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KAHLER CURVATURE IDENTITIES
FOR TWISTOR SPACES

JOHANN DAVIDOV, OLEG MUKAROVAND GUEO GRANTCHAROV

1. Introduction

In order to generalize some results of Kiihler geometry, A. Gray [10]
introduced and studied three classes of almost-Hermitian manifolds whose
curvature tensor resembles that of Kiihler manifolds. They are defined by the
following curvature identities:

(here J is the almost-complex structure).
These identities are very useful in the study of the action of the unitary

group on the space of curvature tensors (cf. [16]) as well as for characterizing
the Kiihler manifolds in various classes of almost-Hermitian manifolds (for
example, see [9], [10], [15], [17], [18]). By a result of S. Goldberg [9] (see also
[10]) every compact almost-Kiihler manifold of class s is Kiihlerian and it
is an open question raised by A. Gray [10, Th. 5.3] whether the same is true
under the weaker condition s2. We answer negatively to this question
showing that the twistor space of a compact Einstein and self-dual 4-manifold
with negative scalar curvature provides an example of a compact non-Kiihler
almost-Kiihler manifold of class 2.

Recall that the twistor space of an oriented Riemannian 4-manifold M is
the (2-sphere) bundle 2 on M whose fibre at any point p M consists of all
complex structures on TpM compatible with the metric and the opposite
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orientation of M. The 6-manifold . admits a 1-parameter family of Rieman-
nian metrics h t, > 0, such that the natural projection r:.- M is a
Riemannian submersion with totally geodesic fibres (for example, see [7], [8],
[19]). These metrics are compatible with the almost-complex structures J1
and J2 on . introduced, respectively, by Atiyah, Hitchin and Singer [1] and
Eells-Salamon [6].
The purpose of this note is to investigate the twistor spaces as a source of

examples of almost-Hermitian manifolds of the classes ’/. Our main result
is the following.

THEOREM. Let M be a (connected) odented Riemannian 4-manifold with
scalar curvature s. Then:

(i) (.7, h t, J) 5g3 if and only if (.U, h t, J,,) 5’2 if and only if M is
Einstein and self-dual (n 1 or 2).

(ii) (.7, h t, J1) if and only ifM is Einstein and self-dual with s 0 or
s 12/t.

(iii) (.7, h t, J2) 5’1 if and only ifM is Einstein and self-dual with s O.

The proof is based on an explicit formula for the sectional curvature of
(_, ht) in terms of the curvature of M [3]

REMARKS. Let M be an Einstein self-dual manifold with scalar
curvature s.

(1) If s < 0 and -12/s, then (.7, ht, J2) is an almost-Kihler manifold
[14] of class ’2- This manifold is not Kihlerian since the almost-complex
structure J2 is never integrable [6]. So (.7, ht, J2) gives a negative answer to
the Gray question.
Note that the only known examples of compact Einstein and self-dual

manifolds with negative scalar curvature are compact quotients of the unit
ball in C2 with the metric of constant negative curvature or the Bergman
metric (for a description of the twistor space of the unit ball in C2, see [19]).

(2) Let s 0. Then (_7, ht, J2), t > 0, is a quasi-K/ihler manifold [14] of
class T which is not Kihlerian. So the Goldberg result cannot be extended
to quasi-Kihler manifolds. In the case when M R4, the twistor space is_

R4 x S2 and we recover an example found by A. Gray [10].
By a result of Vaisman [18] any compact Hermitian surface of class 1 is

Kihlerian. This is not true in higher dimensions since (.7, ht, J1) is a
Hermitian manifold [1] of class ;7- which is not Kihlerian [8].
Note that by a result of Hitchin [12] the only compact Einstein self-dual

manifolds with s 0 are the flat 4-tori, the K3-surfaces with the Calabi-Yau
metric and the quotients of K3-surfaces by Z2 or Z2 Z2.

(3) If s > 0 and t 12/s, then (.7, ht, J1) not only belongs to the class
5g but it is actually a Kihler manifold ([8]). In fact in this case M S4 or
M CP2 ([8], [13]) and .U CP3 or 2" SU(3)/S(U(1) U(1) U(1))
with their standard Kiihler structures.



K,HLER CURVATURE IDENTITIES 629

2. Preliminaries

Let M be a (connected) oriented Riemannian 4-manifold with metric g.
Then g induces a metric on the bundle A2TM of 2-vectors by the formula

g(Xa X2, X3 X4) 1/2det(g(Xi, Xy)).

The Riemannian connection of M determines a connection on the vector
bundle A2TM (both denoted by ) and the respective curvatures are related
by

n(x r’)(z n(x,y)z + n(y,z)v

for X, Y, Z, T x(M); x(M) stands for the Lie algebra of smooth vector
fields on M. (For the curvature tensor R of M we adopt the following
definition R(X,Y)= Vtx, v -[Vx, Vv]). The curvature operator ’ is the
self-adjoint endomorphism of A2TM defined by

g((XA Y),Z A T) =g(R(X,Y)Z,T)

for all X, Y, Z, T x(M). The Hodge star operator defines an endomor-
phism of A2TM with 2 Id. Hence

A2TM A2+ TM 9 A TM

where A2_+ TM are the subbundles of A2TM corresponding to the (+ 1)-eigen-
vectors of ,. Let (El, E2, E3, E4) be a local oriented orthonormal frame of
TM. Set

(2.1)
s =E AE2-E AE4,
S2 E A E E4 A E2,
s3 E A E4 E2 A E3,

ga =El AE2 +E AE4,

2 Ea A E3 + E4 A E2,

g3 =El AE4 +E2 AE3.

Then (S1, $2, $3) (resp. (1, 2, 3) is a local oriented orthonormal flame of
A2_ TM (resp. A2+ TM). The block-decomposition of ’ with respect to the
above splitting of A2TM is

s Id + 7//"+ ’ ]t. s/6 Id + Y/W_

where s is the scalar curvature of M; s/6.Id +’ and g/= g/+ + 7_ repre-
sent the Ricci tensor and the Weyl conformal tensor, respectively. The
manifold M is said to be self-dual (anti-self-dual) if _= 0 (g//= 0). It is
Einstein exactly when ’ 0.
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The twistor space of M is the 2-sphere bundle 0r’20 -o M consisting of all
unit vectors of A2_ TM. The Riemannian connection 7 of M gives rise to a
splitting T20 =- 7/ of the tangent bundle of 2 into horizontal and
vertical components. Further we consider the vertical space at o. 20 as
the orthogonal complement of o- in A2_ TpM, p ,’n’(o).
Each point o. 20 defines a complex structure K on TpM, p 7r(o.), by

(2.2) g(Ko.X, Y) 2g( o., X A Y), X, Y TpM.

This structure K is compatible with the metric g and the opposite orienta-
tion of M at p. The 2-vector 2o" is dual to the fundamental 2-form of K.
Denote by the usual vector product in the oriented 3-dimensional vector

space A2 TpM, p M. Then it is checked easily that

(2.3) g(R(a)b,c) -g((b c),a)

for a A2TpM, b,c A2 TpM.
Following [1] and [6], define two almost-complex structures J1 and J2 on

20 by

J.V= (-1)no" VforV
JnX2 (KX) h for X TpM p 7r(o")

It is well known [1] that J1 is integrable (i.e., comes from a complex
structure) iff M is self-dual. Unlike J1, the almost-complex structure J2 is
never integrable [6].
As in [8], define a Riemannian metric h on 20 by

h ,rr*g + tg

where > 0, g is the metric of M and gO is the restriction of the metric of
AZTM on the vertical distribution . The metric h is compatible with the
almost-complex structures J1 and J2"

3. Proof of the theorem

It is easy to see that sc2 c. First we prove that if (20, h t, Jn)
e e’3, then M is Einstein and self-dual. The natural projection 7r (20, h t)

(M, g) is a Riemannian submersion with totally geodesic fibres. Applying
the O’Neill formulas (for example, see [2]) one can obtain coordinate-free
formulas for different curvatures of the twistor space (, ht) in terms of the
curvature of the base manifold M. Denote by R and R the Riemannian
curvature tensors of (M, g) and its twistor space (20, ht) respectively. If
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E, F T,.U and X 7r, E, Y r, F, A E, B F where means
"vertical component", then (see [3])

(3.1)

R,(E,F,E,F) R(X,Y,X,Y) tg((Tx)(X A Y), o B)
+ tg((Ty)(X A Y), cr A)
3tg((cr),X A Y)g(cr A,B)
t2g(R( r A)X, R( r B)Y)

+ t2/4llR(cr B)X + R(cr A)Y]]2

3t/4llR(X A Y)o’ll 2 + t(llAII211BII 2 -g(A,B)2).
Let o- .U, p 7r(o-) and X, Y TpM. Since :2" 3, it follows from

(3.1) that

(3.2)
R( X, Y, X, Y) R(KX, KY, KX, KY)

3t/4(IIR(X A Y) o’]12 -]]R(KX A Ko.Y) o’]] 2)
where K, is the complex structure on TpM determined by o- via (2.2). Fix
r p, r_L cr and E TpM, IIEll 1. Since KoK =-K,
(El, E2, E3, E4) (E, KE, KE, KE) is an oriented orthonormal basis
of TpM such that r sl, " s2 and o- r s3 where sl, s2, s are defined
by (2.1). Since R(X A Y)cr is a vertical vector at o-, one has, by (2.3),

(3.3) IIR(X/x Y)ll2=g((r),x/x Y)2 +g((o-x r),x/x y)2
Let

V X A E Ko.X A Ko.Ei; V X A E + K,X A K,E, 1,..., 4.

Then (3.2) and (3.3) give

(3.4)
4-3-Tg((V/), V/) g(’(r), V/)g(’(-), //)

+ g(,_( o" X ’r), V/)g(,_’( o" X "r), //),
If X E/4=a iEi then

i=1,...,4.

V2 /1(1 -t- s1) }33 nt- /42,

V -4(gl- s1) -k- Alg2 -t- A23,

V4 A3(gl -Sl) A292 + Alg3
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Substituting (3.5) into (3.4) and then varying (A1,...,/4) one sees that the
identity (3.4) implies

4
(3.6))-g(’(-) ,gk) g(’(’), ’)g(’(’), gk)

+ g(’(tr ’), -)g(’(o- ’), g), k=1,2,3.

It follows from the curvature identity defining the class 3 that the Ricci
tensor of (., ht) is Jn-Hermitian, n 1 or 2. Then, by [4, formula (3.1)] one
has

(12 ts(p) + 6tg(7_(tr), o’)),_(o’) 0

where s is the scalar curvature of M. This implies that either p 0 or

12 ts(p) + 6tg(7_ (tr), or) 0 for all tr G_Up.

In the second case, ts(p)= 12 since Trace_= 0. Therefore (7_)p
Suppose that p 4: 0. Then (3.6) becomes

(8--ts(p))g((Z),gk) =0, k= 1,2,3.

Hence g((-), g) 0, k 1,2,3, since ts(p) 12. It follows that ’p 0,
a contradiction. Thus 0 and the arguments in [4] show that

_
0. In

fact, consider

_
as a self-adjoint endomorphism of A2 TpM, p M, and

denote by PI,/x2,/x3 its eigenvalues. Since ’(tr) (/6)o- +
_

(o-) for
tr A2_ TpM and I1’(’)11 const on every fibre of .U [4, formula (3.2)] we
have I/z + s/6l I/z2 + s/6l- I/z + s/6l. Moreover, /x + /J’2 -- ]’/3--
trace 0. Hence either /z ].L2 /2, 0 or {/-1, ]-/’2, /-/,3}
{s/3, s/3, -2s/3}. It follows that either [[7_[[ 0 or [17//2112 2s2/3. So we
have to consider only the case when 117_11 z -= 2s2/3. Since M is Einstein,
67//_ 0 (for example, see [2, 16.5]) and Proposition 5.(iii) of [5] gives
VT_ 0. For every oriented Riemannian 4-manifold with 67/_ 0, one has
(see [2, 16.73])

AII_II 2 -sll_ll 2 + 18 det _- 21IV_II 2

which implies in our case s 0. Hence 7/_= 0.
Now let M be Einstein and self-dual. Then ’[A2_ TM s/6 Id. Note also

that

KX A KY- X A Y A2_ TpM

for each X, Y TpM, p 7r(tr). Using (3.1) and the well-known expression
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of the Riemannian curvature tensor by means of sectional curvatures (for
example, see [11]), a direct computation shows that the twistor space
(_U, h t, Jn) is of class ’2.
Thus the statement (i) is proved.
To prove (ii) and (iii) assume first that (.U, h t, Jn) " Since c3

it follows from (i) that the base manifold M is Einstein and self-dual. Using
(3.1) one sees that the Kihler curvature identity s’ holds for the horizontal
vectors of iff

g(X , Y, (Z / T- KZ / KT))
8t(s/24)2g(X A Y, Z A T- KZ A KT) 0

for every cr and X, Y, Z, T TpM, p 7r(tr). Since Z/x T- KZ/x
KT AZ_TpM and IAZ_TpM s/GId, the above identity implies that
either s 0 or st 12.
Now suppose M is Einstein and self-dual. Then a direct computation

involving (3.1) shows that if s 0, both almost-complex structures J and J2
satisfy the Kihler curvature identity g; if st 12, this identity is satisfied
only by J1-
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