) as, i=we,i(oe)

However, we require that o be of signature with respect to the sequence

It is not immediately clear how to enforce this condition and allow o, to be
sufficiently "general." We require the following lemma:
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LEMMA 3. Let w be a sequence of elements of U, and let H be any finitely
generated subgroup ofG containing w. For each e there exists an element v in A
such that the signature of v with respect to w is , and for any endomorphism 0

of G and any element a of signature with respect to O(w) there exists an
endomorphism O’ which agrees with 0 on H and such that O(v) a.

Proof Let x be some generator of G which does not occur in w. Define

1 wj

J

Then v has signature e with respect to w. Furthermore, for any endomor-
phism 0, if the signature of a with respect to O(w) is e then

1
a _,

eja
J

So we can choose 0’ such that O’(x2) a (possible since m is odd) and then
0’(v,) a as required. D

Obviously by applying this lemma repeatedly, and extending H each time
by our new element v we can meet the requirements of the lemma for any
collection of a’s of the same or different signatures with respect to O(w)
simultaneously.
Apply this idea to choose sufficiently many elements v to satisfy the need

for parameters in (2) and all meeting the conditions of the lemma with
respect to

Then define the solution a to to be

a(xi) (Ewe,i( Ds))Wi(U)"
This is a most general solution to E. For suppose that /3 is any solution. Let
7r: G U be a retraction with kernel A. We can find v: U - U such that

and we can choose 0: G G such that

1)7/"
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So for each i,

( Xi) aiO(wi( u) )
for some a -A. As usual we decompose a into as, with respect to
O(wi(u)), and note that formally the a,, must satisfy the equations (1). So
there exist

such that

b Ae(Wl(U),..., wk(u))

a,i=w,,i(b)

but now the fact that the o were constructed using the lemma, allows us to
choose O’ which agrees with 0 on wi(u) for each and sends v, to b, for each
e. All in all we get

as required.
This proves:

THEOREM 4. Every equation over G has a most general solution.

In fact the absence of parameters from G in the equations is not impor-
tant. Namely the argument goes through as before, except that the equation
(1) will not be homogeneous. However, if they have no solution then the
original system has no solution either. If they do have a solution, then they
have a most general solution obtained from a particular solution and the
homogeneous solution above (where the subgroup H of the lemma is chosen
to include all the elements of G in the particular solution).

In many cases there is a much simpler way to construct a most general
solution. Suppose that N is the normal subgroup of Gk generated by the
elements t(x)which are the left hand sides of the equations in E. Think of
G as a subgroup of G in the natural way. Then if the projection
Gk

"-) Gk/N splits via a map y: Gk/N -) Gk we define a solution

Now if/3 is any solution, /3 factors through Gk/N, say fl v-rr. We need 0:
G G such that 0),r a. But it suffices to find such a .(0: Gk - G (since
the rest of the generators could be sent to 1). For this we simply take

Then

as required.
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In particular if m is square flee, then all projections Gk -’> Gk/N split [8]
and the work above is unnecessary. But if m is not square free, then we are
not so lucky and the work above seems to be necessary!

4. Conclusion

The problem of solving equations, with or without parameters, in the
absolutely free group has a lengthy history. Various results around this area
are discussed in the last few sections of the first chapter of [6]. John
Lawrence [5] introduced us to the problem restricted to other varieties of
groups. In these notes he has a number of results which indicate that "most"
varieties generated by a finite group will have equations for which there are
no most general solutions. The fact that a case which remained open from his
work was "non-square free exponent and abelian Sylow subgroups" led us to
our consideration of the dihedral groups.

It is not hard (but of doubtful utility) to generalize the results we have to
the case of varieties mn where n I(q 1) for every prime divisor q of m
(in this case Zm contains a non-trivial nth root of unity and the "diagonaliza-
tion" can still be carried out). For the general case mn when m and n are
relatively prime, it seems that the main result (existence of most general
solutions) is still correct. However, the direct sum decomposition which
figures so prominently in the argument is no longer so easily described, and
such technical obstructions have prevented us from actually describing the
solutions in this case.

The authors would like to thank an anonymous referee of an earlier work
who pointed out that the machinery of integral representation theory may be
used to give explicit presentations of groups such as Gk above.
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