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SPECTRAL PROPERTIES OF WEIGHTED COMPOSITION
OPERATORS AND HYPERBOLICITY OF LINEAR

SKEW-PRODUCT FLOWS

YURI LATUSHKIN

1. Introduction

A weighted composition operator is an operator T that acts by the rule (Tf)(x)
a(x)f(cpx) on a space of vector-valued functions f, defined on a set X. Here p is a
given mapping of X, and a(.) is a given operator-valued function. These operators
have been studied with different purposes and from different points of view (see [3],
[4], [7], [9], [12], [16], [18], [23], [24] and literature, cited therein).

Weighted composition operators are widely used in the description of asymptotic
properties of dynamical systems and differential equations. A well-known example
is provided by the celebrated Mather Theorem [19]. This theorem states that a
diffeomorphism pof a finite dimensional smooth manifoldX is Anosov (is hyperbolic,
see the definition below) if and only if the associated weighted composition operator
T is hyperbolic, that is r(T) fq qI’ 0 for the spectrum r (T) and unite circle ql". Here
T acts in the space of continuous sections f of the tangent bundle over X, a is the
differential of .

This theorem was generalized in several directions (see [1], [2], [5], [14], [18]),
and, in particular, for an arbitrary linear skew-product flow. To give the definition of
the linear skew-product flow (LSPF) we consider a homeomorphism q of a compact
metric space X and a continuous function a: X L(H) with values in the algebra
L(H) of operators, bounded on a Hilbert space H. Let : X x Z+ ---> L (H) be
a cocycle over q, defined by the rule (x, n) a(cpn- x)...., a(x). The linear
skew-product flow, associated with , is the map

(1) b’*: X x H X x H: (x,v) -> (dp’x, eP(x,n)v), n 6 Z+.

The LSPFs are one of the major objects in studying the asymptotics of variational
differential equations v’ A(dptx)v,x . X, where A: X L(H), and pt is a flow
on X (see [10], [15], [21], [22] and the literature therein). One can thinkof (x, t) as
the solving operator for the differential equation: v’(t) dp (x, t)v(O), ll, x X.

One of the main problems here is the existence of exponential dichotomy (hy-
perbolicity) for the LSPF (1) with continuous with respect to x dichotomy projec-
tion (see [6], [8], [10], [15], [20], [21]). It means the existence of a continuous
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projection-valued function P: X ---> L(H) which gives for each x X a splitting
H Im P(x) 4- Ker P (x) of H in the direct sum of stable gx Im P (x) and unstable
Ux Ker P(x) subspaces such that for v gx (resp. v Ux) the norm II(x, n)vll
approaches 0 (resp. cx) with an exponential rate as n ---> o.
We will characterize the hyperbolicity of the LSPF (1) in spectral terms for the

weighted composition operator

)(Tf)(x)
\ dlz

a(ck-lx)f(-lx), x X.

The operator T acts on the space L2 L2(X,/x; H) of functions on X with values
in H, where/x is a given Borel q-quasi-invariant finite measure on X. We assume,
that supp/z X and q is aperiodic,/z(Per) 0.

The central new effect in the present paper is the following. The Mather Theorem
and its generalizations from 1 ], [2], [5], 14], 18] show that forfinite dimensional H
the hyperbolicity ofthe LSPF (1) is equivalent to the hyperbolicity ofthe operator T.
In this sense cr (T) plays forthe LSPF (1) the same role as the spectrum ofmonodromy
operator does forperiodic differential equations. As itwas pointed outby R. Rau [20],
for infinite dimensional H, the Mather Theorem and its generalizations are not al ways
valid. The hyperbolicity of T always implies the hyperbolicity of the LSPF (1). The
converse statement is true provided the values ofa are invertible or compact operators
in H. In general, the condition cr (T) N T 0 is implied by the hyperbolicity of the
LSPF (1) together with some additional condition on the LSPF (of the invertibility
of a(x) on unstable subspaces Ux for all x X). In the present paper, however, we
were able to characterize the hyperbolicity ofthe LSPF (1) in other spectral terms for
T. This characterization is the following.

The hyperbolicity of the LSPF (1) is equivalent to the existence of T-invariant
splitting L2(X,/x; H) ImP + Ker 79 into direct sum of "stable" subspace Im T
and "unstable" subspace Ker 79. The spectrum of the "stable" part of the operator T
has to be inside the disk I {z: Izl < 1 }. The "unstable" part Tu TI Ker79 of the
operator T has to be left-invertible. The spectrum of the left-inverse operator for Tun
must belong to D for some N > 1. And, finally, the set of those functions in Ker 79,
that do not have preimages with respect to all powers of Tu, has to withstand the
multiplication by continuous scalar functions. Using a C*-algebra technique from
1, 2, 18], we prove, under this conditions, that any projection 79 on L2(X,/z; H), that

gives the described T-invariant splitting, has a form (79f)(x) P(x)f(x), where
P (.) defines the hyperbolicity of the LSPF (1).

Similar results can be proved also for so-called evolutionary semigroups (see 13],
[17], [20]). The evolutionary semigroup {T is the semigroup of operators, acting
on L2 (IR; H) by the rule (T f) (x) U(x, x t)f(x t). Here U(x, s) }x >_s is
an evolutionary family on H, that can be viewed as the propagator of a differential
equation v’= A (x)v,x . Clearly, T is the weighted composition operator with
X JR, a (x) U (x, x t), and x x t.
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Also, one can prove similar results for a strongly (versus uniformly) continuous
operator-function a (.). This situation for the evolutionary semigroup corresponds to.
a strongly continuous propagator U(x, s) for the differential equation v’ A (x)v
with, generally, unbounded operators A(x), x N. Thus, the exponential dichotomy
(hyperbolicity) of any well-posed differential equation in Hilbert space can be ex-
pressed in terms of the spectral properties of the weighted composition operators,
described here.

Section 2 contains some definitions and our main result. We use several lemmas
in its proof. These lemmas are proved in Section 3.

It is a pleasure to thank Carmen Chicone and Stephen Montgomery-Smith for help
and stimulating conversations.

2. Results

Consider the LSPF (1), generated by a continuous cocycle : X x Z+ -->

L(H) over a homeomorphism p of a compact metric space X" (x., n + k)
dp(cknx, k)OP(x, n), n, k Z+, and (x, 0) I, x 6 X.

Definition. TheLSPF(1)is calledhyperbolic ifthere existacontinuousprojection-
valued function P" X --> L(H) and constants M, . > 0 such that for all x 6 X and
n 6 Z+ the following is fulfilled:

(i) Op(x, n) P(x) P(nx)dP(x, n);
(ii) II(x, n)vll < Me-Xllvll, v e ImP(x),

II(x, n)oll >_ M-lenllvll, v e Kere(x).

The LSPF is called spectrally hyperbolic, if, in addition to that,

(iii) Im (*(x, n) Ker P(x)) is dense in Ker P(rbnx).

If takes invertible values, this definition coincides with the definition of expo-
nential dichotomy for the LSPF (1)(cf. [8], [10], [20], [21]). Note, that the second
condition in (ii) implies the left-invertibility ofthe restriction (x, n) Ker P(x) as an
operator from Ker P (x) to Ker P (tOn x), while (iii) implies its both-sided invertibility.
Regarding the hyperbolicity and the spectral theory of linear skew-product flows see
[5], [14], [15], [22], where the situation dim H < o was considered. Let us stress,
that if dim H < o, then (ii) automatically implies (iii). See also [11, Definition
7.6.1 ], and [6], [21 for the case of infinite dimensional H.

The following fact (see 18, Theorem3.2]) explains theterm spectralhyperbolicity.

THEOREM 1. The spectral hyperbolicity of the LSPF (1) is equivalent to the
hyperbolicity of the operator T on L 2 (X, IX, H).
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Note, that condition (iii) was missing in Definition 3.1 in [18] (see [20]).
The following example (cf. [20]) shows that the hyperbolicity ofthe LSPF (1) (that

is (i) and (ii) without (iii)) does not imply the hyperbolicity of T.

Example 1. Let X be a single-point set, tp be the identity map, H /2(Z+),
and a =- a(x) be a weighted unilateral shift on 12(Z+), that is, a: (v0, Vl
(0, eXvo, eXvl ),Z > 0. Notethat Ilaoll ello andthe LSPF (1) is hyperbolic
with P 0. However, tr (T) cr (a) {z: Izl <_ ex} contains 31". l"l

Similar examples can be constructed to give two LSPFs (1) such that one of them
is hyperbolic, another one is nonhyperbolic but the spectra (and even approximate
point spectra) of the corresponding weighted composition operators are equal.

Note that under one of the following additional assumptions the spectral hyper-
bolicity coincides with the hyperbolicity:

1. a(x) is an invertible operator for all x X. Then ,(x, n) Ker P (x) is also
invertible, which implies (iii).

2. a(x) is a compact operator for all x X. Then the multiplicative ergodic
theorem implies (see [18]) that dim Ker P (x) < cx. The second inequality
in (ii) gives the left invertibility of the matrix ,(x, n)l Ker P (x). Hence, this
matrix is invertible, which implies (iii).

Let us formulate now the main result of the paper that describes the hyperbolicity
of (1), that is conditions (i) and (ii), in the spectral terms for T. To this end for a
left-invertible operator A let us denote by At its left inverse, defined as A *u v if

Av ImA and Atu 0if u_l_ ImA. Let IIAIIo inf{llAull" Ilull 1}, and let
denote restriction of an operator.

THEOREM 2. The LSPF (1) is hyperbolic ifand only if there exists a projection
on L2 (X, Id, H) such that:.

(a) TT’ T’T;
(b) tr(TI Im) C ll);
(c) The operator Tu T Ker 7:’ is left-invertible in Ker79 andfor some N Z+

one has tr ((T)t) C ]I);
(d) The subspace KerT’ [")n>_0 Im Tun of L2(X, tz, H) is invariant under the

multiplications by scalar continuousfunctions on X.

Any projection 79 thatsatisfies a), (b), (c), and (d) has aform (79f)(x) P (x)f (x)
for a continuous projection-valuedfunction P" X --r L (H).

Proofof Theorem 2. Let us note that a change of variables gives the equation

(2) rnfllL2 I1(’, n)fll=, f L2.
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Since supp/z X, from (4) one has

(3) IIT"II =max{ll(x,n)ll: x X}, IIT"IIo= min{ll(x,n)llo: x X}.

Assume that LSPF (1) is hyperbolic; that is, conditions (i) and (ii) are fulfilled.
We will show that (a)-(d) are fulfilled. Define a projection 79 by the rule (Pf)(x)
P(x)f(x). Then (i) implies (a). Having applied (5) to T"I Im 79, one has (b) from
the first inequality in (ii). The second inequality in (ii) by the same reason gives
IIT KerPllo > M-le;n. Now (c) is a consequence ofthe following simple fact (see
proofs of all lemmas below in Section 3).

LEMMA 1. For an operator A in a Hilbert space 7-[ thefollowing are equivalent:.

(1) IlAnvll >_ c,nllvll for all n Z+, v 7-( and some y > 1 and C > 0;
(2) A is left-invertible, anda((AN) t) C Dfor some N Z+.

Let us derive (d) from (i) and (ii). To this end for any continuous m: X -- 1 we
will denote also by m the operator of multiplication by m in L 2, that is (mf)(x)
m(x) f(x). Then T’m m79 since 79 is an operator of multiplication by P (.).
Hence mf Ker 79 provided f Ker 79. Denote K n>_0 Im T,n. Obviously,
Tun (m o b’) mT. If f K then f Tungn for some gn KerP and all n Z+.
But now mf Tu" (m o Cn) gn K, and (d) is proved.

Assume now that (a), (b), (c), (d) are fulfilled. We will show the hyperbolicity of
(1). To this end, basically, we need to prove that 79 is an operator of multiplication by
a continuous projection-valued function P (.). Indeed, let us assume that this fact has
been already proved. Then (i) follows from (a). The first estimate in (ii) follows from
(5), applied to Tn [Im P and (x, n)] ImP(x). By Lemma also IITu" fll >_ c’nllfll
for some y > 1 and C > 0 provided (c). Now the second estimate in (ii) follows
from (5) applied to Tun and (x, n) Ker P(x), and the hyperbolicity of(l) is proved.

In order to prove that (Pf)(x) P(x)f(x) we need to know that the decom-
position L2 Im794- Ker79 is invariant under the multiplication by any continuous
function m. We formulate this fact as a lemma.

LEMMA 2. Conditions (a), (b), (c), (d) imply Pm mPfor any continuous

function m: X --+ I.

We will show that conditions (a), (b), (c), and Lemma 2 implies (Pf)(x)
P(x)f(x).
We start from the following heuristic remark. Assume (r (T) fq ql" . Then (a),

(b), (c) are fulfilled for the Riesz projection P of the operator T, that corresponds
to the part cr (T) 3 D of its spectrum. In this case the Riesz integral formula (see,
e.g., [8]) allows one to calculate P via the resolvent (z T)- for z T. From
this formula, using the technique from 18], one can derive that P is an operator of
multiplication. Let now (a), (b), (c) are fulfilled. Of course, these conditions do not
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imply the two-sided invertibility of z T for z "11". We will see, however, that the
operator z- T is a leftinvertible operator for any z ’I[’. Moreover, we will compute
79 by the formula, similarto the integral formula for a Riesz projection. Then we will
apply a modification of the usual technique from 18] to prove that 79 is an operator
of multiplication.

Having in mind these arguments, we formulate the following result.

LEMMA 3. Condition (a), (b), (c) imply the left-invertibility ofz- Tforall z
and theformula

(4) P
2zri

(z T)t dz.

Let us prove that 79 from (6) is an operator of multiplication. To this end let us
consider the Banach algebra B of the operators b on L2(X,/z; H) of the form

(5) b= akT1, with Ilblll
k=-oo

where

Tl f x (dlz qb-1
lz

1/2

f(q-lx),

and ak are operators of multiplication by continuous functions ak" X --+ L(H), that
is (akf)(x) a(x)f (x). It is clear, that z T z Tla 13 for all z
Note that B is inverse-closed (see 18, Proposition 2.3]). This means, that if b B
is an invertible operator in L(L2) then its inverse operator b-l also belongs to B.
Moreover, the following fact is valid.

LEMMA 4. Ifb 13 is a left-invertible operator on L2(X, lz H), then b 13.

Now, in accordance with Lemma 3 and (6) we conclude that79 e B. In accordance
with (5), T can be written as T Y aT1k. Let us use Lemma 2 and rewrite the
equation mT’ T’m 0 term-by-term: mak ak (m o tp -k) 0, k Z. Recall
that Int Per p 0. Hence for any k : 0 and any x ’ Perp one can choose m such
that m (x) m o tp-k (x) 0. Then ak 0 for k - 0, and 79 a0 is an operator of
multiplication, ff]

3. Proofs ofLemmas

ProofofLemma 1. To prove 2) =, 1) note that for the spectral radius r
r((AlV)*) one has r < provided 2). For small e > 0then II(AN)*II _< c(r /)k for
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some c > 0 and all k 6- Z+. For any n 6- Z+ take n Nk 4- k0, 0 < k0 < N. Then,
since (AN)t. AN I, one has

Iloll II(A)*(AV)*Avll II(A)*II c(r + )llAnoll,

and (1) is proved.
To prove (1) = (2) let us denote by v(.) the orthoprojection of v 6- 7-/onto subspace

(.). Choose N such that C y,v > ?’0 for some ’0 > 1. Then

v UIm AV AN (AN) UImAV

cy’NII(AN)OImANII > ’011(A)*olI,

and a((AN)) C D. Here we have used the fact that AftYlmA A tv and AAtu u
for u 6- ImA. l

ProofofLemma 2.
point out, that

DenoteQ= I-79,Ts=TIImT’,Tu=TIImQ. Letus

(6) Im 79 {f 6- L 2 (X, lz H) Znf - O, n cx: }.

Indeed, for f 6- Im 79 and small > 0 one has Tnf Tnf c(r (Ts) 4-
)llfll O, since the spectral radius r(T) < provided (b). By Lemma for
A Tu condition (c) implies that Tun Qf >_ C /n Qfll, ’ > 1. If Tn f 0
and f 79f 4- Qf then

IIQfll C-1
< C -1

-IIT2 Qf c-l’-n (11T"f TflT’f II)
’-n(llTnfll 4- Tf179fll) 0,

as n o, and (8) is proved.
Let us fix a continuous m" X -- N. Note that Tnmf (m o )-n)Tnf. But

IIm o -nll Ilmll max{Im(x)l: x X} for all n 6- 7_,+. Then for f 6- Im 79 one
has IITnmfll -- 0 as n o and mf 6- Im 79 by (8).

In order to prove that mf 6- Ker P provided f 6- KerT’ let us denote K
n>_0 Im Tu. Note that KerP, @ K is invariant under multiplications by rn in accor-
dance with (d), and we need to show only that mK C K.

Note that mf 6- Im T provided f 6- Im T", since for f Tng one has

Tn (m odpn) g -’mTng mf 6_ Imrn.

Fix f 6- K and show that mf 6- K. Let us denote, for brevity, B (Tut)N. Consider

fn Bnf, n --0, Since f 6- K one has f TuVfn. Also, a(B) C D
provided (c). Then f _< c (r (B) / ) fll 0 as n -- o for small 6 > 0.
Let us assume mf Ker 79. Consider the functions gn rn o n fn Obviously
IIg _< IIm f - 0as n o, and TnNgn mf. Decomposeg 79gn 4- Qgn.
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Since Ker T’ and Im 79 are T-invariant by (a), TsnV79gn 79mf, Tv Qgn Qmf.
By Lemma one has Ilamfll IITnlVagll > c’nvllagll and Ilagll 0 as

Since, as we have seen, IIg 0, we conclude that 1179g 0. However by
(b), IImfll IITmgll c(r(Ts)+)mllgnll 0 forsmall > 0, which
contradicts the assumption Pmf

ProofofLemma 3. Let Ts T lIm Tu T]Im Q, and Q I P. Decom-
pose

zl- T (z- )&(za Tu), z
The operator zP Ts is inveible in ImP provided (b). Also one has

(7) (z T)- z- (P z- T)- z-(+) T.
k

Having denoted B (Tff)t for N from (c), one has

z Q T z BT T (B Q)T.
But zB Q is an inveible operator in Ker provided (c). Since B is the left
inverse for Tf, one has

za- Tf OzO- a- zO.
k

From the identity

(8)

one has

(9)

ziv Q T (zlV-lQ + zlV-2Tu +... + TulV-l)(z Q Tu)

(z Q Tu) B zvkB (zv- Q 4- zv-:zTu 4-... 4- TulV-),
k=0

and finally (z T) t (z79 Ts )- -(-(zQ Tu) t. Both series (9) and (11) converge
absolutely for Izl 1, Since f z dz 0 for k -1, integration of (z T)t gives
the only one nonzero term which corresponds to the value k 0 in (9), that is to the
operator T T, and (6) is proved. C!

ProofofLemma 4 (told to the author by R. Exel). Note that T* T{ Then in
accordance with (7), b /3 implies b* B, and b* b /3. Since b is a left-invertible
operator in L(L2), the Hermitian operator b*b is invertible in L(L2). Indeed, if
b’by 0 for some v, then Ilboll (b*bo, o) 0 and v 0. But (see [18,
Proposition 2.3])/3 contains inverse operators foreach of its element, that is invertible
in L(L). Hence, (b’b)- 13 and also (b*b)-b* 13. To finish the proof, let us
note, that b (b*b)-b*. Indeed, btbv (b*b)-b*bv v. If u_Llmb then
u Kerb* and btu (b*b)-b*u =0. r!
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