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UNIFORM EXTENDIBILITY OF THE BERGMAN KERNEL

ANTHONY D. THOMAS

1. Introduction

In this note we simplify the proof of and extend a theorem of S-C Chen on
the uniform extendibility of the Bergman kernel function and its relation to
global regularity properties of the Bergman projection. Applications are
given to Bergman kernel density and finite order vanishing theorems which
arise in mapping problems between equidimensional domains.
Suppose f is a bounded domain in Cn. The Bergman projection P

associated to 12 is the orthogonal projection of L2(f)onto H2(f)where
H2(12) denotes the closed subspace of L2(12) consisting of square integrable
holomorphic functions on . The Bergman kernel function K(z, w) is the
kernel function for P and satisfies

Pu(z) fgK( z, w)u(w) dV for all u L2().

We say that condition Q holds on 1 if P maps C(O) into (1), where
e(f) denotes the space of holomorphic functions on f that can be extended
holomorphically to some open set containing f. Finally, we let (12) denote
the space of all holomorphic functions on 12 and A(12) denote the space of
holomorphic functions on f that are in C(O).

Extendibility properties of the Bergman kernel are important in the study
of extension of biholomorphic and proper holomorphic mappings between
domains in Cn. It has been shown that extendibility of the mappings can be
deduced from extendibility properties of the Bergman kernel, which follow
from global regularity properties of the Bergman projection (see Bell [1]).

It is known that condition Q holds on a domain whenever the 0-Neu-
mann problem is globally real analytic hypoelliptic on 1; for instance see
Bell [2]. This property of the 0-problem is known to hold in strictly pseudo-
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convex domains with real analytic boundaries (see Derridj and Tartakoff [11],
Komatsu [14], Tartakoff [18-19], Treves [20]) and in certain weakly pseudo-
convex domains with real analytic boundaries (see [10], [12] and [13]). Global
real analytic hypoellipticity of the o-Neumann problem is also known to hold
in domains with lots of symmetries, including Reinhardt domains (see Chen
[6]) certain circular domains [7], and other special domains in C2 [9].

It is easy to see that extendibility properties of the Bergman kernel imply
condition Q. The relationship between these two properties is most transpar-
ent in a complete Reinhardt domain, where the associated Bergman kernel
function K(z, w) extends to be holomorphic in z on a neighborhood of f
whenever w is restricted to lie in a compact subset of l). From this, it follows
that condition Q is satisfied on a bounded complete Reinhardt domain in Cn.
In this paper, we are concerned with the reverse implication, and with seeing
that the two properties that hold on Reinhardt domains are typical.

This paper is part of the author’s doctoral dissertation written under the
direction of Professor Steven R. Bell at Purdue University. The author wishes
to extend his most sincere gratitude and appreciation to Professor Bell.

2. Main results

We shall prove the following theorem, which generalizes a theorem of
Chen [8]. The proof we give also yields an elementary proof of Chen’s
original result.

THEOREM 2.1. Let f be a bounded domain in C. Then the following are
equivalent:

(i) Condition Q holds on
(ii) For each compact subset of f, there exists an open set containing

1 such that
(a) for each fixed wo , K(z, wo) is a holomorphic function of z on

and
(b) K(z, w) C(

In fact, condition (b) can be replaced by the following weaker condition: (b’)
IK(z, w)l < C, for some constant C C > O, and K(z, w) is measurable for
all ( z, w) ’ .

Next we shall prove the following uniform holomorphic extension theorem
for the Bergman kernel function on certain bounded domains in C" which
are not necessarily smooth. We remark that this theorem contains Chen’s
main theorem in [8] and that the proof is basically contained in the proof of
the previous theorem. We shall see that (ii) (i) is rather easy and for
(i) (ii)we begin by following Chen’s argument closely; however, we give a
substantial simplification of the proof as a whole. To wit, the need to use the
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special cut-off functions introduced by Ehrenpreis [8] and an associated
estimate, Tartakoff [17], is eliminated. Instead we are able to apply the
classical theorems of Morera and Hartogs to come to the same conclusion.

THEOREM 2.2. Let 1 be a bounded domain in Cn. Then the following are
equivalent.

(i) Condition Q holds on
(ii) For each compact subset of f, there exists an open set ’ containing

f such that K(z, w) extends holomorphically in z and anti-holomorphi-
cally in w to the set ’

Now we give some applications of Theorem 2.2. S. Bell posed the
following question. Given a bounded domain f in Cn, a multi-index /3 and
two points, z0 b12 and w0 12, is there a multi-index a such that
(0 lal/l t31//0z 3)K(zo, wo) 4 09. If n 1, the answer isyes at every smooth
boundary point,and if n > 2 the answer is yes in the case of smooth domains
for which the 0-problem satisfies a unique continuation property, Bell [3].
Here we show that the answer is also yes for domains satisfying condition Q.

THEOREM 2.3. Let be a bounded domain in C which satisfies condition
Q. Then, given zo bf, wo f and a multi-index [3 there exists a multi-index

such that

0z 3 t K(z0, w0) 4= 0.

Let us make the following definition.

DEFINITION 2.4. Let be a compact subset of a domain in C". We say
that is H2-Runge with respect to 12 if any function f which is holomor-
phic on a neighborhood of can be approximated uniformly on by
functions in H2().

This condition is easy to verify, for example, if is a polynomially convex
subset of a bounded domain 1 in Cn. Now we can state the following
Bergman kernel density theorem for domains satisfying condition Q.

THEOREM 2.5. Let 12 be a bounded domain in C which satisfies condition
Q. Suppose wo bO and is a compact subset of which is H2-Runge with
respect to 12. Given a holomorphic function f defined on a neighborhood of
and an e > O, there is a function te in the complex linear span S of

K(z, wo)" l[31 > 0

such that If- tel < e on .



UNIFORM EXTENDIBILITY OF THE BERGMAN KERNEL 601

We remark that Bell [3] has proved similar theorems on smoothly bounded
domains using an approximation theorem of Catlin [5].

3. Proofs of the theorems

Recall that the Bergman kernel function K(z, w) for 1 is holomorphic in
z and anti-holomorphic in w fo.r z, w 1. Also, if for each fixed a 1 we
choose a function qa C(I) such that % is radially symmetric about a,
% > 0, and f,qa(z) dV 1, then we can recover the Bergman kernel
function by K(z, a) (Pqa)(Z).

DEFINITION 3.1. A subset ’ of a domain 1 in C is called a set of
uniqueness for if any holomorphic function f on 1 which vanishes on
is identically zero on [I.

Note that any subset of 1 with non-empty interior is a set of uniqueness
for

LEMMA 3.2 (Vitali). Let {f} be a sequence of holomorphic functions on a
domain 1 in C" and let / be a set of uniqueness for 1. Suppose {f} is
uniformly bounded on 1, that is there exists a positive number M such that
If(z)l < Mfor all z 1 and for all u, and suppose that {L(a)} converges for
any a ’. Then {f} converges uniformly on compact subsets of 1.

The proof of Lemma 3.2 is a normal family argument and can be found in
Narasimhan [15].

Proof of Theorem 2.1. (ii) (i). Let q C([I)and = supp(q), the
support of q. Then there exists an open set x z 1 such that (a) and (b’)
hold. Now,

(3.3)

We claim that the integral above provides a holomorphic extension of Pq to
the set %. Indeed, let yj, j {1,..., n}, be a closed curve in C" which lies
in ’ and is parametrized by a function of the form z(t) (z,(t),...,
z,(t))" [0, 1] --* C" where zi(t) is constant if 4: j. Then

by applying Fubini’s theorem and part (a) of (ii). Now we may apply the
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Lebesgue dominated convergence theorem to see that the second integral in
(3.3) defines a continuous function for z ff; then by applying Morera’s
theorem we see that Pq is a holomorphic function of z. for each j 1,..., n
and so, by Hartogs theorem on separate analyticity, Pq extends to be
holomorphic on ff. In case of condition (b), we have that (b) implies (b’) by
shrinking ff slightly to get the uniform boundedness hypothesis and so this
half of the theorem is proved.

(i) (ii). Let be a non-empty compact subset of 12. Choose another
compact subset of 12 such that c int(#). To get the open neighbor-
hood ’ of l we will use a Baire category argument.

Following Rudin [16], we let C=(") denote the set of f C=(Cn) such
that supp(f) c’. The topology on C(’) is given by seminorms

PN(f) 9,x{ID’fl a] < N},

for N 1, 2,..., and a local basis is given by the sets

1)e C(’)’pN(f) < --for N 1,2, Further, PN}/=I induces a compatible metric on C((’)
that makes it a complete metric space.
Now we set up for the application of the Baire category theorem. Let

{12j}j be a strictly decreasing sequence of open neighborhoods of 12 such
that f D j= 112.. Further, we require that for every neighborhood 4z of 12,
the set f. is contained in for j sufficiently large. For each j, k 1, 2
define the set

j !

then by condition Q we have that Ei is nonempty for sufficiently large j, k,
say for j, k > M MX, and

U
j,k=M

We claim that Ej is closed for each j, k > M. To see this, let {ft}-- be a
Cauchy sequence in Ej with f1 converging to some f C%). Now, for
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z we have

-ef( )l e{ I,

_K( z, w)(ft(w ) f(w)) dV

<_ flK(z,w)[ If(w) f(w)ldVw.

Since IK(z, w)l < C for (z, w) ,W xT’ we have that

IPf(z) -Pf(z)l <_ cflf(w) f(w)ldVw.

Therefore, ft - f in C((’) implies that Pft(z) Pf(z) for z ". Now we
may apply Vitali’s theorem to see that Pft(z) converges uniformly on compact
subsets of . to some function g(z) ’(D)with sup Igl < k.
Hence g(z) Pf(z) for all z 1-1., that is f Ejk, which proves the claim.
Now the Baire category theorem implies that there exist j, k Z/ such

that E. contains an open subset V of C(T"). Then since E. is balanced
and convex we may choose n Z/ such that VN c E,. So, for any f VN
we have

Pf cY(D.) and sup IPfl k.

dist(Sg, Cn\int(g(’)) > 0 and choose an even function sO(x)We set 6
C[(-3, 6)] with sO(x) > 0 for all x R. Let

 (iw
.w(W’)

w(W’) 2NPu(w)

for w, w’C". Notice that for any w_, rtw and ’w vanish for
w’ Cn\int("), so that r/w and ’w are in C(). Further,

r/w ) 1 1
fiN(w) =fiN 2NON(rlw ) < -so that w VN for any w . Also, it is easy to see that

1
a "lcInw(W’ ) dVW, 2NPN(rlw ) "’]rlw(W’)dVw,
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is independent of w for w . Now we may recover K(z, w) by K(z, w)
P((1/a)(w)(Z). Hence, aK(z, w) (Pw)(z) which implies that for any w
we have

k
(3.4) K(z,w) (f.) and suplK(z,w)l <_ -d

oj

where we stress that k/a is independent of w.
Finally we show that K(z, w) C(I)j ). Let (z, w) (z, w) in. where . is a compact subset of f. containing ’. Set f(z)=

K(z, w). Then by Vitali’s theorem, f converges uniformly to f K(-, w) on, where we take ’ to be our set of uniqueness. So, given an e > 0 there
exists a positive integer N so that , > N implies that If(z) -f(z)l < /2
for all z .. Now we see that

IK(z,w) K(z,w)l <_lK(z,w) K(z,w) +lK(z,w) K(z,w)l
+lK(z,w) -K(z,w)l

-< If(z) f,,(z) + ]L(z) f(z.)
+ If(z.) L(z.)

< - +[f,,(z) -f(z) +-
for v < N. Now, f(z) converges to f(z) for all z by Vitali’s lemma and
f(z) converges to f(z) by continuity, given by (3.4). So,

lim ]K(z,w) -K(z,w)l < e + lim IL() f(z)] e + 0 e.

Since e > 0 was arbitrary, K(z, w) C(j r,O and now . arbitrary im-
plies that K(z, w) C(f 3z{). Hence, taking ’ f., we are done in the
case of (b). As for the case of (b’), measurability is clear and we get uniform
boundedness from (3.4). This finishes the proof of Theorem 2.1. []

Proof of Theorem 2.2. (ii) (i). This is provided by Theorem 2.1.
(i) (ii). Let be a compact subset of 1) and let ’ be another

compact subset of 12 such that c int(’). Then we let ’x be the open
neighborhood of associated to which is provided by Theorem 2.1. Next
we choose a closed curve T, j {1,..., n}, lying in which is parametrized
by a function of the form

w(t) (Wl(t),... Wn(t))’[O 11 --, cn

where wi(t) is constant if 4: j. Specifically, we are thinking of 3’i as a curve
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around a point in . Now define the function

f( z) f K( z, w) d,,

We choose another closed curve Fk, k {1,..., n}, lying in g/x’ which is
parametrized by a function of the form z(t) (Zl(t),..., Zn(t))’[O l] -- Cwhere zi(t) is constant if 4: k. Then we have

z,w) dzk) dj 0

where we applied Fubini’s theorem and used the fact that frkK(z, w)dz 0
since for each fixed w ’, K(z, w) is a holomorphic function of z
So, by Morera’s theorem, f is a holomorphic function on g/. Also, f(z) 0
for each z since K(z,w) is an anti-holomorphic function of w for
w 12. We conclude that f(z) 0 for all z g%, which says that K(z, w) is
anti-holomorphic in w for w 7 by Morera’s theorem. Finally, by Hartogs
theorem on separate analyticity we have that K(z, w) is holomorphic in
and anti-holomorphic in w on g/ . t3

Proof of Theorem 2.3. Take a neighborhood B(w0), e > 0, around w0

such that Be(w0) c . By Theorem 2.2, there exists an open neighborhood g/

of 1 such that K(z, w) is holomorphic in z and anti-holomorphic in w on
g B(wo). So, (Oll/Ot)K(z, wo) is holomorphic for z g/and thus has
a power series representation about z0. Therefore there exists a multi-index
a such that the conclusion of the theorem holds. D

Proof of Theorem 2.5. Suppose to the contrary that f is a holomorphic
function on a neighborhood of , which cannot be approximated uniformly
on by functions in S. Then there exists a complex finite Borel measure d/x
on such that

(3.5) f:, d/z 0 for all h S,

but fxfdtx 4= O. Now, by Theorem 2.2, there is an open neighborhood g/of

O such that K(w, z) extends to be holomorphic in w and anti-holomorphic in
z on g/. Hence (P(dlz))(w) fxK(w, z)dtx(z) extends to be holomor-
phic on g/D O. Now, (3.5) implies that

Ow e (P(dtz))(Wo) 8w oK( z, wo) dtx( z ) =0,
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for all multi-indices /3 with I/1 0, Therefore we have that P(di)vanishes
to infinite order at wo. But this implies that P(diz) O. So, d/x is orthogonal
to the complex linear span of {K(z, w): w 12}. However, this linear span is
easily seen to be dense in H2(12), and so d is orthogonal to H2(12). Since

is H2-Runge there exists a sequence {fj} c H2() such that fj f
uniformly on . So,

o fjj dtx fjdi 4: 0

which gives a contradiction. []

Note added in proof. I wish to thank Harold Boas for pointing out that in
the proof of Theorem 2.1 it is possible to work in the normed space L2(o,’)
rather than the Frechet space CC5’) by making the observation that the
Bergman projection of a compactly supported L2 function equals the projec-
tion of a compactly supported smooth function, as follows by convolving with
a mollifier.
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