GROWTH OF THE BERGMAN KERNEL ON PLANAR REGIONS

John E. Mc Carthy and Liming Yang

Statement of results

Let Ω be a bounded open set in the complex plane. The Bergman space $L_{a}^{2}(\Omega)$ is the Hilbert space of holomorphic functions on Ω that are square-integrable with respect to area measure A. Evaluation at each point λ of Ω is continuous, so there is a corresponding kernel function k_{λ} in $L_{a}^{2}(\Omega)$ such that

$$
\int_{\Omega} f(z) \overline{k_{\lambda}(z)} d A(z)=f(\lambda)
$$

for every function f in $L_{a}^{2}(\Omega)$. In this paper, we are interested in estimating the growth of $\left\|k_{\lambda}\right\|$ as λ tends to the boundary of Ω.

If Ω is smoothly bounded, $\left\|k_{\lambda}\right\|$ will grow like the reciprocal of the distance to the boundary; but if the boundary point is somehow "buried" deep inside Ω, the growth of $\left\|k_{\lambda}\right\|$ can be slower (to aid the reader's intuition: the phenomenon is not caused by cusps, which cause the complement to be too thick, but by little holes accumulating at some point). In [$\mathrm{M}^{\mathrm{c}} \mathrm{CY}$] the authors found geometric conditions for $\left\|k_{\lambda}\right\|$ to remain bounded as a boundary point is approached (so that evaluation at this boundary point is a bounded point evaluation) for certain special domains (L-regions). Also, using results of Fernstrom and Polking [FP], necessary and sufficient conditions were found, in terms of Bessel capacity, for a boundary point of an arbitrary domain to be a bounded point evaluation. We extend this last result to estimating the growth of $\left\|k_{\lambda}\right\|$ when it does not remain bounded.

Let $\Lambda_{\Theta, \Gamma}$ be the sector in the left half-plane bounded by $y=x \tan \Theta, y=$ $-x \tan \Theta$, and $x^{2}+y^{2}=\Gamma^{2}$. We shall always assume that 0 is in the boundary of Ω and is the point of interest, and that for some Θ in $\left(0, \frac{\pi}{2}\right)$ and some $\Gamma>0$,

$$
\Lambda_{\Theta, \Gamma} \subset \Omega .
$$

We shall look at the growth rate of $\left\|k_{\lambda}\right\|$ as λ tends to 0 along the negative real axis.
Let $G(x, y)$ be the Bessel kernel, which is most easily defined as the inverse Fourier transform of $\left(1+x^{2}+y^{2}\right)^{-\frac{1}{2}}$. For each set E in \mathbb{C}, the Bessel capacity is defined as

$$
C(E)=\inf _{f} \int|f(x, y)|^{2} d x d y
$$

where $f \in L^{2}\left(\mathbb{R}^{2}\right), f \geq 0$, and $\int G(t-x, s-y) f(t, s) d t d s \geq 1$ for $(x, y) \in E$. Let $A_{k}=\left\{z=x+i y: 2^{-k-1} \leq|z|<2^{-k}\right\}$ and $A_{k}^{\prime}=\left\{z: 2^{-k-2} \leq|z| \leq 2^{-k+1}\right\}$.

Our results are the following:
THEOREM 1. Suppose

$$
\sum_{k=1}^{\infty} k C\left(A_{k} \backslash \Omega\right)<\infty
$$

Then there are constants F_{1} and F_{2} so that, as $\lambda \rightarrow 0^{-}, k_{\lambda}$ satisfies the growth condition

$$
\begin{aligned}
& \left\|k_{\lambda}\right\|^{2} \leq F_{1} \sum_{k=1}^{\infty} 2^{2 \min \left(k, \log _{2} \frac{1}{|\lambda|}\right)} C\left(A_{k} \backslash \Omega\right) ; \\
& \left\|k_{\lambda}\right\|^{2} \geq F_{2} \sum_{k=1}^{\infty} 2^{2 \min \left(k, \log _{2} \frac{1}{|\lambda|}\right)} C\left(A_{k} \backslash \Omega\right) .
\end{aligned}
$$

COROLLARY 2. Let $0<\alpha<1$. A necessary and sufficient condition for $\left\|k_{\lambda}\right\|$ to be $O\left(|\lambda|^{-\alpha}\right)$ as $\lambda \rightarrow 0^{-}$is that

$$
\limsup _{k \rightarrow \infty} 2^{2 k(1-\alpha)} C\left(A_{k} \backslash \Omega\right)<\infty
$$

Our techniques also work for the Bergman space $L_{a}^{p}(\Omega)$ for $2<p<\infty$. Letting $q=\frac{p}{p-1}$ be the conjugate index of p, define the q-capacity by

$$
C_{q}(E)=\inf _{f} \int|f(x, y)|^{q} d x d y
$$

where $f \in L^{q}\left(\mathbb{R}^{2}\right), f \geq 0$, and $\int G(t-x, s-y) f(t, s) d t d s \geq 1$ for $(x, y) \in E$ (so our previous definition of capacity is C_{2}, though we shall continue to write it as C with no subscript).

Theorem 3. Suppose $2<p<\infty$, and

$$
\sum_{k \rightarrow \infty} 2^{k(2-q)} C_{q}\left(A_{k} \backslash \Omega\right)<\infty
$$

Then as $\lambda \rightarrow 0^{-}$, the norm of the functional of evaluation at λ in the Bergman space $L_{a}^{p}(\Omega)$ is comparable to

$$
\left[\sum_{k=1}^{\infty} 2^{q \min \left(k, \log _{2} \frac{1}{|\lambda|}\right)} C_{q}\left(A_{k} \backslash \Omega\right)\right]^{\frac{1}{q}}
$$

We note that a disk Δ of radius δ has

$$
C(\Delta) \sim\left[\log \left(\frac{1}{\delta}\right)\right]^{-1}
$$

and, for $q<2$,

$$
C_{q}(\Delta) \sim \delta^{2-q}
$$

so it is easy to construct examples of regions of the form $\mathbb{D}(0,1) \backslash \cup_{n=1}^{\infty} \mathbb{D}\left(2^{-n}, r_{n}\right)$ that have kernels growing at a desired rate.

Proofs

We shall let F denote a generic constant, that may change from one line to the next. We shall let $K_{\varepsilon}=\{z: \operatorname{dist}(z, K)<\varepsilon\}$.

Lemma 4. (a) For each Borel set E,

$$
C(E)=\inf _{E \subset U} C(U)
$$

where U ranges over the open sets.
(b) For any Borel sets E_{1} and E_{2},

$$
C\left(E_{1} \cup E_{2}\right) \leq C\left(E_{1}\right)+C\left(E_{2}\right)
$$

Proof. See [Me].
Lemma 5. Let K be a compact subset of \mathbb{C}. Suppose that

$$
\limsup k C\left(A_{k} \backslash K\right)=0
$$

Then there exists a constant $M>0$ such that, for each $\varepsilon>0$ and each $k \geq 0$, there is a function $\psi_{k} \in C^{\infty}$ satisfying
(i) $\psi_{k}(z)=1$ for z in a neighborhood of $A_{k}^{\prime} \backslash K_{\varepsilon}$,
(ii) $\int_{|z| \leq 2^{-k+1}}\left|\bar{\partial} \psi_{k}\right|^{2} d A \leq M \cdot C\left(A_{k}^{\prime} \backslash K\right)$,
(iii) $\int_{|z| \leq 2^{-k+1}}\left|\psi_{k}\right|^{2} d A \leq M \cdot 2^{-2 k} C\left(A_{k}^{\prime} \backslash K\right)$.

Proof. The proof follows from the proof of Lemma 10 in [FP]. Their hypotheses are much stronger-namely that $\sum 2^{2 k} C\left(A_{k} \backslash K\right)<\infty$-but their proof works in our special case provided just $k C\left(A_{k} \backslash K\right)$ tends to zero. To use their proof, we only have to show that there exists k_{0} such that if $k \geq k_{0}$ then

$$
\begin{equation*}
\int_{\sqrt{t^{2}+s^{2}}>2-k+2} G(x-t, y-s) g_{k}(t, s) d t d s<\frac{1}{2} \tag{1}
\end{equation*}
$$

for $x^{2}+y^{2}<2^{-2 k+3}$, where g_{k} is defined as in their proof. We have

$$
\begin{align*}
\int_{\sqrt{t^{2}+s^{2}}>2^{-k+2}} G(x-t, y-s) g_{k}(t, s) d t d s & \leq\left\{\int_{\sqrt{t^{2} s^{2}} \geq 2^{-k}} G(t, s)^{2} d t d s\right\}^{\frac{1}{2}} \cdot\left\|g_{k}\right\| \\
& \leq F\left(\log \frac{1}{2^{-k}}\right)^{\frac{1}{2}} \cdot\left[C\left(A_{k}^{\prime} \backslash K\right)\right]^{\frac{1}{2}} \tag{2}
\end{align*}
$$

where the second inequality follows from Lemma 4 in [FP] and the fact that $\left\|g_{k}\right\| \leq$ $2\left[C\left(A_{k}^{\prime} \backslash K\right)\right]^{\frac{1}{2}}$. As the expression in (2) tends to 0 , we get (1) as desired.

For a positive Borel measure μ, let

$$
U^{\mu}(z)=\int|z-w|^{-1} d \mu(w)
$$

and

$$
c(E, V)=\sup _{\mu} \mu(E)
$$

where the supremum is taken over all positive Borel measures with $\operatorname{spt} \mu \subseteq E$ such that

$$
\int_{V}\left|U^{\mu}(z)\right|^{2} d A \leq 1
$$

(Throughout the paper, V will be a fixed bounded open set containing Ω or K. It is only necessary to introduce it as $\left|U^{\mu}\right|^{2}$ is not integrable in a neighborhood of infinity.)

Lemma 6. Let E be a Borel set. Then

$$
C(E)^{\frac{1}{2}} \leq c(E, V) \leq F C(E)^{\frac{1}{2}}
$$

(For a discussion of why this is true, and for other equivalent notions of analytic 2-capacities, see [He].)

The next lemma is the key to proving the upper bound estimate.
LEMMA 7. Let K be a compact subset of $\mathbb{C}, 0 \in \partial K$, and $\Lambda_{\Theta, \Gamma} \subseteq K$ for some $0<\Theta<\frac{\pi}{2}$ and $\Gamma>0$. Suppose that

$$
\limsup _{k \rightarrow \infty} k C\left(A_{k} \backslash K\right)=0
$$

Then there is a constant M such that for each rational function r with poles off K, and each λ in $\mathbb{R} \cap \Lambda_{\Theta, \Gamma}$,

$$
|r(\lambda)| \leq M \cdot\left(\int_{K}|r|^{2} d A\right)^{\frac{1}{2}}\left(\sum_{k=1}^{\infty} 2^{2 \min \left(k, \log _{2} \frac{1}{|N|}\right)} C\left(A_{k} \backslash K\right)\right)^{\frac{1}{2}}
$$

Proof. Without loss of generality, we can assume K is contained in the disk $\mathbb{D}\left(0, \frac{1}{4}\right)$, and so $\Gamma<\frac{1}{4}$. It follows from Lemma 4 that

$$
\lim _{\sup _{k \rightarrow \infty}} k C\left(A_{k}^{\prime} \backslash K\right)<\infty
$$

Construct a smooth function $\varphi \in C_{o}^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
\varphi(z)= \begin{cases}0 & \text { if } \left.z \in\{z:|z| \geq 2\} \text { or }|z| \leq \frac{1}{4}\right\} \\ 1 & \text { if } z \in\left\{z: \frac{1}{2} \leq|z| \leq 1\right\} \cap\left(\Lambda_{\Theta, 1}\right)^{c} \\ 0 & \text { if } z \in \Lambda_{\frac{\Theta}{2}, 1}\end{cases}
$$

For each integer k set

$$
\varphi_{k}(z)= \begin{cases}\varphi\left(2^{k} z\right) / \sum_{j=-\infty}^{\infty} \varphi\left(2^{j} z\right) & \text { if } \varphi\left(2^{j} z\right) \neq 0 \text { for some } j \\ 0 & \text { else. }\end{cases}
$$

Fix a rational function r with poles off K. Let g be a smooth function which is 1 in a neighborhood of K, zero in a neighborhood of the poles of r and zero off $\mathbb{D}\left(0, \frac{1}{4}\right)$. Let λ be between $-\Gamma$ and 0 . From Green's theorem,

$$
r(\lambda)=\frac{1}{\pi} \int_{\mathbb{D}\left(0, \frac{1}{4}\right)} \frac{1}{\lambda-z} \bar{\partial}(g r) d A(z)
$$

Let ε be small enough for K_{ε}. to be contained in the set where g is 1 . Then $\bar{\partial}(g r)=0$ on K_{ε}. Let ψ_{k} be as in Lemma 5; then $\sum \psi_{k} \varphi_{k}=1$ near $\mathbb{D} \backslash K_{\varepsilon}$, because if z is in $A_{k}, \varphi_{j}(z)$ is non-zero only for $j=k-1, k, k+1$, and $\psi_{j}(z)=1$ for these values of j. Therefore

$$
\begin{aligned}
r(\lambda) & =\frac{1}{\pi} \int \frac{1}{\lambda-z} \sum_{k=1}^{\infty} \psi_{k} \varphi_{k} \bar{\partial}(g r) d A \\
& =\frac{1}{\pi} \sum_{k} \int_{A_{k} \backslash \Lambda_{\frac{\Theta}{2}, \gamma}} \frac{1}{z-\lambda} \bar{\partial}\left(\psi_{k} \varphi_{k}\right) \cdot g r d A .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
|r(\lambda)| \leq F \sum_{k} \int_{A_{k} \backslash \Lambda_{\Theta, \Gamma}} \frac{1}{|z-\lambda|}\left|\bar{\partial}\left(\psi_{k} \varphi_{k}\right)\right||g r| d A . \tag{3}
\end{equation*}
$$

Let $-2^{-N} \leq \lambda<-2^{-N-1}$ and $z \in A_{k} \backslash \Lambda_{\Theta, \Gamma}$. If $k \geq N$, then

$$
\frac{1}{|z-\lambda|} \leq F \cdot \frac{1}{2^{-N}}
$$

if $k<N$, then

$$
\frac{1}{|z-\lambda|} \leq F \cdot \frac{1}{2-k}
$$

Therefore (3) gives

$$
\begin{aligned}
|r(\lambda)| \leq & F \sum_{k=1}^{N-1} 2^{k}\left(\int_{A_{k}}\left|\bar{\partial}\left(\psi_{k} \varphi_{k}\right)\right|^{2} d A\right)^{\frac{1}{2}}\left(\int_{A_{k}}|g r|^{2} d A\right)^{\frac{1}{2}} \\
& +F \sum_{k=N}^{\infty} 2^{N}\left(\int_{A_{k}}\left|\bar{\partial}\left(\psi_{k} \varphi_{k}\right)\right|^{2} d A\right)^{\frac{1}{2}}\left(\int_{A_{k}}|g r|^{2} d A\right)^{\frac{1}{2}} \\
\leq & F\|g r\|_{L_{a}^{2}(\mathbb{D})}\left(\sum_{k=1}^{N-1} 2^{2 k} \int_{A_{k}}\left|\bar{\partial}\left(\psi_{k} \varphi_{k}\right)\right|^{2} d A+\sum_{k=N}^{\infty} 2^{2 N} \int_{A_{k}}\left|\bar{\partial}\left(\psi_{k} \varphi_{k}\right)\right|^{2} d A\right)^{\frac{1}{2}} .
\end{aligned}
$$

Using Lemma 5 and the fact that $\left|\bar{\partial} \varphi_{k}\right| \leq F \cdot 2^{k}$, we have

$$
\int_{A_{k}}\left|\bar{\partial}\left(\psi_{k} \varphi_{k}\right)\right|^{2} d A \leq F \cdot C\left(A_{k}^{\prime} \backslash K\right)
$$

Hence,

$$
|r(\lambda)| \leq F\|g r\|_{L_{a}^{2}(\mathbb{D})}\left(\sum_{k=1}^{N-1} 2^{2 k} C\left(A_{k}^{\prime} \backslash K\right)+\sum_{k=N}^{\infty} 2^{2 N} C\left(A_{k}^{\prime} \backslash K\right)\right)^{\frac{1}{2}}
$$

Since g is arbitrary, subject to being 1 on K, we conclude that

$$
|r(\lambda)| \leq M\left(\sum_{k=1}^{\infty} 2^{2 \min \left(k, \log _{2} \frac{1}{|\lambda|}\right)} C\left(A_{k} \backslash K\right)\right)^{\frac{1}{2}}\|r\|_{L^{2}(K, A)}
$$

Proof of Theorem 1. (Upper Bound) Suppose that

$$
\limsup _{k \rightarrow \infty} k C\left(A_{k} \backslash \Omega\right)=0
$$

so by Lemma 4 (b),

$$
\limsup _{k \rightarrow \infty} k C\left(\bar{A}_{k} \backslash \Omega\right)=0
$$

Using Lemma 4 (a), we can find open subsets U_{k} such that

$$
\bar{A}_{k} \backslash \Omega \subset U_{k}
$$

and

$$
C\left(U_{k}\right)<2 C\left(A_{k} \backslash \Omega\right)
$$

Let $K_{k}=\bar{A}_{k} \backslash U_{k}$, and $K=\cup_{k=1}^{\infty} K_{k} \cup\{0\}$. Then K is a compact subset,

$$
\limsup _{k \rightarrow \infty} k C\left(A_{k} \backslash K\right)=0
$$

and

$$
K \cap A_{k} \subseteq \Omega \cap A_{k}
$$

so

$$
K \backslash\{0\} \subseteq \Omega
$$

Let $f \in L_{a}^{2}(\Omega)$ be analytic in a neighborhood of zero. By Runge's theorem, there exists a sequence of rational functions r_{n} converging to f uniformly on K; so by Lemma 7 we have

$$
\begin{align*}
|f(\lambda)| & \leq M\left(\sum_{k=1}^{\infty} 2^{2 \min \left(k, \log _{2} \frac{1}{|\lambda|}\right)} C\left(A_{k} \backslash K\right)\right)^{\frac{1}{2}}\left(\int_{K}|f|^{2} d A\right)^{\frac{1}{2}} \\
& \leq M\left(\sum_{k=1}^{\infty} 2^{2 \min \left(k, \log _{2} \frac{1}{|\lambda|}\right)} C\left(A_{k} \backslash \Omega\right)\right)^{\frac{1}{2}}\left(\int_{\Omega}|f|^{2} d A\right)^{\frac{1}{2}} \tag{4}
\end{align*}
$$

Since such functions f are dense in $L_{a}^{2}(\Omega)$ (see [Al]), (4) holds for all f in $L_{a}^{2}(\Omega)$. Therefore, for $\lambda \in \mathbb{R} \cap \Lambda_{\Theta, \Gamma}$,

$$
\left\|k_{\lambda}\right\|=\sup _{\left.\|f\|_{L_{a}^{2}(\Omega)}\right)=1}|f(\lambda)| \leq M\left(\sum_{k=1}^{\infty} 2^{2 \min \left(k, \log _{2} \frac{1}{|\lambda|}\right)} C\left(A_{k} \backslash \Omega\right)\right)^{\frac{1}{2}} .
$$

(Lower Bound) By Lemma 6, we can choose positive measures μ_{k} carried by $A_{k} \backslash \Omega$ with

$$
\int_{\Omega}\left|U_{k}^{\mu}(z)\right|^{2} d A \leq 1
$$

and $\left\|\mu_{k}\right\|$ comparable to $C\left(A_{k} \backslash \Omega\right)^{\frac{1}{2}}$. Moreover, we can assume that each of the measures μ_{k} has support entirely within one of the three sectors $\left\{z:-\pi+\frac{\Theta}{2} \leq\right.$ $\left.\arg (z) \leq-\frac{\Theta}{2}\right\},\left\{z:-\frac{\Theta}{2} \leq \arg (z) \leq \frac{\Theta}{2}\right\},\left\{z: \frac{\Theta}{2} \leq \arg (z) \leq \pi-\frac{\Theta}{2}\right\}$.

Let

$$
\gamma_{k}=2^{\min \left(k, \log \frac{1}{\lambda_{1}}\right)} C\left(A_{k} \backslash \Omega\right)^{\frac{1}{2}} .
$$

For some conjugacy class modulo 3 , the sum of γ_{k}^{2} for k in this conjugacy class is comparable to $\sum_{k=1}^{\infty} \gamma_{k}^{2}$. We shall choose only those μ_{k} for k in this conjugacy class, and set the other μ_{k} 's to zero (the point of this is to ensure the supports are well separated).

Let

$$
f_{k}(z)=\int \frac{d \mu_{k}(w)}{z-w}
$$

be the Cauchy transform of μ_{k}. Let us fix some λ between $-\Gamma$ and 0 , and let N be the closest integer to $\log _{2} \frac{1}{|\lambda|}$. By the way we have chosen the measures, $\left|f_{k}(\lambda)\right|$ is comparable to $2^{k}\left\|\mu_{k}\right\|$ for $k<N$ and to $2^{N}\left\|\mu_{k}\right\|$ for $k>N$; For $k=N$, we can only say that it dominates $2^{N}\left\|\mu_{k}\right\|$. Thus, for all k, we have

$$
\begin{equation*}
\left|f_{k}(\lambda)\right| \geq F \gamma_{k} \tag{5}
\end{equation*}
$$

We also have $\int_{\Omega}\left|f_{k}\right|^{2} d A \leq 1$, and the estimate

$$
\left|f_{n}(z)\right| \leq\left\|\mu_{n}\right\|\left[\operatorname{dist}\left(z, A_{n}\right)\right]^{-1}
$$

gives, for $|n-k| \geq 2$,

$$
\begin{equation*}
\int_{A_{k}}\left|f_{n}\right|^{2} d A \leq F C\left(A_{n} \backslash \Omega\right) 2^{2 \min (n, k)-2 k} \tag{6}
\end{equation*}
$$

Let $f=\sum \alpha_{n} f_{n}$, where we shall choose the α 's later. We have

$$
\begin{aligned}
\int_{\Omega}|f|^{2} d A & =\sum_{k=1}^{\infty} \int_{A_{k} \cap \Omega}\left|\sum_{|n-k| \geq 2} \alpha_{n} f_{n}+\alpha_{k} f_{k}\right|^{2} d A \\
& \leq 2\left[\sum_{k=1}^{\infty} \int_{A_{k} \cap \Omega}\left|\alpha_{k} f_{k}\right|^{2} d A+\sum_{k=1}^{\infty} \int_{A_{k} \cap \Omega}\left|\sum_{|n-k| \geq 2} \alpha_{n} f_{n}\right|^{2} d A\right]
\end{aligned}
$$

Now, by the inequalities of Minkowski and Cauchy-Schwartz,

$$
\begin{align*}
\int_{A_{k} \cap \Omega}\left|\sum_{|n-k| \geq 2} \alpha_{n} f_{n}\right|^{2} d A & \leq\left[\sum_{|n-k| \geq 2}\left|\alpha_{n}\right|\left(\int_{A_{k} \cap \Omega}\left|f_{n}\right|^{2} d A\right)^{\frac{1}{2}}\right]^{2} \\
& \leq\left(\sum_{|n-k| \geq 2}\left|\alpha_{n}\right|^{2}\right)\left(\sum_{|n-k| \geq 2} \int_{A_{k} \cap \Omega}\left|f_{n}\right|^{2} d A\right) \tag{7}
\end{align*}
$$

Using this and inequality (6), we get

$$
\int_{\Omega}|f|^{2} d A \leq F\left(\sum\left|\alpha_{n}\right|^{2}\right)\left(1+\sum_{n, k:|n-k| \geq 2} C\left(A_{n} \backslash \Omega\right) 2^{2 \min (n, k)-2 k}\right)
$$

But this last factor is dominated by

$$
\sum_{n=1}^{\infty} n C\left(A_{n} \backslash \Omega\right)
$$

which is finite by hypothesis. So we finally get

$$
\begin{equation*}
\int_{\Omega}|f|^{2} d A \leq F\left(\sum\left|\alpha_{n}\right|^{2}\right) \tag{8}
\end{equation*}
$$

Now choose α_{k} so that $\left|\alpha_{k}\right|=\gamma_{k}$, and so that $\alpha_{k} f_{k}(\lambda) \geq 0$. By inequalities (5) and (8), we have

$$
\frac{|f(\lambda)|^{2}}{\int_{\Omega}|f|^{2} d A} \geq F \frac{\left(\sum\left|\alpha_{k}\right| \gamma_{k}\right)^{2}}{\sum\left|\alpha_{k}\right|^{2}}=F \sum_{k=1}^{\infty} \gamma_{k}^{2}
$$

So $\left(\sum_{k=1}^{\infty} \gamma_{k}^{2}\right)^{\frac{1}{2}}$ is a lower bound for k_{λ}, as desired.
Proof of Corollary 2. (Sufficiency) If

$$
\limsup _{k \rightarrow \infty} 2^{2 k(1-\alpha)} C\left(A_{k} \backslash \Omega\right)<\infty
$$

then the hypotheses of Theorem 1 are satisfied. Using the estimate on $\left\|k_{\lambda}\right\|$ from Theorem 1, together with the hypothesis that $C\left(A_{k} \backslash \Omega\right) \leq F 2^{-2 k(1-\alpha)}$, one gets that $|\lambda|^{\alpha}\left\|k_{\lambda}\right\|$ stays bounded.
(Necessity) Let f_{k} be as in the proof of Theorem 1. Then

$$
\frac{\left|f_{k}(\lambda)\right|}{\left\|f_{k}\right\|} \geq F 2^{\min \left(k, \log _{2} \frac{1}{|\lambda|}\right)} C\left(A_{k} \backslash \Omega\right)^{\frac{1}{2}}
$$

Letting $\lambda=-2^{-k}$, we get

$$
|\lambda|^{\alpha}\left\|k_{\lambda}\right\| \geq F 2^{k(1-\alpha)} C\left(A_{k} \backslash \Omega\right)^{\frac{1}{2}}
$$

and the right-hand side must remain bounded, as desired.
Proof of Theorem 3. This proceeds like the proof of Theorem 1, with appropriate modifications to Lemmata 5, 6 and 7 (in the proof of Lemma 5 the hypothesis that

$$
\lim _{k \rightarrow \infty} 2^{k(2-q)} C_{q}\left(A_{k} \backslash \Omega\right)=0
$$

is used, and this is a sufficient condition for the upper bound to hold).
For the lower bound, there is one extra difficulty in getting the appropriate analogue of (7)—if one follows routinely, one gets $\sum|\alpha|^{q}$ instead of $\sum|\alpha|^{p}$. To get around this, note that (6) becomes

$$
\int_{A_{k}}\left|f_{n}\right|^{p} d A \leq F C_{q}^{\frac{p}{q}}\left(A_{n} \backslash \Omega\right) 2^{p \min (n, k)-2 k}
$$

Then (7) becomes

$$
\int_{A_{k} \cap \Omega}\left|\sum_{|n-k| \geq 2} \alpha_{n} f_{n}\right|^{p} d A \leq\left(\sum_{|n-k| \geq 2}\left|\alpha_{n}\right|^{p}\right)\left(\sum_{|n-k| \geq 2}\left[\int_{A_{k} \cap \Omega}\left|f_{n}\right|^{p} d A\right]^{\frac{q}{p}}\right)^{\frac{p}{q}}
$$

Using (6 '), we get

$$
\begin{aligned}
\sum_{k=1}^{\infty} \int_{A_{k} \cap \Omega}\left|\sum_{|n-k| \geq 2} \alpha_{n} f_{n}\right|^{p} d A \leq & \sum_{k=1}^{\infty}\left(\sum_{|n-k| \geq 2}\left|\alpha_{n}\right|^{p}\right) \\
& \times\left(\sum_{|n-k| \geq 2} C_{q}\left(A_{n} \Omega\right) 2^{q \min (n, k)-\frac{2 q}{p} k}\right)^{\frac{p}{q}} \\
\leq & \left(\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{p}\right) \sum_{k=1}^{\infty}\left(\sum_{|n-k| \geq 2} C_{q}\left(A_{n} \Omega\right) 2^{q \min (n, k)-\frac{2 q}{p} k}\right)
\end{aligned}
$$

Now interchanging the order of summation and using the hypothesis of the theorem, (and the estimate $\int_{A_{n} \cap \Omega}\left|\alpha_{n} f_{n}\right|^{p} d A \leq\left|\alpha_{n}\right|^{p}$) we finally get

$$
\int_{\Omega}|f|^{p} d A \leq F\left(\sum\left|\alpha_{n}\right|^{p}\right)
$$

Choosing $\left|\alpha_{k}\right|=\gamma_{k}^{q-1}$, where $\gamma_{k}=2^{\min \left(k, \log _{2} \frac{1}{|\times|}\right)} C_{q}^{\frac{1}{q}}\left(A_{k} \backslash \Omega\right)$, yields the desired lower bound.

References

[Al] A. Aleman, Invariant subspaces with finite codimension in Bergman spaces, Trans. Amer. Math. Soc. 330 (1992), 531-543.
[FP] C. Fernstrom and J. C. Polking, Bounded point evaluations and approximation in L^{p} by solutions of elliptic partial differential equations, J. Funct. Anal. 28 (1978), 1-20.
[He] L. HEDBERG, Non-linear potentials and approximation in the mean by analytic functions, Math. Zeitschr. 129 (1972), 299-319.
[McCY] J. E. MCCARTHY and L. YANG, Boundedpoint evaluations on the boundaries of L regions, Indiana Univ. Math. J. 43 (1994), 857-883.
[Me] N. MEYERS, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.

WASHINGTON UnIVERSITY
Saint Louis, Missouri
University of Hawail
Honolulu, Hawail

