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FINITENESS OF -Je Ass Fe(M) AND ITS CONNECTIONS
TO TIGHT CLOSURE

MORDECHAI KATZMAN

1. Introduction

Throughout this paper, all rings are commutative with identity and Noetherian; p
will always denote a prime integer, and q will be some power pe. A local ring is
defined as a Noetherian ring with a unique maximal ideal. Let R be a ring of prime
characteristic p, let N C M be finitely generated R-modules. In [HH], M. Hochster
and C. Huneke introduced the notion of the tight closure ofN in M as follows:

Let S be R viewed as an R-algebra via the iterated Frobenius endomorphism
r - rq and define the Peskine-Szpirofunctor Fe from R-modules to S-modules by
F (M) S (R)R M. Since the category of S-modules is the category of R-modules,
we may view Fe as a functor from the category of R-modules to itself.

The R-module structure on Fe(M) is such that r’(r (R) m) (rr’) (R) rn and we
also have r’ (R) (rm) (r’rq) (R) m. If I C R is an ideal then Fe(R/l) R/I[q], and
generally if we apply Fe to a map Ra Rb given by a matrix (cij) by identifying
Fe(Ra) Ra and Fe(Rb) - Rb (this identification is not canonical, it depends on a
choice of generators for the free modules), we obtain a map Fe (cij): Ra -- Rb given
by the matrix (c/qj). There is a natural map M Fe(M) given by rn - rn (R) 1, and
we denote the image of rn under this map by mq

If N C M are R-modules, we have an exact sequence

Fe(N) Fe(M) Fe(M/N) 0

and we write r[ql for"’M

Ker(F (M) -- Fe(M/N)) Im(F (N) F (M)).

Let R be the set of all elements in R not in any minimal prime of R. Let N C M
be R-modules. The tight closure ofN in M, N, is defined as the set of all elements

rql for some c 6 R and all large q If Nt N we saym M such that cmq
,,M

that N is tightly closed in M.
We alsodefineGe(M) Fe(M)/O*Fet). Notice that Ge(M/N) -- Fe(M)/N*.
We refer the reader to [HH] for a description ofthe basic properties of tight closure.
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2. Commutativity of localization with tight closure and the set e Ass F (M)

With the notation above, let S C R be a multiplicative system.
We always have S-I(N) C (S-1N)}_,t and we would like to know whether

S-1 (Nt) (S-l N)_t" This question still remains open in this generality. How-
ever, in a special case, to be discussed below, an affirmative answer has been found.

DEFINITION 1. Let R be a ring ofprime characteristic p, and let

dn dlGo =O-- Gn Go’--> O

be a complex offinitely generated projective R-modules.

(1) The complex G is said to have phantom homology at the th spot ifIm di+ is
in the tight closure ofKer di in Gi.

(2) The complex G is said to be stably phantom acyclic if the complex Fe(G)
has phantom homologyfor all > and all e > O.

(3) An R-module M is said to have finite phantom projective dimension if there
exists a finite stably phantom acyclic complex ofprojective R-modules whose
zeroth homology is isomorphic to M.

In [AHH] it is shown that if N C M are R-modules and M/N has finite phantom
projective dimension then S-I(Nt) (S-IN)*s_,ta for any multiplicative system
S C R, and the proof of this statement uses the fact that under the hypotheses above

Ue ASS Fe(M/N) is finite. This, together with the following two theorems below,
give a motivation for studying the problem of whether in general Ue ASS F (M/N)
(or Ue Ass Ge(M/N)) is finite or has finitely many maximal elements.

THEOREM [AHH] 2. Let R be a ring ofprime characteristic p, let N C M be
finitely generated R-modules and let S C R be multiplicative system.

(a) Every element of (S-1 R) is a product ofa unit in (S- R) and an element in
the image of R.

(b) Let u M and s S. Then u/w (S-N)*s_,ta if and only if there exists a
M[q] for some Se S for all large q If R has ad R such that seduq "’M

locally stable weak test element (resp. a completely stable weak test element)
then d may be chosen to be a locally stable weak test element (resp. a completely
stable weak test element).

(c) If S is disjointfrom -Je ASS Fe (M/N) then S-1 (N) (S- N)*s_, M"
(d) If S is disjointfrom (.JeAssGe(M/N) then S-(N) (S-1N)*s_,M

Further motivation for the study of [,.Je Ass F (M) is given by Theorem 5 whose
proof relies on the following two lemmas.
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LEMMA 3. Let R be a semi-local ring orprime characteristic p with a completely
stable q’-weak test element c, and let J be its Jacobson radical. Denote by the
completion with respect to J. If tight closure fails to commute with localization at a
multiplicative system W C R for some pair of R-modules N C M, then it fails to
commutefor a pair of -modules.

Proof. Pick a u M with u Nt while u (W-l N),_,M. For all q > q’,
J[q] and since " is faithfully flat, tensoring with " we obtaincuq
"’M

M[q]On the other hand, since u e (W-l N)* by Lemma 2b we have toeCUq MW-M,
for some We W and for all q > q’. Tensoring the exact sequence

0---> AnnM/Nt, tOe "’> M/N[]-- M/N

with the faithfully flat extension R we obtain (AnnM/NltOe) Ann/q tOe hence
M

cu,’q Ann-/q tOe and by Lemma 2b, u e (W-1 )V_ -. [-]

M

LEMMA 4. Let R R Rn be a ring of prime characteristic p, and
let N C M be R-modules. Let Ni C Mi(1 < < n) be R-modules, and let
M Ml x x Mn, N NI x x Nn be the corresponding decompositions of
N and M. Then

N NM, X N*nM..
Proof. Notice that R R x x Rn, FIe(M) FeR, (M1) x... x FeR.(Mn)

and M[ql N[q] x x N[nq]"’M M, M. where each N[q]Mi is computed over Ri. Now,
u (ul un) N thereexists ac (c Cn) R suchthatcuq N[q]

CiU C= N[q] for all < < n ui NM for all < < n./1//i

THEOREM 5. Let R have a q’-weak test element, and let N C M be R-modules.
Assume that either S [..Je Ass Fe(M/N) or S’ eAssGe(M/N) has finitely
many maximal elements. If localization does not commute with tight closurefor the
pair N C M, then we can find a counter-example when R is complete local and we
are localizing at a prime ideal P C R with dim(R/P) 1.

Proof. By Lemma 3.5a in [AHH], we may assume that we have a counterexample
in which localization at a prime ideal P fails to commute with tight closure. Let W
be the complement of P t2 ( S) (respectively P t3 ( S’))in R. By the previous
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theorem, we may localize R at W without affecting any relevant issues, hence we
may assume that R is semi-local.

Let J be the Jacobson radical of R, and let,.." denote the completion at J. Bv
Lemma 3 we can find a counter-example over R, hence we may substitute R with R,
and we may assume that R is a product of complete local rings R (R, m l) x x
(Rn, mn)and we also get a decomposition M Ml x... x Mn N N x... x Nn
where Ni C Mi are Ri modules.

By Lemma 4 we have

N’- NM N2M
and one of the pairs, say N C M, must give a counterexample over a local ring
(R, m); hence we may assume R is local.

If P m, we obviously cannot have a counterexample, so assume that P is not
maximal, and let

P P0C P1C...C Pl=m
be a saturated chain of primes. Let 0 < < be the maximal number such that
localization at Pi does not commute with tight closure for the pair N C M and
replace R, M, N and P with Rp+, Mp+,, Np+ and Pi. I-I

THEOREM 6. Assume that for any local ring (R, m) ofprime characteristic p
and every finitely generated R-module M the set [..Je Ass G (M) has finitely many
maximal elements. If, in addition, for every R-module M there exists a positive
integer B > 0 such that mqB kills Hm(Fe()) (or Hm(Ge())) then tight closure
commutes with localization.

Proof. Pick a counterexample consisting of a local ring R, R-modules N C M
and a multiplicative system S C R. By the previous theorem we may assume that R
is a complete local ring, and we are localizing at a prime P C R with dim R/P 1.
We may also assume that we have chosen our counterexample with dim R minimal.
Since tight closure can be computed modulo the minimal primes or R, we may further
assume that R is a domain, and hence module finite and torsion free over a regular
ring, and we may assume R has weak test elements (see Section 6 in [HH].)
We may replace the pair N C M with the pair 0 C M M/Nt, hence we may

assume that N 0 and 0 is tightly closed in M.
Pick some u e M with u e 0* while u/1 - 0 in Mp. For all f e m P we haveMe

u/1 e 0, otherwise we get a counterexample over a ring of smaller dimension.

Hence for all q >> 0 there exists a positive integer N(q) such that fN(q)uq 0
in F (M), and since the ideal generated by all elements in m P is m, we have
uq Hm(Fe(M)) (and hence uq Hm(Ge(M)).) Pick a test element c e R.

If mqB kills Hm (Fe (’)), then for all f e m P we have fBqcuq 0 and

fBu O*M but as 0t 0 we have fBu 0 in M, contradicting the choice of
u/1 O in Mp.
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IfmqB kills Hm (Ge()) then fBq CUq E 0* for all q >> 0, and by Lemma 8.16Fe(M)

in [HH] we have fBu E 0t 0 arriving again at a contradiction. E!

3. The set Ue Ass(Fe(M)) over a hypersurface

In the rest of this section we will study the set Ue Ass(Fe(M)), over a hypersurface
R A[Xl Xn]/F where A is a domain and with M R/(x Xn). It has
been shown that in some interesting cases the set [..JeAss(Fe(M)) is finite [Kat],
but there is a surprisingly simple counterexample for the finiteness of this set in the
general case.
We fix the ring A to be a domain of characteristic p > 0, and q will always denote

pe for some positive integer e. For any F A[x Xn] let RF A[x Xn]/F
and let MF RF/(X Xn)RF.

DEFINITION 7. A sequence Mn }n ofA-modules hasfinite torsion ifthere exists
a non-zero a A such that (Mn)a is a torsionfree Aa modulefor all n.

LEMMA 8. Let A be a domain and let B A be a modulefinite extension domain.
Let {Mi }i be a sequence ofB modules such that {Mi }i hasfinite torsion over B. Then
{Mi }i hasfinite torsion over A.

Proof. Pick some nonzero b B such that the modules (Mb) are torsion free
over B and choose a A to be a nonzero multiple of b in A. Clearly, (Ma)i are
torsion free over A. El

LEMMA 9. Let A be a domain which is also a k-algebra, let R A[x Xn]
and let I C R be an ideal generated by elements in k[x Xn ]. Then any non-zero
ot A is a nonzero divisor on R/I.

Since k[xl Xn]/l is flat over k, R k[x Xn]/l (R)k A is flat over

Let A be a domain and let R A[x, y]. If F 6 R is a homogeneous polynomial,
in view ofLemma 8, we may replace A with a localization at one element of a module
finite extension of A to obtain a splitting of F into linear factors

F(x, y) (akx d-bky)rk

k=l

where ak, bk A for _< k _< s.

LEMMA 10. If the number of different linearfactors in F is at most 3, then the
modules F (MF)}e havefinite A-torsion.
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Proof. We can make a change of variables so that the different linear factors of
F are among x, y and (x y).
When F xs’ or F xS’ys2 or F x’’y’2(x y)S3 the modules {Fe(MF)}e

have no A-torsion by Lemma 9. I"1

In view of this lemma, the first interesting case is when F is a product of four
different linear factors, and indeed our next aim is to produce a F which is a product
of four linear factors for which the modules Fe (MF)}e do not have finite A-torsion.

But first we need the following lemma:

LEMMA 11. Let A be a domain and let R A[x, y]. Then

(xq-l, yq-l) :R (X y)

is generated by yq-l and y xq-2 -- xq-3y + + xyq-3 + yq-2.

Proof. Assume that a(x y) bxq-I + cyq-I for some a, b, c R. Working
modulo x y we have [xq-l + Xq-I O; hence g + t7 0 and we can write
c -b + d(x y) for some d R. We can write a(x y) bxq-l + (-b +
d(x y))yq-I := (a dyq-l)(x y) bxq-l byq-I = a dyq-I by =
a (yq-l, ,) !"]

THEOREM 12. Let A k[t], R A[x, y]. Let F xy(x y)(x ty) R.
The modules Fe(MF) e do not have finite A-torsion.

Proof. We will first show that for all q pe,

rG (xq, yq, xy(x y)(x ty))
where G xy(x y)yq-2 and r + +... + q-E, while G (xq, yq, xy(x y)
(x ty)).

Let , xq-2 -I- xq-ay - q- xyq-3 -I- yq-2. We have :yq-2 (,, x ty)
therefore r(x y)yq_9. ((x y)’, (x y)(x ty)) but by the previous lemma,
(x y), (xq-l, yq-l); hence r(x y)yq-2 (xq-l, yq-l, (x y)(x ty)) and
rxy(x y)yq-2 (xq, yq, F).

If G (xq, yq, xy(x y)(x ty)), since G =-- xEyq-l (mod(xq, yq)) we can
write xEyq-l axq q- byq -b CF for some a, b, c R where the x, y degree of a, b
is 1. Writing yq-l (X2 by) axq d- cF we see that x b and y a. Let a = a’y
and b b’x. Note that now a’, b’ A. Dividing throughout by xy we get

yq-E(x b’y) atxq-I d- c(x y)(x ty).

Modulo x y this gives yq-l (1 b’) a’yq-I := b’ a’, while modulo
x ty this gives yq-l(t b’) yq-ltq-la’ = b’ tq-la’. Combining this we
have a’(tq-! 1) = a’r 1, which is impossible.
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To finish the proof, we note that iffor some d k[t], dxy(x-y)yq-2 (xq, yq, F)
then for some a, b, c R we have

x (dy(x y)yq-2 axq-I cy(x y)(x ty)) byq

and since x, y is a regular sequence, x b and y a and we may write

d(x y)yq-2 a,xq-I c(x y)(x ty) ffyq-1

where b xb’ and a ya’. Grouping together the terms divisible by (x y) we get

(x y)(dyq-2 c(x ty)) (xq-l, yq-l)

and using Lemma 11 we deduce that

dyq-2
_

(x ty, yq-1, ,).

Working modulo x ty we see that dyq-2
_

(yq-1, zyq-2) SO "C must divide d, and to
kill all A-torsion we need to invert all r r (q), and these polynomials have infinitely
many irreducible factors. E!

REMARK 13. Notice that the counterexample above shows that the set [_Je ASSR
Fe (M) has infinitely many maximal elements. While Ue ASS F (M) may haveRe RF
infinitely many maximal elements, the question of whether the set e Ass G (M) is
finite, or has finitely many maximal elements remains open.

With RF and MF as in the previous theorem, we can show that G (M)RF
RF/(X, y)q RF" we can compute 0e(M) working modulo each minimal prime of RF
(see Lemma 2.10 in [AHH]). Killing the minimal primes or RF we obtain polynomial
rings; hence

(X q* (X yq) (Xq *Y )gF/xRe Y)Re/yRF (xq Y)

(x y xq yq)* (x y, xq yq)RF/(X--y)RF

q * (Xq yq(x ty, xq y )Re/(x-ty)RF x ty).

Lifting these ideals back to RF we find thatOF(MF) is the image of (x, yq)f’)(Xq y)f3

(x y, xq yq) f’l (xq yq x ty) in F (mv) Each monomial xiy is in thisRF
intersection for all non negative integers i, j with 4- j q, while if the image of
H Zi+j<q hij(t)xiY is in OeCMe), then H must be divisible by x, y, (x y) and

(x ty), and since these are relatively prime, H must be divisible by F. Therefore,

O*FeRF(MF) is the image of (x, y)q in FeRF (MF) and GeRF (MF) RF/(X, y)qRF and

Ass Ge (MF) {(x, y)}.
In fact, this argument is valid for any choice of F which can be decomposed into

a product of linear factors, and in view of Lemma 8, this holds for any homogeneous
polynomial F.
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