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GROWTH OF THE BERGMAN KERNEL
ON PLANAR REGIONS

JOHN E. MCCARTHY AND LIMING YANG

Statement of results

Let 2 be a bounded open set in the complex plane. The Bergman space L2a (Q)
is the Hilbert space of holomorphic functions on that are square-integrable with
respect to area measure A. Evaluation at each point k of f2 is continuous, so there is
a corresponding kemel function kx in La2 (f2)such that

a
f(z)kx(z)dA(z) f (X)

for every function f in La2 (Q). In this paper, we are interested in estimating the
growth of Ilkx as X tends to the boundary of

If f2 is smoothly bounded, Ilkx will grow like the reciprocal of the distance to
the boundary; but if the boundary point is somehow "buried" deep inside f2, the
growth of Ilkxl[ can be slower (to aid the reader’s intuition: the phenomenon is not
caused by cusps, which cause the complement to be too thick, but by little holes
accumulating at some point). In [MeCY] the authors found geometric conditions for

Ilkx to remain bounded as a boundary point is approached (so that evaluation at this
boundary point is a bounded point evaluation) for certain special domains (L -regions).
Also, using results ofFernstrom and Polking [FP], necessary and sufficientconditions
were found, in terms of Bessel capacity, for a boundary point of an arbitrary domain
to be a bounded point evaluation. We extend this last result to estimating the growth
of Ilkx when it does not remain bounded.

Let Ao,r be the sector in the left half-plane bounded by y x tan (R), y
-x tan (R), and X2 -[- y2 1-,2. We shall always assume that 0 is in the boundary of
and is the point of interest, and that for some (R) in (0, -) and some F > O,

Ao,r C

We shall look at the growth rate of Ilkx as . tends to 0 along the negative real axis.
Let G(x, y) be the Bessel kernel, which is most easily defined as the inverse Fourier

transform of (1 + x2+ y2)-1/2. For each set E in C, the Bessel capacity is defined as

C(E) inf / If(x, y)l 2 dx dy
f ,]
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where f 6 L2(2), f > 0, and f G(t x, s y)f(t, s) dt ds > for (x, y) 6 E.
Let ak {Z x + iy 2-k-1 < Izl < 2-k} and a {z 2-k-2 _< Izl _< 2-k+l}.

Our results are the following"

THEOREM 1. Suppose

y kC(Ak\f2) <
k=

Then there are constants F1 and F2 so that, as -- 0-, k satisfies the growth
condition

IIkll 2
_

F1 22min(k’lg2 )C(Ak\);
k=l

Ilkxll =
_

F2 y22min(k’lg2 )C(Ak\g2).
k=l

COROLLARY 2. Let 0 < < 1. A necessary and sufficient conditionfor IIk to
be 0 (I,k -) as O- is that

limsup 22k(1-OC(Ak \ ) <
k---

Our techniques also work for the Bergman space Lap() for 2 < p < o. Letting
q be the conjugate index of p, define the q-capacity by

(E) inff If (x, y)I q dx dyCq
f J

where f 6 Lq(2), f > 0, and f G(t -x, s y)f(t, s) dt ds > 1 for (x, y) 6 E
(so our previous definition of capacity is C2, though we shall continue to write it as
C with no subscript).

THEOREM 3. Suppose 2 < p < cx, and

Z 2k(2-q)Cq(Ak \ ) <
k--c

Then as ) -- 0-, the norm ofthefunctional ofevaluation at ) in the Bergman space
LPa (f2) is comparable to

2q min(k ,log 1 Cq (A k \ K2)
k=
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We note that a disk A of radius 6 has

and, for q < 2,

Cq (A) 2-q,

so it is easy to construct examples of regions of the form ](0 1) \ U D(2-n rn)n=l
that have kernels growing at a desired rate.

Proofs

We shall let F denote a generic constant, that may change from one line to the
next. We shall let Ke {z "dist(z, K) < e}.

LEMMA 4. (a) For each Borel set E,

C(E) inf C(U)
ECU

where U ranges over the open sets.

(b) For any Borel sets E1 and E2,

C(EI U E2) < C(E) +C(E2).

Proof. See [Me]. [2]

LEMMA 5. Let K be a compact subset ofC. Suppose that

limsup kC(Ak\K) O.

Then there exists a constant M > 0 such that, for each e > 0 and each k > 0, there
is afunction 7zk C satisfying

(i) 7zk(z) l for z in aneighborhood ofA’\Ke,
(ii) flzl<_2_k+ Ikl2da < M. C(A’k\K),
(iii) flzl_<2-k+, 17z 12 dA < M. 2-2kC(A’\K).

Proof. The proof follows from the proof ofLemma 10 in [FP]. Their hypotheses
are much stronger--namely that Y 22kc (Ak\K) < cx---’-t their proofworks in our
special case providedjust kC (Ak\K) tends to zero. To use their proof, we only have
to show th/t there exists k0 such that if k > k0 then

G(x t, y s)gk(t, s) dt ds < (1)
t-+s2 >2-k+2 2
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for x2 + y2 < 2-2k+3, where gk is defined as in their proof. We have

G(x t, y s)g,(t, s) dt ds < Gq, s)2 dt ds IIg,
S2>2-k+2 >2-

< F log [C(A’\K)I (2)

where the second inequality follows from Lemma 4 in [FP] and the fact that g,
2[C(A’\K)]1/2. As the expression in (2) tends to 0, we get (1) as desired.

and

For a positive Borel measure/z, let

Utt (z) [ Iz- wl- dlz(w)
J

c(E, V) sup/z(E)

where the supremum is taken over all positive Borel measures with spt/z _c E such
that

vlU(z)l

dA 1.

(Throughout the paper, V will be a fixed bounded open set containing f2 or K. It is
only necessary to introduce it as [U # 12 is not integrable in a neighborhood of infinity.)

LEMMA 6. Let E be a Borel set. Then

C (E) < c(E, V) <_ FC(E)

(For a discussion of why this is true, and for other equivalent notions of analytic
2-capacities, see [He].)

The next lemma is the key to proving the upper bound estimate.

LEMMA 7. Let K be a compact subset ofC, 0 e 0 K, and Ao,r c_ K for some
r and F > O. Suppose that0<O<

lim supkC (At\K) O.
k--+cx)

Then there is a constant M such that for each rationalfunction r with poles off K,
and each 2. in IR N Ao,r,

(fK ) 22mi’k’lg=)C{A’K)Ir()l M. Irl dA
k=
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Proof. Without loss of generality, we can assume K is contained in the disk
ID(0, ), and so F < . It follows from Lemma 4 that

lim sup kC (A \K) < oo.
k-- oo

Construct a smooth function o Co0(]2) such that

0

o(z)
0

if z {z" Izl > 2}orlzl _< X}
if z {z" 21 < Izl < 1} f3 (Ao,1)c

oifz A_,
For each integer k set

o(2z)/ S,_o(2 z)
o(z)

0

if o(2 z) :/: 0 for some j

else.

Fix a rational function r with poles off K. Let g be a smooth function which is in
a neighborhood of K, zero in a neighborhood of the poles of r and zero off ]D(0, ).
Let Z be between -1" and 0. From Green’s theorem,

fI 9(gr) dA(z).r(X)
X Zr (0, z)

Let e be small enough for K. to be contained in the set where g is 1. Then (gr) 0
on K. Let Pk be as in Lemma 5; then y kOk near D\K, because if z is in
Ak, tpj (z) is non-zero only for j k 1, k, k + 1, and j (z) for these values
j. Therefore

r()= if lrkq)k (gr) dA
r z z k=

fA
9(ktPk) gr dA"

Hence,

IrO.)l _< F
Izk k\Ao,r

10 (tPk)llgrl dA.

Let--2-N _< X < --2-N-1 and z Ak\Ao,r. If k >_ N, then

(3)

Iz X 2-N’
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if k < N, then

Therefore (3) gives
Iz l 2-k"

Ir(Z)l _< F Z 2k [(app)[2 dA Igrl dA
k=l

+F 2N I(p)l2 dA Igr dA
k=N

< FIIgrllL) I(kqgk)l 2 dA+Z 22N I(qgk)l2 dA
\k=l k=N ,I Ak

Using Lemma 5 and theact that Igol < F. 2k, we have

I(k0k)12 dA < F.C(A’\K).

Hence,

2C(A\K)-t 22NC(A’\K)Ir()l < FIIgrll)
k= k=N

Since g is arbitrary, subject to being on K, we conclude that

Ir(.)l < M 22min(k’lg2 )C(A \ K)
k=l

Proofof Theorem 1. (Upper Bound) Suppose that

lim sup kC(A\) 0,

so by Lemma 4 (b),

limsup kC(ftk\) O.
k---x

Using Lemma 4 (a), we can find open subsets Uk such that

and

C(Uk) < 2C(Ak\).
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Let Kk k \ U, and K t.J= Kk t_J {0}. Then K is a compact subset,

limsup kC(A:\K) 0,
k--+ oo

and

K fq A cc_ f2 fq A :,

so

K\{O} .
Let f L2 () be analytic in a neighborhood of zero. By Runge’s theorem, there
exists a sequence of rational functions r convergin to unifoly on K; so by
Lemma 7 we have

[f()[ M (=1 22min(k’lgEl)C(Ak K)) (fK [f[2 dA))

( 22min(k’lg ’C(A a)) (f if[2 ,dA)< M 1 (4)

Since such functions f are dense in L () (see [All), (4) holds for all f in L ().
Therefore, for Z Ao,r,

Ilkx sup
Ilfllta2 )=

(Lower Bound) By Lemma 6, we can choose positive measures /zk carded by
A \ with

f lU(z)l 2 dA 1,

and Iltzll comparable to C (A \ f2)1/2. Moreover, we can assume that each of the
measures/z has support entirely within one of the three sectors {z -zr +

0 0 0 0 0arg (z) < -2}’ {z" -2 < arg (z) < 2}’ {z" 2 < arg (z) < zr 2}’
Let

"k 2min(k’lg )C(Ak \ )1/2.
For some conjugacy class modulo 3, the sum of ,2 for k in this conjugacy class is
comparable to Y__ ,2. We shall choose only those/zk for k in this conjugacy class,
and set the other/z’s to zero (the point of this is to ensure the supports are well
separated).

Let

fi:(z) f dl,(w)
J
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be the Cauchy transform of/zk. Let us fix some . between -F and 0, and let N be
By the way we have chosen the measures, If,(.)l isthe closest integer to log2 IX"

comparable to 2k II/Xkll for k < N andto 2 II/xkll for k > N; For k N,we can only
say that it dominates 2N Iltzkll. Thus, for all k, we have

If,()l F Fk. (5)

We also have f If, 2 dA < 1, and the estimate

If (z)l _< IIz I1[ dist(z, An)]-1

gives, for In k > 2,

If12 dA <_ FC(A \ )22min(n’k)-2k (6)

Let f ctn fn, where we shall choose the c’s later. We have

Ifl2dA
k= fq

k=

2

_
Olnfn "[- Olkfk dA

In-kl > 2

Icgkfkl 2 dA -b _,
k=l kNf2 In-k [>2

Now, by the inequalities of Minkowski and Cauchy-Schwartz,

fa Otnfn dA < ICenl Ifl 2 dA
kN2 in_kl>_ 2 in_kl>_2 Nff2

In- kl >_ 2 In-k 1>2 tqfl

(7)

Using this and inequality (6), we get

ff Ifl :z dA < F (- ICnl2) (1 + n, k: In -k 1>2
C (An \ f2) 22min(n’k)-2k).

But this last factor is dominated by

nC(An\f2)
n=l
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which is finite by hypothesis. So we finally get

[flzda <_ F (y [Otn[2). (8)

Now choose ak so that [ak[ ?’k, and so that afk(k) >_ 0. By inequalities (5) and
(8), we have

if(Z)l 2 ( 117,#)2
>F

f f l2 dA Elkl2
k=l

So (-1 ’)1/2 is a lower bound for kx, as desired.

Proofof Corollary 2. (Sufficiency) If

lim sup 22k(
k---o

then the hypotheses of Theorem are satisfied. Using the estimate on Ilkxll from
Theorem 1, together with the hypothesis that C(Ak \ f2) < F2-(1-a, one gets that
I1 Ilkx stays bounded.

(Necessity) Let fk be as in the proof of Theorem 1. Then

If(.)l
> F 2min(k’lg2 ffl)C (Ak \ 2) 1/2.

IIf
Letting . -2- we get

Illlkxll >_ F2gO-a)C(Ak \

and the fight-hand side must remain bounded, as desired. I"!

Proofof Theorem 3. This proceeds like the proofofTheorem 1, with appropriate
modifications to Lemmata 5, 6 and 7 (in the proof of Lemma 5 the hypothesis that

lim 2k(2-q)Cq(Ak \ ) 0
k---o

is used, and this is a sufficient condition for the upper bound to hold).
For the lowerbound, there is one extra difficulty in getting the appropriate analogue

of (7)mif one follows routinely, one gets lot[ q instead of levip To get around
this, note that (6) becomes

Ifnlt’dA < f C (An \ )2pmin(n’k)-2k. (6’)

Then (7) becomes

fA E Otnfn dA< E [an[ E [fnlPdA
kcqf In-kl>_2 in_kl>2 in_kl>_2 kNf
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Using (6’), we get

k=l kNf2 k=l In-kl>2

Y Cq(An)2qmin(n’k)-k
In-kl>2

Now interchanging the order of summation and using the hypothesis of the theorem,
(and the estimate fa,N IOtnfn p dA < IOtnl p we finally get

f IflPdA < F (y IOlnlP).
Choosing Icl kq-l, where ?’k 2min(k’lg2 )C (Ak \ f2), yieldsthe desiredlower
bound. I-1
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