KÄHLER CURVATURE IDENTITIES FOR TWISTOR SPACES¹

JOHANN DAVIDOV, OLEG MUŠKAROV AND GUEO GRANTCHAROV

1. Introduction

In order to generalize some results of Kähler geometry, A. Gray [10] introduced and studied three classes of almost-Hermitian manifolds whose curvature tensor resembles that of Kähler manifolds. They are defined by the following curvature identities:

$$\begin{aligned} \mathscr{AH}_1 : R(E, F, G, H) &= R(E, F, JG, JH) \\ \mathscr{AH}_2 : R(E, F, G, H) &= R(JE, JF, G, H) \\ &+ R(JE, F, JG, H) + R(JE, F, G, JH) \\ \end{aligned}$$
$$\begin{aligned} \mathscr{AH}_3 : R(E, F, G, H) &= R(JE, JF, JG, JH) \end{aligned}$$

(here J is the almost-complex structure).

These identities are very useful in the study of the action of the unitary group on the space of curvature tensors (cf. [16]) as well as for characterizing the Kähler manifolds in various classes of almost-Hermitian manifolds (for example, see [9], [10], [15], [17], [18]). By a result of S. Goldberg [9] (see also [10]) every compact almost-Kähler manifold of class \mathscr{AH}_1 is Kählerian and it is an open question raised by A. Gray [10, Th. 5.3] whether the same is true under the weaker condition \mathscr{AH}_2 . We answer negatively to this question showing that the twistor space of a compact Einstein and self-dual 4-manifold with negative scalar curvature provides an example of a compact non-Kähler almost-Kähler manifold of class \mathscr{AH}_2 .

Recall that the twistor space of an oriented Riemannian 4-manifold M is the (2-sphere) bundle \mathcal{Z} on M whose fibre at any point $p \in M$ consists of all complex structures on T_pM compatible with the metric and the opposite

© 1995 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received July 19, 1993

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C15, 53C25.

¹Research partially supported by the Bulgarian Ministry of Education, Sciences and Culture, contract MM-54/91.

orientation of M. The 6-manifold \mathcal{Z} admits a 1-parameter family of Riemannian metrics h_t , t > 0, such that the natural projection $\pi : \mathcal{Z} \to M$ is a Riemannian submersion with totally geodesic fibres (for example, see [7], [8], [19]). These metrics are compatible with the almost-complex structures J_1 and J_2 on \mathcal{Z} introduced, respectively, by Atiyah, Hitchin and Singer [1] and Eells-Salamon [6].

The purpose of this note is to investigate the twistor spaces as a source of examples of almost-Hermitian manifolds of the classes \mathscr{AH}_i . Our main result is the following.

THEOREM. Let M be a (connected) oriented Riemannian 4-manifold with scalar curvature s. Then:

(i) $(\mathcal{Z}, h_i, J_n) \in \mathcal{AH}_3$ if and only if $(\mathcal{Z}, h_i, J_n) \in \mathcal{AH}_2$ if and only if M is Einstein and self-dual (n = 1 or 2).

(ii) $(\mathcal{Z}, h_t, J_1) \in \mathscr{AH}_1$ if and only if M is Einstein and self-dual with s = 0 or $s = \frac{12}{t}$.

(iii) $(\mathcal{Z}, h_t, J_2) \in \mathscr{AH}_1$ if and only if M is Einstein and self-dual with s = 0.

The proof is based on an explicit formula for the sectional curvature of (\mathcal{Z}, h_t) in terms of the curvature of M [3]

REMARKS. Let M be an Einstein self-dual manifold with scalar curvature s.

(1) If s < 0 and t = -12/s, then (\mathcal{Z}, h_t, J_2) is an almost-Kähler manifold [14] of class \mathscr{AH}_2 . This manifold is not Kählerian since the almost-complex structure J_2 is never integrable [6]. So (\mathcal{Z}, h_t, J_2) gives a negative answer to the Gray question.

Note that the only known examples of compact Einstein and self-dual manifolds with negative scalar curvature are compact quotients of the unit ball in C^2 with the metric of constant negative curvature or the Bergman metric (for a description of the twistor space of the unit ball in C^2 , see [19]).

(2) Let s = 0. Then (\mathcal{Z}, h_t, J_2) , t > 0, is a quasi-Kähler manifold [14] of class \mathscr{AH}_1 which is not Kählerian. So the Goldberg result cannot be extended to quasi-Kähler manifolds. In the case when $M = \mathbb{R}^4$, the twistor space is $\mathcal{Z} = \mathbb{R}^4 \times S^2$ and we recover an example found by A. Gray [10].

By a result of Vaisman [18] any compact Hermitian surface of class \mathscr{AH}_1 is Kählerian. This is not true in higher dimensions since (\mathscr{Z}, h_t, J_1) is a Hermitian manifold [1] of class \mathscr{AH}_1 which is not Kählerian [8].

Note that by a result of Hitchin [12] the only compact Einstein self-dual manifolds with s = 0 are the flat 4-tori, the K3-surfaces with the Calabi-Yau metric and the quotients of K3-surfaces by \mathbb{Z}_2 or $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

(3) If s > 0 and t = 12/s, then (\mathcal{Z}, h_t, J_1) not only belongs to the class \mathscr{AH}_1 but it is actually a Kähler manifold ([8]). In fact in this case $M = S^4$ or $M = \mathbb{CP}^2$ ([8], [13]) and $\mathcal{Z} = \mathbb{CP}^3$ or $\mathcal{Z} = SU(3)/S(U(1) \times U(1) \times U(1))$ with their standard Kähler structures.

2. Preliminaries

Let *M* be a (connected) oriented Riemannian 4-manifold with metric *g*. Then *g* induces a metric on the bundle $\Lambda^2 TM$ of 2-vectors by the formula

$$g(X_1 \wedge X_2, X_3 \wedge X_4) = 1/2 \operatorname{det}(g(X_i, X_j)).$$

The Riemannian connection of M determines a connection on the vector bundle $\Lambda^2 TM$ (both denoted by ∇) and the respective curvatures are related by

$$R(X \wedge Y)(Z \wedge T) = R(X,Y)Z \wedge T + X \wedge R(Y,Z)T$$

for $X, Y, Z, T \in \chi(M)$; $\chi(M)$ stands for the Lie algebra of smooth vector fields on M. (For the curvature tensor R of M we adopt the following definition $R(X,Y) = \nabla_{[X,Y]} - [\nabla_X, \nabla_Y]$). The curvature operator \mathscr{R} is the self-adjoint endomorphism of $\Lambda^2 TM$ defined by

$$g(\mathscr{R}(X \wedge Y), Z \wedge T) = g(R(X, Y)Z, T)$$

for all $X, Y, Z, T \in \chi(M)$. The Hodge star operator defines an endomorphism * of $\Lambda^2 TM$ with $*^2 =$ Id. Hence

$$\Lambda^2 TM = \Lambda^2_+ TM \oplus \Lambda^2_- TM$$

where $\Lambda_{\pm}^2 TM$ are the subbundles of $\Lambda^2 TM$ corresponding to the (± 1) -eigenvectors of *. Let (E_1, E_2, E_3, E_4) be a local oriented orthonormal frame of TM. Set

(2.1)
$$s_{1} = E_{1} \wedge E_{2} - E_{3} \wedge E_{4}, \qquad \bar{s}_{1} = E_{1} \wedge E_{2} + E_{3} \wedge E_{4},$$
$$s_{2} = E_{1} \wedge E_{3} - E_{4} \wedge E_{2}, \qquad \bar{s}_{2} = E_{1} \wedge E_{3} + E_{4} \wedge E_{2},$$
$$s_{3} = E_{1} \wedge E_{4} - E_{2} \wedge E_{3}, \qquad \bar{s}_{3} = E_{1} \wedge E_{4} + E_{2} \wedge E_{3}.$$

Then (s_1, s_2, s_3) (resp. $(\bar{s}_1, \bar{s}_2, \bar{s}_3)$ is a local oriented orthonormal frame of $\Lambda^2_{-}TM$ (resp. $\Lambda^2_{+}TM$). The block-decomposition of \mathscr{R} with respect to the above splitting of Λ^2TM is

$$\mathcal{R} = \begin{bmatrix} s/6 \operatorname{Id} + \mathscr{W}_{+} & \mathscr{B} \\ {}^{t}\mathscr{B} & s/6 \operatorname{Id} + \mathscr{W}_{-} \end{bmatrix}$$

where s is the scalar curvature of M; $s/6.\text{Id} + \mathscr{B}$ and $\mathscr{W} = \mathscr{W}_+ + \mathscr{W}_-$ represent the Ricci tensor and the Weyl conformal tensor, respectively. The manifold M is said to be self-dual (anti-self-dual) if $\mathscr{W}_- = 0$ ($\mathscr{W}_+ = 0$). It is Einstein exactly when $\mathscr{B} = 0$.

The twistor space of M is the 2-sphere bundle $\pi : \mathcal{Z} \to M$ consisting of all unit vectors of $\Lambda^2_- TM$. The Riemannian connection ∇ of M gives rise to a splitting $T\mathcal{Z} = \mathcal{H} \oplus \mathcal{V}$ of the tangent bundle of \mathcal{Z} into horizontal and vertical components. Further we consider the vertical space \mathcal{V}_{σ} at $\sigma \in \mathcal{Z}$ as the orthogonal complement of σ in $\Lambda^2_- T_p M$, $p = \pi(\sigma)$.

Each point $\sigma \in \mathcal{Z}$ defines a complex structure K_{σ} on $T_{p}M$, $p = \pi(\sigma)$, by

(2.2)
$$g(K_{\sigma}X,Y) = 2g(\sigma,X \wedge Y), X,Y \in T_{p}M.$$

This structure K_{σ} is compatible with the metric g and the opposite orientation of M at p. The 2-vector 2σ is dual to the fundamental 2-form of K_{σ} .

Denote by \times the usual vector product in the oriented 3-dimensional vector space $\Lambda^2_{-}T_pM$, $p \in M$. Then it is checked easily that

(2.3)
$$g(R(a)b,c) = -g(\mathscr{R}(b \times c),a)$$

for $a \in \Lambda^2 T_p M$, $b, c \in \Lambda^2_- T_p M$.

Following [1] and [6], define two almost-complex structures J_1 and J_2 on \mathscr{Z} by

$$J_n V = (-1)^n \sigma \times V \text{ for } V \in \mathscr{V}_{\sigma}$$
$$J_n X^h_{\sigma} = (K_{\sigma} X)^h_{\sigma} \text{ for } X \in T_p M, p = \pi(\sigma).$$

It is well known [1] that J_1 is integrable (i.e., comes from a complex structure) iff M is self-dual. Unlike J_1 , the almost-complex structure J_2 is never integrable [6].

As in [8], define a Riemannian metric h_i on \mathcal{Z} by

$$h_t = \pi^* g + t g^v$$

where t > 0, g is the metric of M and g^{v} is the restriction of the metric of $\Lambda^{2}TM$ on the vertical distribution \mathcal{V} . The metric h_{t} is compatible with the almost-complex structures J_{1} and J_{2} .

3. Proof of the theorem

It is easy to see that $\mathscr{H}_1 \subset \mathscr{H}_2 \subset \mathscr{H}_3$. First we prove that if $(\mathscr{Z}, h_i, J_n) \in \mathscr{H}_3$, then *M* is Einstein and self-dual. The natural projection $\pi : (\mathscr{Z}, h_i) \to (M, g)$ is a Riemannian submersion with totally geodesic fibres. Applying the O'Neill formulas (for example, see [2]) one can obtain coordinate-free formulas for different curvatures of the twistor space (\mathscr{Z}, h_i) in terms of the curvature of the base manifold *M*. Denote by *R* and *R_i* the Riemannian curvature tensors of (M, g) and its twistor space (\mathscr{Z}, h_i) , respectively. If

630

 $E, F \in T_{\sigma} \mathcal{Z}$ and $X = \pi_* E, Y = \pi_* F, A = \mathcal{V}E, B = \mathcal{V}F$ where \mathcal{V} means "vertical component", then (see [3])

$$R_{t}(E, F, E, F) = R(X, Y, X, Y) - tg((\nabla_{X} \mathscr{R})(X \wedge Y), \sigma \times B) + tg((\nabla_{Y} \mathscr{R})(X \wedge Y), \sigma \times A) - 3tg(\mathscr{R}(\sigma), X \wedge Y)g(\sigma \times A, B) - t^{2}g(R(\sigma \times A)X, R(\sigma \times B)Y) + t^{2}/4 ||R(\sigma \times B)X + R(\sigma \times A)Y||^{2} - 3t/4 ||R(X \wedge Y)\sigma||^{2} + t(||A||^{2}||B||^{2} - g(A, B)^{2}).$$

Let $\sigma \in \mathcal{Z}$, $p = \pi(\sigma)$ and $X, Y \in T_p M$. Since $\mathcal{Z} \in \mathscr{AH}_3$, it follows from (3.1) that

(3.2)
$$R(X,Y,X,Y) - R(K_{\sigma}X,K_{\sigma}Y,K_{\sigma}X,K_{\sigma}Y) \\ = 3t/4 \left(\left\| R(X \wedge Y) \sigma \right\|^{2} - \left\| R(K_{\sigma}X \wedge K_{\sigma}Y) \sigma \right\|^{2} \right)$$

where K_{σ} is the complex structure on $T_p M$ determined by σ via (2.2). Fix $\tau \in \mathcal{Z}_p, \ \tau \perp \sigma$ and $E \in T_p M, \ ||E|| = 1$. Since $K_{\sigma} \circ K_{\tau} = -K_{\sigma \times \tau}, (E_1, E_2, E_3, E_4) = (E, K_{\sigma} E, K_{\tau} E, K_{\sigma \times \tau} E)$ is an oriented orthonormal basis of $T_p M$ such that $\sigma = s_1, \ \tau = s_2$ and $\sigma \times \tau = s_3$ where s_1, s_2, s_3 are defined by (2.1). Since $R(X \land Y)\sigma$ is a vertical vector at σ , one has, by (2.3),

(3.3)
$$||R(X \wedge Y)\sigma||^2 = g(\mathscr{R}(\tau), X \wedge Y)^2 + g(\mathscr{R}(\sigma \times \tau), X \wedge Y)^2$$

Let

$$V_i = X \wedge E_i - K_{\sigma} X \wedge K_{\sigma} E_i; \quad \overline{V}_i = X \wedge E_i + K_{\sigma} X \wedge K_{\sigma} E_i, \quad i = 1, \dots, 4.$$

Then (3.2) and (3.3) give

$$(3.4) \quad \frac{4}{3t}g\big(\mathscr{R}(V_i),\overline{V}_i\big) = g\big(\mathscr{R}(\tau),V_i\big)g\big(\mathscr{R}(\tau),\overline{V}_i\big) \\ + g\big(\mathscr{R}(\sigma\times\tau),V_i\big)g\big(\mathscr{R}(\sigma\times\tau),\overline{V}_i\big), \quad i=1,\ldots,4.$$

If $X = \sum_{i=1}^{4} \lambda_i E_i$, then

$$V_{1} = -\lambda_{3}s_{2} - \lambda_{4}s_{3}, \qquad V_{1} = -\lambda_{2}(\bar{s}_{1} + s_{1}) - \lambda_{3}\bar{s}_{2} - \lambda_{4}\bar{s}_{3},$$

$$V_{2} = \lambda_{3}s_{3} - \lambda_{4}s_{2}, \qquad \overline{V}_{2} = \lambda_{1}(\bar{s}_{1} + s_{1}) - \lambda_{3}\bar{s}_{3} + \lambda_{4}\bar{s}_{2},$$

$$V_{3} = \lambda_{1}s_{2} - \lambda_{2}s_{3}, \qquad \overline{V}_{3} = -\lambda_{4}(\bar{s}_{1} - s_{1}) + \lambda_{1}\bar{s}_{2} + \lambda_{2}\bar{s}_{3},$$

$$V_{4} = \lambda_{1}s_{3} + \lambda_{2}s_{2}, \qquad \overline{V}_{4} = \lambda_{3}(\bar{s}_{1} - s_{1}) - \lambda_{2}\bar{s}_{2} + \lambda_{1}\bar{s}_{3}.$$

Substituting (3.5) into (3.4) and then varying $(\lambda_1, \ldots, \lambda_4)$ one sees that the identity (3.4) implies

$$(3.6) \quad \frac{4}{3t}g(\mathscr{R}(\tau),\bar{s}_k) = g(\mathscr{R}(\tau),\tau)g(\mathscr{R}(\tau),\bar{s}_k) + g(\mathscr{R}(\sigma\times\tau),\tau)g(\mathscr{R}(\sigma\times\tau),\bar{s}_k), \quad k=1,2,3.$$

It follows from the curvature identity defining the class \mathscr{AH}_3 that the Ricci tensor of (\mathscr{Z}, h_t) is J_n -Hermitian, n = 1 or 2. Then, by [4, formula (3.1)] one has

$$(12 - ts(p) + 6tg(\mathscr{W}_{-}(\sigma), \sigma))\mathscr{B}(\sigma) = 0$$

where s is the scalar curvature of M. This implies that either $\mathscr{B}_p \equiv 0$ or

$$12 - ts(p) + 6tg(\mathscr{W}_{-}(\sigma), \sigma) = 0 \text{ for all } \sigma \in \mathscr{Z}_{p}.$$

In the second case, ts(p) = 12 since Trace $\mathcal{W}_{-} = 0$. Therefore $(\mathcal{W}_{-})_{p} = 0$. Suppose that $\mathcal{B}_{p} \neq 0$. Then (3.6) becomes

$$(8 - ts(p))g(\mathscr{B}(\tau), \bar{s}_k) = 0, \quad k = 1, 2, 3.$$

Hence $g(\mathscr{B}(\tau), \bar{s}_k) = 0, k = 1, 2, 3$, since ts(p) = 12. It follows that $\mathscr{B}_p = 0$, a contradiction. Thus $\mathscr{B} \equiv 0$ and the arguments in [4] show that $\mathscr{W}_{-} = 0$. In fact, consider \mathscr{W}_{-} as a self-adjoint endomorphism of $\Lambda^2_{-}T_pM$, $p \in M$, and denote by μ_1, μ_2, μ_3 its eigenvalues. Since $\mathscr{R}(\sigma) = (s/6)\sigma + \mathscr{W}_{-}(\sigma)$ for $\sigma \in \Lambda^2_{-}T_pM$ and $||\mathscr{R}(\cdot)|| = \text{const}$ on every fibre of \mathscr{Z} [4, formula (3.2)] we have $|\mu_1 + s/6| = |\mu_2 + s/6| = |\mu_3 + s/6|$. Moreover, $\mu_1 + \mu_2 + \mu_3 =$ trace $\mathscr{W}_{-} = 0$. Hence either $\mu_1 = \mu_2 = \mu_3 = 0$ or $\{\mu_1, \mu_2, \mu_3\} =$ $\{s/3, s/3, -2s/3\}$. It follows that either $||\mathscr{W}_{-}|| \equiv 0$ or $||\mathscr{W}_{-}||^2 \equiv 2s^2/3$. So we have to consider only the case when $||\mathscr{W}_{-}||^2 \equiv 2s^2/3$. Since M is Einstein, $\mathscr{W}_{-} = 0$ (for example, see [2, §16.5]) and Proposition 5.(iii) of [5] gives $\nabla \mathscr{W}_{-} = 0$. For every oriented Riemannian 4-manifold with $\mathscr{W}_{-} = 0$, one has (see [2, §16.73])

$$\Delta \|\mathscr{W}_{-}\|^{2} = -s \|\mathscr{W}_{-}\|^{2} + 18 \det \mathscr{W}_{-} - 2 \|\nabla \mathscr{W}_{-}\|^{2}$$

which implies in our case s = 0. Hence $\mathcal{W}_{-} = 0$.

Now let *M* be Einstein and self-dual. Then $\Re |\Lambda_{-}^{2}TM = s/6$ Id. Note also that

$$K_{\sigma}X \wedge K_{\sigma}Y - X \wedge Y \in \Lambda^{2}_{-}T_{p}M$$

for each $X, Y \in T_p M$, $p = \pi(\sigma)$. Using (3.1) and the well-known expression

of the Riemannian curvature tensor by means of sectional curvatures (for example, see [11]), a direct computation shows that the twistor space (\mathcal{Z}, h_t, J_n) is of class \mathscr{AH}_2 .

Thus the statement (i) is proved.

To prove (ii) and (iii) assume first that $(\mathcal{Z}, h_i, J_n) \in \mathcal{AH}_1$. Since $\mathcal{AH}_1 \subset \mathcal{AH}_3$ it follows from (i) that the base manifold M is Einstein and self-dual. Using (3.1) one sees that the Kähler curvature identity \mathcal{AH}_1 holds for the horizontal vectors of \mathcal{Z} iff

$$g(X \wedge Y, \mathscr{R}(Z \wedge T - K_{\sigma}Z \wedge K_{\sigma}T))$$
$$- 8t(s/24)^{2}g(X \wedge Y, Z \wedge T - K_{\sigma}Z \wedge K_{\sigma}T) = 0$$

for every $\sigma \in \mathcal{Z}$ and $X, Y, Z, T \in T_p M$, $p = \pi(\sigma)$. Since $Z \wedge T - K_{\sigma} Z \wedge K_{\sigma} T \in \Lambda^2_{-} T_p M$ and $\mathscr{R}|\Lambda^2_{-} T_p M = s/6 \operatorname{Id}$, the above identity implies that either s = 0 or st = 12.

Now suppose M is Einstein and self-dual. Then a direct computation involving (3.1) shows that if s = 0, both almost-complex structures J_1 and J_2 satisfy the Kähler curvature identity \mathscr{AH}_1 ; if st = 12, this identity is satisfied only by J_1 .

REFERENCES

- M. F. ATIYAH, N. J. HITCHIN and I. M. SINGER, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425–461.
- [2] A. BESSE, *Einstein manifolds*, Ergeb. Math. Grenzgeb. (3), Band 10, Springer, New York, 1987.
- J. DAVIDOV and O. MUŠKAROV, On the Riemannian curvature of a twistor space, Acta Math. Hungarica 58 (1991), 319–332.
- [4] _____, Twistor spaces with Hermitian Ricci tensor, Proc. Amer. Math. Soc. 109 (1990), 1115–1120.
- [5] A. DERDZINSKI, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405–443.
- [6] J. EELLS and S. SALAMON, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 589–640.
- [7] TH. FRIEDRICH and R. GRUNEWALD, On Einstein metrics on the twistor space of a four-dimensional Riemannian manifold, Math. Nachr. 123 (1985), 55-60.
- [8] TH. FRIEDRICH and H. KURKE, Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature, Math. Nachr. 106 (1982), 271–299.
- [9] S. GOLDBERG, Integrability of almost-Kähler manifold, Proc. Amer. Math. Soc. 21 (1969), 96–100.
- [10] A. GRAY, Curvature identities for Hermitian and almost-Hermitian manifolds, Tôhoku Math. J. 28 (1976), 601–612.
- [11] D. GROMOLL, W. KLINGENBERG and W. MEYER, Riemannsche Geometrie im Grossen, Lecture Notes in Math., vol. 55, Springer, New York, 1968.
- [12] N. HITCHIN, Compact four-dimensional Einstein manifolds, J. Diff. Geom. 9 (1974), 435-441.
- [13] _____, Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981), 133-150.
- [14] O. MUŠKAROV, Structure presque hermitienes sur espaces twistoriels et leur types, C.R. Acad. Sci. Paris Sér. I. Math. 305 (1987), 307–309.

- 634 J. DAVIDOV, O. MUŠKAROV AND G. GRANTCHAROV
- [15] T. SATO, "On some compact almost-Kähler manifolds with constant holomorphic sectional curvature" in *Geometry of manifolds*, Matsumoto, 1988, Perspect. Math., vol. 8, Academic Press, Boston, MA, 1989, pp. 129–139.
- [16] F. TRICERRI and L. VANHECKE, Curvature tensors on almost-Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365–398.
- [17] I. VAISMAN, Some curvature properties of locally conformal Kähler manifolds, Trans. Amer. Math. Soc. 259 (1980), 439–447.
- [18] _____, Some curvature properties of complex surfaces, Ann. Mat. Pure Appl. (4) 132 (1982), 1–18.
- [19] A. VITTER, "Self-dual Einstein metrics" in D.M. De Turck Nonlinear Problems in Geometry, Proceedings, Mobile 1985, Contemp. Math., vol. 51, Amer. Math. Soc., Providence, R.I., 1986, pp. 113–120.
 - BULGARIAN ACADEMY OF SCIENCES SOFIA, BULGARIA
 - BULGARIAN ACADEMY OF SCIENCES SOFIA, BULGARIA

UNIVERSITY OF SOFIA SOFIA, BULGARIA