FINITENESS OF \bigcup_{e} Ass $F^{e}(M)$ AND ITS CONNECTIONS TO TIGHT CLOSURE

Mordechai Katzman

1. Introduction

Throughout this paper, all rings are commutative with identity and Noetherian; p will always denote a prime integer, and q will be some power p^{e}. A local ring is defined as a Noetherian ring with a unique maximal ideal. Let R be a ring of prime characteristic p, let $N \subset M$ be finitely generated R-modules. In [HH], M. Hochster and C. Huneke introduced the notion of the tight closure of N in M as follows:

Let S be R viewed as an R-algebra via the iterated Frobenius endomorphism $r \mapsto r^{q}$ and define the Peskine-Szpiro functor F^{e} from R-modules to S-modules by $F^{e}(M)=S \otimes_{R} M$. Since the category of S-modules is the category of R-modules, we may view F^{e} as a functor from the category of R-modules to itself.

The R-module structure on $F^{e}(M)$ is such that $r^{\prime}(r \otimes m)=\left(r r^{\prime}\right) \otimes m$ and we also have $r^{\prime} \otimes(r m)=\left(r^{\prime} r^{q}\right) \otimes m$. If $I \subset R$ is an ideal then $F^{e}(R / I)=R / I^{[q]}$, and generally if we apply F^{e} to a map $R^{a} \rightarrow R^{b}$ given by a matrix ($c_{i j}$) by identifying $F^{e}\left(R^{a}\right) \cong R^{a}$ and $F^{e}\left(R^{b}\right) \cong R^{b}$ (this identification is not canonical, it depends on a choice of generators for the free modules), we obtain a map $F^{e}\left(c_{i j}\right): R^{a} \rightarrow R^{b}$ given by the matrix $\left(c_{i j}^{q}\right)$. There is a natural map $M \rightarrow F^{e}(M)$ given by $m \mapsto m \otimes 1$, and we denote the image of m under this map by m^{q}.

If $N \subset M$ are R-modules, we have an exact sequence

$$
F^{e}(N) \rightarrow F^{e}(M) \rightarrow F^{e}(M / N) \rightarrow 0
$$

and we write $N_{M}^{[q]}$ for

$$
\operatorname{Ker}\left(F^{e}(M) \rightarrow F^{e}(M / N)\right) \cong \operatorname{Im}\left(F^{e}(N) \rightarrow F^{e}(M)\right)
$$

Let R^{0} be the set of all elements in R not in any minimal prime of R. Let $N \subset M$ be R-modules. The tight closure of N in M, N_{M}^{*}, is defined as the set of all elements $m \in M$ such that $c m^{q} \in N_{M}^{[q]}$ for some $c \in R^{0}$ and all large q. If $N_{M}^{*}=N$ we say that N is tightly closed in M.

We also define $G^{e}(M)=F^{e}(M) / 0_{F^{e}(M)}^{*}$. Notice that $G^{e}(M / N) \cong F^{e}(M) / N_{M}^{[q] *}$.
We refer the reader to $[\mathrm{HH}]$ for a description of the basic properties of tight closure.

[^0]
2. Commutativity of localization with tight closure and the set \bigcup_{e} Ass $F^{e}(M)$

With the notation above, let $S \subset R$ be a multiplicative system.
We always have $S^{-1}\left(N_{M}^{*}\right) \subset\left(S^{-1} N\right)_{S^{-1} M}^{*}$ and we would like to know whether $S^{-1}\left(N_{M}^{*}\right)=\left(S^{-1} N\right)_{S^{-1} M}^{*}$. This question still remains open in this generality. However, in a special case, to be discussed below, an affirmative answer has been found.

DEFINITION 1. Let R be a ring of prime characteristic p, and let

$$
G_{\bullet}=0 \rightarrow G_{n} \xrightarrow{d_{n}} \cdots \xrightarrow{d_{1}} G_{0} \rightarrow 0
$$

be a complex of finitely generated projective R-modules.
(1) The complex G_{0} is said to have phantom homology at the ith spot if $\operatorname{Im} d_{i+1}$ is in the tight closure of $\operatorname{Ker} d_{i}$ in G_{i}.
(2) The complex G_{\bullet} is said to be stably phantom acyclic if the complex $F^{e}\left(G_{\bullet}\right)$ has phantom homology for all $i \geq 1$ and all $e>0$.
(3) An R-module M is said to have finite phantom projective dimension if there exists a finite stably phantom acyclic complex of projective R-modules whose zeroth homology is isomorphic to M.

In [AHH] it is shown that if $N \subset M$ are R-modules and M / N has finite phantom projective dimension then $S^{-1}\left(N_{M}^{*}\right)=\left(S^{-1} N\right)_{S^{-1} M}^{*}$ for any multiplicative system $S \subset R$, and the proof of this statement uses the fact that under the hypotheses above \bigcup_{e} Ass $F^{e}(M / N)$ is finite. This, together with the following two theorems below, give a motivation for studying the problem of whether in general \bigcup_{e} Ass $F^{e}(M / N)$ (or \bigcup_{e} Ass $G^{e}(M / N)$) is finite or has finitely many maximal elements.

TheOrem [AHH] 2. Let R be a ring of prime characteristic p, let $N \subset M$ be finitely generated R-modules and let $S \subset R$ be multiplicative system.
(a) Every element of $\left(S^{-1} R\right)^{0}$ is a product of a unit in $\left(S^{-1} R\right)^{0}$ and an element in the image of R^{0}.
(b) Let $u \in M$ and $s \in S$. Then $u / w \in\left(S^{-1} N\right)_{S^{-1} M}^{*}$ if and only if there exists a $d \in R^{0}$ such that $s_{e} d u^{q} \in N_{M}^{[q]}$ for some $s_{e} \in S$ for all large q. If R has a locally stable weak test element (resp. a completely stable weak test element) then d may be chosen to be a locally stable weak test element (resp. a completely stable weak test element).
(c) If S is disjoint from \bigcup_{e} Ass $F^{e}(M / N)$ then $S^{-1}\left(N_{M}^{*}\right)=\left(S^{-1} N\right)_{S^{-1} M}^{*}$.
(d) If S is disjoint from \bigcup_{e} Ass $G^{e}(M / N)$ then $S^{-1}\left(N_{M}^{*}\right)=\left(S^{-1} N\right)_{S^{-1} M}^{*}$.

Further motivation for the study of \bigcup_{e} Ass $F^{e}(M)$ is given by Theorem 5 whose proof relies on the following two lemmas.

LEMMA 3. Let R be a semi-local ring or prime characteristic p with a completely stable q^{\prime}-weak test element c, and let J be its Jacobson radical. Denote by ${ }^{\wedge}$ the completion with respect to J. If tight closure fails to commute with localization at a multiplicative system $W \subset R$ for some pair of R-modules $N \subset M$, then it fails to commute for a pair of \hat{R}-modules.

Proof. Pick a $u \in M$ with $u \notin N_{M}^{*}$ while $u \in\left(W^{-1} N\right)_{W^{-1} M}^{*}$. For all $q>q^{\prime}$, $c u^{q} \notin N_{M}^{[q]}$, and since \widehat{R} is faithfully flat, tensoring with \widehat{R} we obtain

$$
c \widehat{u}^{q} \notin \widehat{N}_{\widehat{M}}^{[q]}
$$

On the other hand, since $u \in\left(W^{-1} N\right)_{W^{-1} M}^{*}$, by Lemma 2 b we have $w_{e} c u^{q} \in N_{M}^{[q]}$ for some $w_{e} \in W$ and for all $q>q^{\prime}$. Tensoring the exact sequence

$$
0 \rightarrow \mathrm{Ann}_{M / N_{M}^{[q]}} w_{e} \rightarrow M / N_{M}^{[q]} \xrightarrow{w_{e}} M / N_{M}^{[q]}
$$

with the faithfully flat extension \widehat{R} we obtain $\left(\operatorname{Ann}_{M / N_{M}^{(q)}} w_{e} \widehat{=}=\operatorname{Ann}_{\widehat{M} / \widehat{N} \frac{N^{q]}}{M}} w_{e}\right.$ hence $c \widehat{u}^{q} \in \operatorname{Ann}_{\widehat{M} / \widehat{N}}^{\substack{q \mid}} w_{e}$ and by Lemma $2 \mathrm{~b}, u \in\left(W^{-1} \widehat{N}\right)_{W^{-1} \widehat{M}}^{*}$.

Lemma 4. Let $R=R_{1} \times \cdots \times R_{n}$ be a ring of prime characteristic p, and let $N \subset M$ be R-modules. Let $N_{i} \subset M_{i}(1 \leq i \leq n)$ be R-modules, and let $M=M_{1} \times \cdots \times M_{n}, N=N_{1} \times \cdots \times N_{n}$ be the corresponding decompositions of N and M. Then

$$
N_{M}^{*}=N_{1 M_{1}}^{*} \times \ldots \times N_{n M_{n}}^{*}
$$

Proof. Notice that $R^{0}=R_{1}^{0} \times \cdots \times R_{n}^{0}, F_{R}^{e}(M) \cong F_{R_{1}}^{e}\left(M_{1}\right) \times \cdots \times F_{R_{n}}^{e}\left(M_{n}\right)$ and $N_{M}^{[q]}=N_{1}^{[q]}{ }_{M_{1}} \times \ldots \times N_{n}^{[q]}{ }_{M_{n}}$ where each $N_{i}^{[q]}{ }_{M_{i}}$ is computed over R_{i}. Now, $u=\left(u_{1}, \ldots, u_{n}\right) \in N_{M}^{*} \Leftrightarrow$ there exists a $c=\left(c_{1}, \ldots, c_{n}\right) \in R^{0}$ such that $c u^{q} \in N^{[q]}$ $\Leftrightarrow c_{i} u_{i}^{q} \in N_{i}^{[q]}{ }_{M_{i}}$ for all $1 \leq i \leq n \Leftrightarrow u_{i} \in N_{i}^{*}{ }_{M_{i}}$ for all $1 \leq i \leq n$.

ThEOREM 5. Let R have a q^{\prime}-weak test element, and let $N \subset M$ be R-modules. Assume that either $S=\bigcup_{e}$ Ass $F^{e}(M / N)$ or $S^{\prime}=\bigcup_{e}$ Ass $G^{e}(M / N)$ has finitely many maximal elements. If localization does not commute with tight closure for the pair $N \subset M$, then we can find a counter-example when R is complete local and we are localizing at a prime ideal $P \subset R$ with $\operatorname{dim}(R / P)=1$.

Proof. By Lemma 3.5a in [AHH], we may assume that we have a counterexample in which localization at a prime ideal P fails to commute with tight closure. Let W be the complement of $P \cup(\bigcup S)$ (respectively $P \cup\left(\bigcup S^{\prime}\right)$) in R. By the previous
theorem, we may localize R at W without affecting any relevant issues, hence we may assume that R is semi-local.

Let J be the Jacobson radical of R, and let ${ }^{\wedge}$ denote the completion at J. By Lemma 3 we can find a counter-example over \widehat{R}, hence we may substitute R with \widehat{R}, and we may assume that R is a product of complete local rings $R=\left(R_{1}, m_{1}\right) \times \cdots \times$ $\left(R_{n}, m_{n}\right)$ and we also get a decomposition $M=M_{1} \times \cdots \times M_{n} N=N_{1} \times \cdots \times N_{n}$ where $N_{i} \subset M_{i}$ are R_{i} modules.

By Lemma 4 we have

$$
N_{M}^{*}=N_{1 M_{1}}^{*} \times \cdots \times N_{n M_{n}}^{*}
$$

and one of the pairs, say $N_{1} \subset M_{1}$, must give a counterexample over a local ring (R_{1}, m_{1}); hence we may assume R is local.

If $P=m$, we obviously cannot have a counterexample, so assume that P is not maximal, and let

$$
P=P_{0} \subset P_{1} \subset \cdots \subset P_{l}=m
$$

be a saturated chain of primes. Let $0 \leq i<l$ be the maximal number such that localization at P_{i} does not commute with tight closure for the pair $N \subset M$ and replace R, M, N and P with $R_{P_{i+1}}, M_{P_{i+1}}, N_{P_{i+1}}$ and P_{i}.

THEOREM 6. Assume that for any local ring (R, m) of prime characteristic p and every finitely generated R-module \bar{M} the set $\bigcup_{e} \operatorname{Ass} G^{e}(\bar{M})$ has finitely many maximal elements. If, in addition, for every R-module \bar{M} there exists a positive integer $B>0$ such that $m^{q B}$ kills $H_{m}^{0}\left(F^{e}(\bar{M})\right)\left(\right.$ or $\left.H_{m}^{0}\left(G^{e}(\bar{M})\right)\right)$ then tight closure commutes with localization.

Proof. Pick a counterexample consisting of a local ring R, R-modules $N \subset M$ and a multiplicative system $S \subset R$. By the previous theorem we may assume that R is a complete local ring, and we are localizing at a prime $P \subset R$ with $\operatorname{dim} R / P=1$. We may also assume that we have chosen our counterexample with $\operatorname{dim} R$ minimal. Since tight closure can be computed modulo the minimal primes or R, we may further assume that R is a domain, and hence module finite and torsion free over a regular ring, and we may assume R has weak test elements (see Section 6 in [HH].)

We may replace the pair $N \subset M$ with the pair $0 \subset \bar{M}=M / N_{M}^{*}$, hence we may assume that $N=0$ and 0 is tightly closed in M.

Pick some $u \in M$ with $u \in 0_{M_{P}}^{*}$ while $u / 1 \neq 0$ in M_{P}. For all $f \in m-P$ we have $u / 1 \in 0_{M_{f}}^{*}$, otherwise we get a counterexample over a ring of smaller dimension. Hence for all $q \gg 0$ there exists a positive integer $N(q)$ such that $f^{N(q)} u^{q}=0$ in $F^{e}(M)$, and since the ideal generated by all elements in $m-P$ is m, we have $u^{q} \in \mathrm{H}_{m}^{0}\left(F^{e}(M)\right)$ (and hence $u^{q} \in \mathrm{H}_{m}^{0}\left(G^{e}(M)\right)$.) Pick a test element $c \in R^{0}$.

If $m^{q B}$ kills $\mathrm{H}_{m}^{0}\left(F^{e}(\bar{M})\right.$), then for all $f \in m-P$ we have $f^{B q} c u^{q}=0$ and $f^{B} u \in 0_{M}^{*}$ but as $0_{M}^{*}=0$ we have $f^{B} u=0$ in M, contradicting the choice of $u / 1 \neq 0$ in M_{P}.

If $m^{q B}$ kills $H_{m}^{0}\left(G^{e}(\bar{M})\right)$, then $f^{B q} c u^{q} \in 0_{F^{e}(M)}^{*}$ for all $q \gg 0$, and by Lemma 8.16 in [HH] we have $f^{B} u \in 0_{M}^{*}=0$ arriving again at a contradiction.

3. The set $\bigcup_{e} \operatorname{Ass}\left(F^{e}(M)\right)$ over a hypersurface

In the rest of this section we will study the set $\bigcup_{e} \operatorname{Ass}\left(F^{e}(M)\right)$, over a hypersurface $R=A\left[x_{1}, \ldots, x_{n}\right] / F$ where A is a domain and with $M=R /\left(x_{1}, \ldots, x_{n}\right)$. It has been shown that in some interesting cases the set $\bigcup_{e} \operatorname{Ass}\left(F^{e}(M)\right)$ is finite [Kat], but there is a surprisingly simple counterexample for the finiteness of this set in the general case.

We fix the ring A to be a domain of characteristic $p>0$, and q will always denote p^{e} for some positive integer e. For any $F \in A\left[x_{1}, \ldots, x_{n}\right]$ let $R_{F}=A\left[x_{1}, \ldots, x_{n}\right] / F$ and let $M_{F}=R_{F} /\left(x_{1}, \ldots, x_{n}\right) R_{F}$.

DEFINITION 7. A sequence $\left\{M_{n}\right\}_{n}$ of A-modules has finite torsion if there exists a non-zero $a \in A$ such that $\left(M_{n}\right)_{a}$ is a torsion free A_{a} module for all n.

Lemma 8. Let A be a domain and let $B \supset A$ be a module finite extension domain. Let $\left\{M_{i}\right\}_{i}$ be a sequence of B modules such that $\left\{M_{i}\right\}_{i}$ has finite torsion over B. Then $\left\{M_{i}\right\}_{i}$ has finite torsion over A.

Proof. Pick some nonzero $b \in B$ such that the modules $\left(M_{b}\right)_{i}$ are torsion free over B and choose $a \in A$ to be a nonzero multiple of b in A. Clearly, $\left(M_{a}\right)_{i}$ are torsion free over A.

Lemma 9. Let A be a domain which is also a k-algebra, let $R=A\left[x_{1}, \ldots, x_{n}\right]$ and let $I \subset R$ be an ideal generated by elements in $k\left[x_{1}, \ldots, x_{n}\right]$. Then any non-zero $\alpha \in A$ is a nonzero divisor on R / I.

Proof. Since $k\left[x_{1}, \ldots, x_{n}\right] / I$ is flat over $k, R=k\left[x_{1}, \ldots, x_{n}\right] / I \otimes_{k} A$ is flat over A.

Let A be a domain and let $R=A[x, y]$. If $F \in R$ is a homogeneous polynomial, in view of Lemma 8 , we may replace A with a localization at one element of a module finite extension of A to obtain a splitting of F into linear factors

$$
F(x, y)=\sum_{k=1}^{s}\left(a_{k} x+b_{k} y\right)^{r_{k}}
$$

where $a_{k}, b_{k} \in A$ for $1 \leq k \leq s$.
Lemma 10. If the number of different linear factors in F is at most 3, then the modules $\left\{F^{e}\left(M_{F}\right)\right\}_{e}$ have finite A-torsion.

Proof. We can make a change of variables so that the different linear factors of F are among x, y and $(x-y)$.

When $F=x^{s_{1}}$ or $F=x^{s_{1}} y^{s_{2}}$ or $F=x^{s_{1}} y^{s_{2}}(x-y)^{s_{3}}$ the modules $\left\{F^{e}\left(M_{F}\right)\right\}_{e}$ have no A-torsion by Lemma 9 .

In view of this lemma, the first interesting case is when F is a product of four different linear factors, and indeed our next aim is to produce a F which is a product of four linear factors for which the modules $\left\{F^{e}\left(M_{F}\right)\right\}_{e}$ do not have finite A-torsion.

But first we need the following lemma:
Lemma 11. Let A be a domain and let $R=A[x, y]$. Then

$$
\left(x^{q-1}, y^{q-1}\right):_{R}(x-y)
$$

is generated by y^{q-1} and $\gamma=x^{q-2}+x^{q-3} y+\ldots+x y^{q-3}+y^{q-2}$.
Proof. Assume that $a(x-y)=b x^{q-1}+c y^{q-1}$ for some $a, b, c \in R$. Working modulo $x-y$ we have $\bar{b} x^{q-1}+\bar{c} x^{q-1} \equiv 0$; hence $\bar{b}+\bar{c} \equiv 0$ and we can write $c=-b+d(x-y)$ for some $d \in R$. We can write $a(x-y)=b x^{q-1}+(-b+$ $d(x-y)) y^{q-1} \Rightarrow\left(a-d y^{q-1}\right)(x-y)=b x^{q-1}-b y^{q-1} \Rightarrow a-d y^{q-1}=b \gamma \Rightarrow$ $a \in\left(y^{q-1}, \gamma\right)$

Theorem 12. Let $A=k[t], R=A[x, y]$. Let $F=x y(x-y)(x-t y) \in R$. The modules $\left\{F^{e}\left(M_{F}\right)\right\}_{e}$ do not have finite A-torsion.

Proof. We will first show that for all $q=p^{e}$,

$$
\tau G \in\left(x^{q}, y^{q}, x y(x-y)(x-t y)\right)
$$

where $G=x y(x-y) y^{q-2}$ and $\tau=1+t+\ldots+t^{q-2}$, while $G \notin\left(x^{q}, y^{q}, x y(x-y)\right.$ $(x-t y)$).

Let $\gamma=x^{q-2}+x^{q-3} y+\ldots+x y^{q-3}+y^{q-2}$. We have $\tau y^{q-2} \in(\gamma, x-t y)$ therefore $\tau(x-y) y^{q-2} \in((x-y) \gamma,(x-y)(x-t y))$ but by the previous lemma, $(x-y) \gamma \in\left(x^{q-1}, y^{q-1}\right)$; hence $\tau(x-y) y^{q-2} \in\left(x^{q-1}, y^{q-1},(x-y)(x-t y)\right)$ and $\tau x y(x-y) y^{q-2} \in\left(x^{q}, y^{q}, F\right)$.

If $G \in\left(x^{q}, y^{q}, x y(x-y)(x-t y)\right)$, since $G \equiv x^{2} y^{q-1}\left(\bmod \left(x^{q}, y^{q}\right)\right)$ we can write $x^{2} y^{q-1}=a x^{q}+b y^{q}+c F$ for some $a, b, c \in R$ where the x, y degree of a, b is 1 . Writing $y^{q-1}\left(x^{2}-b y\right)=a x^{q}+c F$ we see that $x \mid b$ and $y \mid a$. Let $a=a^{\prime} y$ and $b=b^{\prime} x$. Note that now $a^{\prime}, b^{\prime} \in A$. Dividing throughout by $x y$ we get

$$
y^{q-2}\left(x-b^{\prime} y\right)=a^{\prime} x^{q-1}+c(x-y)(x-t y)
$$

Modulo $x-y$ this gives $y^{q-1}\left(1-b^{\prime}\right)=a^{\prime} y^{q-1} \Rightarrow 1-b^{\prime}=a^{\prime}$, while modulo $x-t y$ this gives $y^{q-1}\left(t-b^{\prime}\right)=y^{q-1} t^{q-1} a^{\prime} \Rightarrow t-b^{\prime}=t^{q-1} a^{\prime}$. Combining this we have $a^{\prime}\left(t^{q-1}-1\right)=t-1 \Rightarrow a^{\prime} \tau=1$, which is impossible.

To finish the proof, we note that if for some $d \in k[t], d x y(x-y) y^{q-2} \in\left(x^{q}, y^{q}, F\right)$ then for some $a, b, c \in R$ we have

$$
x\left(d y(x-y) y^{q-2}-a x^{q-1}-c y(x-y)(x-t y)\right)=b y^{q}
$$

and since x, y is a regular sequence, $x \mid b$ and $y \mid a$ and we may write

$$
d(x-y) y^{q-2}-a^{\prime} x^{q-1}-c(x-y)(x-t y)=b^{\prime} y^{q-1}
$$

where $b=x b^{\prime}$ and $a=y a^{\prime}$. Grouping together the terms divisible by $(x-y)$ we get

$$
(x-y)\left(d y^{q-2}-c(x-t y)\right) \in\left(x^{q-1}, y^{q-1}\right)
$$

and using Lemma 11 we deduce that

$$
d y^{q-2} \in\left(x-t y, y^{q-1}, \gamma\right)
$$

Working modulo $x-t y$ we see that $d y^{q-2} \in\left(y^{q-1}, \tau y^{q-2}\right)$ so τ must divide d, and to kill all A-torsion we need to invert all $\tau=\tau(q)$, and these polynomials have infinitely many irreducible factors.

REMARK 13. Notice that the counterexample above shows that the set \bigcup_{e} Ass $_{R}$ $F_{R_{F}}^{e}(M)$ has infinitely many maximal elements. While \bigcup_{e} Ass $F_{R_{F}}^{e}(M)$ may have infinitely many maximal elements, the question of whether the set \bigcup_{e} Ass $G^{e}(M)$ is finite, or has finitely many maximal elements remains open.

With R_{F} and M_{F} as in the previous theorem, we can show that $G_{R_{F}}^{e}(M) \cong$ $R_{F} /(x, y)^{q} R_{F}$: we can compute $0_{F^{e}(M)}^{*}$ working modulo each minimal prime of R_{F} (see Lemma 2.10 in [AHH]). Killing the minimal primes or R_{F} we obtain polynomial rings; hence

$$
\begin{gathered}
\left(x, y^{q}\right)_{R_{F} / x R_{F}}^{*}=\left(x, y^{q}\right),\left(x^{q}, y\right)_{R_{F} / y R_{F}}^{*}=\left(x^{q}, y\right) \\
\left(x-y, x^{q}, y^{q}\right)_{R_{F} /(x-y) R_{F}}^{*}=\left(x-y, x^{q}, y^{q}\right) \\
\left(x-t y, x^{q}, y^{q}\right)_{R_{F} /(x-t y) R_{F}}^{*}=\left(x^{q}, y^{q}, x-t y\right)
\end{gathered}
$$

Lifting these ideals back to R_{F} we find that $0_{F_{R_{F}}^{e}\left(M_{F}\right)}^{*}$ is the image of $\left(x, y^{q}\right) \cap\left(x^{q}, y\right) \cap$ $\left(x-y, x^{q}, y^{q}\right) \cap\left(x^{q}, y^{q}, x-t y\right)$ in $F_{R_{F}}^{e}\left(M_{F}\right)$. Each monomial $x^{i} y^{j}$ is in this intersection for all non negative integers i, j with $i+j=q$, while if the image of $H=\sum_{i+j<q} h_{i j}(t) x^{i} y^{j}$ is in $0_{F_{R_{F}}^{e}\left(M_{F}\right)}^{*}$, then H must be divisible by $x, y,(x-y)$ and ($x-t y$), and since these are relatively prime, H must be divisible by F. Therefore, $0_{F_{R_{F}}^{e}\left(M_{F}\right)}^{*}$ is the image of $(x, y)^{q}$ in $F_{R_{F}}^{e}\left(M_{F}\right)$ and $G_{R_{F}}^{e}\left(M_{F}\right)=R_{F} /(x, y)^{q} R_{F}$ and Ass $G_{R_{F}}^{e}\left(M_{F}\right)=\{(x, y)\}$.

In fact, this argument is valid for any choice of F which can be decomposed into a product of linear factors, and in view of Lemma 8, this holds for any homogeneous polynomial F.

References

[AHH] I. M. Aberbach, M. Hochster, and C. Huneke, Localization of tight closure and modules of finite phantom projective dimension, J. Reine Angew. Math. (Crelle's Journal) 434 (1993), 67-114.
[HH] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31-116.
[Kat] M. Katzman, Some Finiteness properties of the Frobenius endomorphism and their applications to tight closure, Thesis, The University of Michigan, Ann Arbor, Michigan, 1994.

The University of Minnesota
MINNEAPOLIS, MINNESOTA

[^0]: Received October 13, 1994.
 1991 Mathematics Subject Classification. Primary 13E05, 13EC99, 13A35, 13H99.
 The results in this paper are part of my doctoral thesis written at The University of Michigan, Ann Arbor, under the supervision of Prof. Melvin Hochster. I would like to express my deep gratitude to Prof. Hochster for his excellent guidance and for sharing with me his deep mathematical insight.

