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ON A CONDUCTOR DISCRIMINANT FORMULA
OF MCCULLOH

BART DE SMIT

I. Introduction

For certain finite rings E, McCulloh has indicated a canonical construction of an
order T(E) in a Galois algebra TQ(E) over Q, whose Galois group is the unit group
E* of E. In the case that E Z/nZ for some non-negative integer n, the Galois
algebra is the nth cyclotomic field and T(E) is its ring of integers. McCulloh has used
these orders to generalize Stickelberger relations [3], [4]. The construction of T(E),
which is explained in Section 2, works for all self-dual or quasi-Frobenius rings E.

The conductor discriminant formula for cyclotomic fields [5, Theorem 3.11 ex-
presses the discriminant of a cyclotomic ring of integers as a product of conductors.
A generalization of this formula to certain orders T(E) was used by McCulloh to
prove Stickelberger type formulas for the minus-part of the class group of T (E); see
the remark after Theorem 3 in [3]. In a talk in Durham in 1994 McCulloh posed the
question of whether the following generalization holds for all commutative self-dual
finite rings E:

(1.1) AT(E)/Z H "]f(x)"
Z Hom(E*,*)

The conductor f is the largest E-ideal a for which )f factors through (E/a)*, and
the norm .M(a) of an E-ideal a is its index as an additive subgroup of E (or, more
precisely, the Z-ideal generated by this index). The main result of this note is the
following.

THEOREM 1.2. Let E be a self-dual finite commutative ring. The conductor
product I-Ix Af(x) with X ranging over the homomorphisms E* C*, is a divisor

of Are)/,. We have Are)/z I-Ix Af(fx ifand only if E is a principal ideal ring.

The proof is given in Section 3, together with an explicit formula for Are)/z. The
easiest example where (1.1) fails is E F2 V4], the group ring over the field of two
elements of the abelian group of type (2, 2). In this case, the left hand side is 224, and
the right hand side is 222

In Section 4 we show that one can often change the ring structure of E to that of
a principal ideal ring without changing the order T(E).
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For non-commutative self-dual rings E, McCulloh has suggested comparing the
discriminant ArF_,)/, with the conductor product I-Ix A/’(fx)x). Here the product is
taken over the irreducible complex characters X of E*. The conductor of X is the
largest two-sided E-ideal a for which the representation E* --> GLxI (C) associated
to X factors through (E/a)*. This notion of conductor can be found in Lamprecht [2,
3.2]. At present it is not even known if one inequality holds in this generality.

2. Terminology

2.1. Self-dual rings. The dual D(A) of a finite abelian group A is defined to be
the group Hom(A,/zoo), where/zo is the group of roots of unity in a fixed algebraic
closure Q of Q. Let E be a finite ring with (not necessarily commutative). The
dual D(E+) of the additive group E+ of E has a right-E-module structure given by
(tpe)(x) 99(ex) for all e, x E and 99 D(E+). We say that E is self-dual if
D(E+) is free of rank as a right-E-module. This is equivalent to saying that E is
injective as a module over itself, and that E is a quasi-Frobenius ring 1, 57-58]. A
finite commutative ring is self-dual if and only if it is Gorenstein.

2.2. Galois algebras. There is a (contravariant) equivalence of categories be-
tween finite separable algebras over Q and finite f2-sets, where f2 Gal(Q/Q). Here
f2 is a profinite group, and an f2-set is understood to be a discrete set on which f2
acts continuously. Under this equivalence, an algebra A/Q corresponds to the f2-set
of ring homomorphisms Horn(A, Q), and a f2-set X corresponds to the Q-algebra
Mapf (X, Q) consisting of f2-equivariant maps x --> Q.

Giving a separable algebra A the structure of a Galois algebra with Galois group
G is the same as giving a fight-G-action on the f2-set X that it corresponds to, in such
a way that the following two conditions are satisfied:

(i) for all cr f2, x X and g G we have (trx)g cr(xg);
(ii) for all x, y X there is a unique g G with xg y.

The first condition says that X is a (f2, G)-space, and the second condition says that
X is a principal homogeneous G-space.

2.3. Definition of the order T(E). Suppose E is self-dual finite ring. The
group ring Q[E+] of the additive group of E is a finite separable algebra over Q.
A Q-algebra homomorphism Q[E+] -- is just a group homomorphism form E+
to *, so the f2-set associated to Q[E+] is the set D(E+) Hom(E+,/z), with
2-action induced from the action on/z C Q. Since E is self-dual, D(E+) is a free
fight-E-module of rank 1. Let S be the subset of D(E+) consisting of the generators
of D(E+) as a fight-E-module. The set S is f2-stable, because for every o D(E+)
and a we have cro ao for some a Z coprime to the characteristic of E. We
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now define the algebra TQ(E) to be Map(S, Q). We have canonical surjective ring
homomorphisms

Q[E+] Map(D(E+),) J Mapn(S, ) TQ(E).

Since S is the set of generators of a free right-E-module ofrank 1, it has a right-action
of the group E*, making it into a principal homogeneous E*-space. This action also
respects the left action of f2 on S, so that TQ(E) is a Galois algebra over Q with
Galois group E*.

The order T(E) is defined to be the projection in TQ(E) of Z[E+], or, equivalently,
as the Z-algebra generated by the image of E+ in TQ(E). It is an order in a product
of a number of copies of Q((n), where n is the characteristic of E. The Z-rank of
T(E) is #E*.

3. Proof of the theorem

In this section we prove Theorem (1.2) and we give an explicit formula for the
discriminant of T(E) in terms of the structure of E.

Let E be a self-dual finite commutative ring. Since E is Artinian, it is a product
of local rings. We first show that we can reduce to the case that E is local. Suppose
that E is a product of two finite commutative rings: E El E2. Then El and
E2 are self-dual. Moreover, we have T(E) T(EI) (R)z T(Ez), so that Are)/z
mr2 Ar #E;’. Writing C(E) for the conductor product of E,T(E)/Z,_T(E2)/Z, where ri
one checks easily that C(E) C(EI)r2C(E2)rt Also, E is a principal ideal ring if
and only if both El and E2 are. Thus, the theorem follows for E if we know it for El
and E2.
We may now assume that E is local. Fix a Jordan-H01der filtration of E as an

E-module:

(.) 0=EkCEk_l C...cEI CE0=E.
This means that each Ei is an ideal in E and that the quotients Ei/Ei+l are simple E-
modules. But the only simple E-module (up to isomorphism) is the residue field k(E)
of E, so we have #Ei qk-i, where q #k(E). The discriminant of T(E) is given
by the following lemma. Again, the cyclotomic case is well known [5, Prop. 2.1 ].

LEMMA 3.1. IfE is afinite local commutative self-dual ring with residuefield of
cardinality q, then #E qk with k Z, and

AT(E)/Z q(kq-k-l)qk-

Proof. Since E is self-dual, E has a unique minimal non-zero ideal H, and the
order of H is q. A character o D(E+) is a generator of D(E+) as an E-module if
and only ifqg(H) :/: 1. To see this, note that the sub-E-module of D(E+) generated by
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0 is exactly the set of those p 6 D(E+) that vanish on the largest E-ideal contained in
the kernel of tp. Therefore, the characters of E+ which are not E-module generators
of D(E+) are exactly the characters of E+/H, and it follows that the canonical map
Q[E+]----+Q[E+/H] x TQ(E) is an isomorphism of Q-algebras.

Under this isomorphism, Z[E+ is mapped to a subalgebra of Z[E+/H] x T(E),
whose index we denote by i. We want to compute this index. The group ring Z[E+
surjects to T (E), and the kernel is the set of H-invariants Z[E+]H, where we let H
act on E+ by translation. Thus, we have a commutative diagram with exact rows:

0 Z[E+]H Z[E+] T(E) 0

0 Z[E+/H] Z[E+/H]xT(E) ---+ T(E) O.

Note that Z[E+]n is generated by formal H-coset sums of E. Since such a coset-sum
is mapped to q times the coset element in Z[E+/H], and Z[E+/H] has Z-rank q-,
it follows that the cokernel of the leftmost vertical map has cardinality qqk-. By the
snake lemma it follows that qqk-.

The discriminant of the group ring Z[A of an abelian group A of order n is nn, so
one finishes the proof by noting that

AZ[E+I/Z qkq’
AT(E)/Z i2AZ[E+/HI/Z q2qt,_q(k_l)q,_ q (kq-k-l)qk- ["]

We return to the proof of the theorem. The ring E is still local. For each with
< < k the quotient ring E/Ei is a local ring of order qi. The units of E/Ei

are exactly the elements not contained in its maximal ideal, so (E/Ei)* has order
si qi qi-1. Putting so this also holds for 0. For each character
X E* -- /zo let J:x be the largest E-ideal Ei in our filtration (.) for which X factors
over (E/Ei)*. This depends on the choice of the Jordan-H61der filtration (.). For
each with 0 < < k it is clear that exactly si characters of E* factor over (E/Ei)*.
This implies that the number of characters X of E* with Ei is si si-1 if -7/: 0.
It follows that

k

H N(*Z)"-H (Ei)si-si-’"
zED(E*) i=1

Since N’(Ei) qN’(Ei-1) for # 0 this is equal to

k-I

q-So(qk)s, H q-Si q-l+k(qk--q’-’)-(q’---l) q(kq-k-1)qt’-

AT(E)/Z.
i=l

This means that the conductor discriminant formula holds for the conductors * rather
than for . The first statement of the theorem now follows from the observation that

x divides x"
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If the ideals of E are linearly ordered by inclusion then every ideal of E occurs
in (,), and we have [ x. Conversely, if x for all characters : of E*, then
the ideals of E are linearly ordered. To see this, let I be an ideal of E and choose
maximal under the condition that Ei 3 I. We may assume that I E so that > 1.
For every character : of E* that vanishes on + I, the assumption that
implies that it also vanishes on / Ei. By duality of finite abelian groups it follows
that + Ei + I and therefore I E.

It remains to show that a finite local ring E is a principal ideal ring if and only if
its ideals are ordered linearly by inclusion. To see "only if" note that every ideal is
of the form x E for > 0 if the maximal ideal of E is generated by x. To prove "if"
suppose that x, y E. If the ideals are ordered linearly, then xE C yE or yE C x E,
so the ideal (x, y) is equal to (x) or to (y). But then any non-empty set of generators
of an E-ideal can be thinned out to a set of element; i.e., E is a principal ideal ring.
This completes the proof of (1.2).

4. Changing the ring structure

If one is only interested in the structure of the order T(E), then one can sometimes
change the ring structure of E to that of a principal ideal ring, without changing
the isomorphism class of T(E). In our example E Y2[V4], where the conductor
discriminant formula fails to hold, one may say that we just picked the wrong ring
structure on E+, because the group ring E’ Y2[C4] of the cyclic group of order 4,
is a principal ideal ring for which T(E) and T(E’) are isomorphic. A more general
construction is given in the next proposition.

PROPOSITION 4.1. Suppose that E is a finite self-dual commutative ring and E+
is homogeneous, i.e., free over Z/nZ where n char E. Then there exists a finite
commutative principal ideal ring E’, an isomorphism of abelian groups E+ - E’+,
and an isomorphism ofZ-algebras T E) - T E’) such that the diagram

E+ E’+

T(E) T(E’).

is commutative.

Proof By writing E as a product of local rings, we may assume that E is local.
Let p and q pf be the characteristic and cardinality of its residue field. The
characteristic n of E is also a power of p. We let r be the rank of E+ over Z/nZ.
The p-torsion subgroup of E has size pr and since it is an E-ideal, pr is a power of
q. This implies that r is divisible by f, and we put e r/f.
Now take a finite field extension K of the field Qp of p-adic numbers, for which

the residue degree is f, and the ramification index is e. Denote the ring of integers
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of K by Or,, and let E’ be the ring Or,/nOr. The ring E’ is clearly a principal ideal
ring, which also implies that it is self-dual. Both E+ and E. are free over Z/nZ of
rank r, and the minimal non-zero ideals H and H’ of E and E’ are both elementary
abelian subgroups of order q.

It is not hard to see that there exists an isomorphism of abelian groups E+ -- E_
that maps H to H’. This isomorphism induces an isomorphism Z[E+] ---Z[E.] of
Z-algebras. We claim that this induces an isomorphism ofquotients T(E) T (E’).
To see this, we recall from the proofofLemma 3.1 that the kernel ofthe map Z[E/ --T(E) is generated by formal sums of H-cosets of E. These sums clearly map to H’-
coset sums in E’. El

One can do the same construction for products of homogeneous rings. For non-
homogeneous local rings the statement in the proposition may fail to hold. To see
this, consider the ring Z[X]/(2X, X2 + 4), which is the only self-dual commutative
ring E with additive group of type (8,2) for which the Z-rank of T(E) is 8.
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