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GEOMETRIC EMBEDDINGS OF OPERATOR SPACES

HORACIO PORTA AND L,ZARO RECHT

1. Basic facts

We denote typically by e4 a C*-algebra with and by G the Banach Lie group
of invertible elements of 4. Sometimes we assume that A is represented faithfully
in a Hilbert space/C and this representation may change when needed. The general
reference for this sort of thing is 15].

Throughoutwe use reductive homogeneous space ofoperators (or simply reductive
space) for the following type of data: a C*-algebra A is given and the group G or a
convenient Lie subgroup of G acts on a C-Banach manifold M in such a way that
the isotropy groups of points in M are provided with stable infinitesimal supplements
(the "horizontal spaces" of the reductive space) in the sense that the adjoint action of
the isotropy groups leave these supplements stable (see [8] for the finite dimensional
analogue and [9] for the case considered here). The horizontal spaces provide the
canonical connection of the reductive space. Numerous examples of reductive spaces
are described in [1], [2], [4], [12].

Given reductive spaces M, M’ with groups G, G’, a morphism from M to M’ is
a smooth map P" M -- M’ together with a Lie group homomorphism p: G G’
with the equivariance q (Lge) L(g)P (e) (we denote by L both actions) and also
with the infinitesimal condition that the tangent map of p preserves the horizontal
spaces. The groups G and G’ operate on the space Hom(M, M’) of morhpisms from
M to M by

qg Lgql, g Adg , for g 6 G’,
qlh ql Lh, 1/rh lp Adh, for h 6 G.

It is clear that these left actions commute and that (qlg)h (ffklh)g kI/g(h) (l[rg)h

(1]rh)g kllg(h)
Denote by Q c A the set ofreflections in A, i.e., the invertible elements e ofA that

satisfy e e- 1. This space is studied in detail in [4]. It is a reductive space with group
G acting by inner automorphism Age geg- The selfadjoint elements of Q form

a smooth submanifold P and the polar decomposition induces a fibration Q -- P.
More explicitly, if e --/zp with/z > 0 and p unitary then automatically p is in P and
zr(e) p. The fibers Qp 7r-l(p) are characterized by Qp {e Q; ep > O} (for
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details see [4], Sections 3 and 4). These fibers are also reductive spaces with group
the unitary group Up of the bilinear form Bp(x, y) (px, y) (x, y 1C) induced
by p (acting by inner automorphism also). In fact the isotropy of this action is also
known (see [4], 5.1) and we can get each fiber faithfully by acting on p with positive
elements of Up only. In other words, u upu-1 is a diffeomorphism from the
space of positive elements of Up onto the fiber Qp ("positive" means positive for
the ordinary involution of 4). Of course the definition of Up does not depend on the
representation of.A since it can be described alternatively as Up {h G; u u-
where x --> x is the involution x px*p. Recall that the Finsler metric for Qp is
defined for X T(Qp) by IIXIl Iltz-/2xzl/211.

Concerning the geometry of G+ the following remarks may be useful (see [2] for
details). The G-invariant connection of G+ has covariant derivative

DY dY 1

d--- d-7 (,-1y + y/-l,)

where Y(t) is a tangent field along the curve V(t) in G+. The corresponding expo-
nential has the formula

exPa X e1/2Xa-ae1/2a-X
for X T(G+)a.

The space G+ carries also the G-invariant Finsler metric IIXIla Ila-1/2 Xa-1/2
where is the original norm of A (the inclusion G+ C A permits to identify the
tangent spaces T(G+)a with the real space of self adjoint elements X of A).

2. Embeddings of reflections into positive operators

Fix a selfadjoint reflection p. Define and by

Qp G+, (e) ep,

Up (7, (g) (g.)-l.

The best way to think about is that for e =/zp we set ,(e) =/z. Then:

THEOREM 2.1. The pair (, ) is an isometric morphism of reductive homoge-
neous spaces ofoperators.

Proof. To see that preserves connections recall [4], [2] that the transport forms
of Qp and G+ are given respectively by

KQ(x) --eX, Kaa (Y) --a-l r
Then the preservation of the forms is a direct computation. The remainder of the
proof is straightforward. [21



GEOMETRIC EMBEDDINGS OF OPERATOR SPACES 153

This theorem gives a perfect model of the space of reflections inside the space of
positive operators. The existence of such embeddings has interesting consequences.

THEOREM 2.2. The norm of Jacobi fields along geodesics in Qo is a convex

function of the parameter.

THEOREM 2.3. If ’(t) and 6(t) are geodesics in Qp then --> dist(?’(t), 8(t)) is
a convexfunction of E R, where dist denotes the geodesic distance in Qp.

For the proofs apply Theorem and Theorem 2 in 14]. When spelled out these
results translate into rather complicated, operator inequalities which will be studied
in a forthcoming paper. Similarly, using 14] again, one can obtain various convexity
results for Q, e.g., that geodesic balls are convex sets.

Our next goal is to study all embeddings of Q into G+ related to the canonical
embeddings exhibited above. Denote by g2() C Hom(Q, G+) the orbit of (, b)
by the action of G. From (g)k gOk) it follows that f2() decomposes as a
disjoint union of Uo-orbits. Consequently g2 () modU corresponds to the homo-
geneous space G! U. This homogeneous space has a natural representation as the
G-orbit of p in the space G of invertible selfadjoint elements of A, which will be
used as the moduli space for the set of orbits. In fact setting X (g, qg) Lgp we
obtain a map from g2 () into the proposed moduli space whose fibers are the U
orbits contained in f2 (). We collect these results in the following theorem:

THEOREM 2.4. For (q, ) f2() define )f(q, ap) La-(Ada((p))) where
a > 0 is defined by a2 q(p). Then )f is an analytic map from g2() onto

GS {Lgp; g G} and thefibers of )f are the U-orbits contained in g2().

Proof First we verify that ) as defined in the statement of the Theorem has
the value Lgp for q g. In fact, a2 q (/9) tg (p) (g-)* (p)g-
(g- l),g- by definition of . Then

La-’ Ada lrg(p) a(ag(p-1)*g-la-1)a
a2gpg-1 (g-1),pg-1 Lgp,

as claimed. Next, X(, p) 7(’, p’) for g, tIs’ (I)h means that Lgp
Lhp. Then a routine calculation shows that (g-1 h) (g-lh)- and we are done.

We close this section with a decomposition theorem of G+ in terms of images of
some of the embeddings g.

THEOREM 2.5. The space G+ decomposes as the disjoint union of images of a
family ofg ’s. More precisely, let 13 be the commutant ofp in ,4 and denote by 13+
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the space ofpositive invertible elements of 13. Then the map

13+ x Qp -- G+, U,(b, e)--dPb(e)= LbdP(e)

is a diffeomorphism onto G+.

Proof. The map : Qp -+ G+ has image the set of exponentials of symmetric
elements which anticommute with/9. Then the map corresponds to (b, c) -- Lbc
where c stands for such an exponential and the theorem follows from Theorem 2
in [3].

3. Embedding of positive operators into reflections

Let ./i be the algebra of 2 x 2 matrices with entries in ,4. We can make into
a C*-algebra by representing .A faithfully in a Hilbert space/C and then making the
matrices act on/C /C. This representation of will be used occasionally for other
purposes, so we assume it has been chosen once and for all. In this section we denote
by G and t the groups of invertible elements and by G+ and+ the spaces ofpositive
invertible elements of A and . Both G and ( are Lie groups and their Lie algebras
are ,4 and ., respectively.

Also, let

0)(3.1.i) P= 0 0 P= 0 -1 =2p-1 /3=l-p

and

/(3.1.ii) = r= 0 =2-1

These are all elements of A. It is easy to see that

(3.1.iii) p,/5, c and t are projections,
(3.1.iv) p and r/are reflections,
(3.1.v) pr/= -OP.

Finally let g --+ (g.)-I (g-l). be the contragredient map.

THEOREM 3.2. The map

f(g got + ,6t - g , g + ,
is a Lie group embedding ofthe Lie group G into the Lie group . The tangent map
f( off at g is the Lie algebra homomorphism

f((X)=( ZY zY )
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where X Y + Z is the decomposition ofX ,4 in its symmetric and antisymmetric
parts Y 1/2(X + X*), Z 1/2(X X*).

The proof is just a routine verification. It is also easy to verify the following"

(3.2.i) If g ez is a positive element of G and we write g ez with Z Z*,
then

cosh(Z)
f(g) eZ"

sinh(Z)

(3.2.ii) If g is unitary then

(3.2.iii) f(g*) f(g)*.
(3.2.iv) f(g)p pf(,).

sinh(Z) )cosh(Z)

These results follow from standard identities including ez cosh(Z) / sinh(Z).
The element

P= 0 -1

determines the involution in given by x px*p and the element x is the adjoint
of x for the bilinear form Bp(, ) (p, defined on the Hilbert space/C /C. It
satisfies

(3.2.v) f(g-) f(g).

THEOREM 3.3.
commute with O.

The image of G under f consists of the elements of p that

Proof. It is clear from 3.2.v that the image f(G) is contained in U, and that all
f(g) commute with r/. To see the converse, use Theorem 5.1 and remarks after 3.4
in [2] to write an arbitrary to t)p as

(k b* )(u O)(au b*v )w
b 0 v bu cv

where k /1 + b*b > O, /1 + bb* > 0, and u and v are unitary in ,4. Suppose
that w commutes with r/. Writing down as matrices both terms of too r/w we get
that ku lv and b*u by, and by uniqueness of polar decompositions this implies
k and u v. It follows that b b*. Thus w has the form

 )tu 0)to=
b k 0 u
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with k /1 + b2. Calculating we see that f(g) w for g 1/2(b + /1 + b2)u and
the theorem follows.

Consider the space of all reflections in and the subspace/5 of self-adjoint
elements of Q. Let Qp denote the fiber over p of the polar decomposition map

0 J- /5. We have"

THEOREM 3.4. Defining F" G+ Op by F(a) pf(a) the pair (F, f) is an
isometric morphism of reductive spaces.

Proof For the equivariance just calculate

F(Lga) pf(,ag-1) pf(,)f(a)f(g) -1

and

Lfg)F(a) f(g)pf (a)f (g) -1.

This means that the equality F(Lua) LTgF(a) follows from pf(,) f(g)p, an
easy consequence of formula 3.2.iv above.

Let us prove that the pair (F, f) preserves the connections. Recall that the transport
ml -1forms for G+ and ( are, respectively, Ka(X) a X and f2(Y) -1/2eY. The

first formula is proved in 2.3 of [2], and the second one can be obtained from the
corresponding formula for projections (where the right-hand side is [?’, ]) given in
[1], [4], or [11] using the change of variable e 2?’ 1. Thus F’f2 f[K or more
specifically (F*)a(X) f(Ka(X)) for all X TG+a and any a 6 G+, where F*
is the pull-back of forms induced by F and f{: -- /2 is the tangent map of the
homomorphism f: G --+ Up (here/2 C 4 is the Lie algebra of Up studied in [4],
Section 5).

Now, by definition,

(F*)a(X) F(a)(TFa(X))----F(a)TFa(X)

-o(aoe + a-l)(Xoe + a-lXa-l).

Using ctp pt and Ot2 t2 p2 we get

(F*)a(X) --(a-lXot + Xa-lt).

Now differentiating f (a) aa + &6t we get f;(Z) Za Z*t, and so

f[(ga(X)) f; -a-lX -a-lXot + -Xa-16t
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and we conclude that (F*)a(X) f(ga(X)) as claimed. Concerning the isometry
statement, by homogeneity it suffices to verify it at a G+, and there it is clear
by direct calculation.

COROLLARY 3.5. F can also be defined as F(Lg 1) Lf(g)p.

A map q: X Q where Q is the set of all reflections of a C*-algebra produces
by pull-back a "vector bundle-with-connection" from the bundle of fixed subspaces.
More precisely, and assuming that the algebra is represented in a Hilbert space/C, let

Q be the bundle of fixed subspaces {e 1} where in general we write
{r 1} {x /E; rx x} (and {r -1} {x /E; rx -x}). This vector
bundle has the canonical connection Dxx p(X (x)) where p is the projection on
the fixed.space {e }, that is p (1 + e)/2. On there is also the canonical metric
defined by the form Bp (x, y) (px, y).

In the case under consideration, we have constructed the map F" G+ Op

and our next goal is to calculate the pull back of under F (pull-backs of canonical
bundles over reflection spaces are studied in the finite dimensional case in 10] for the
purpose of classifying connections on vector bundles). To describe the answer more
succinctly recall a construction given in [2] (section 3 under the title "The Bundle
E"). Let E G+ x/C be the trivial bundle over G+ with fiber/E and provide it with
the transport connection whose formula is

Dxx X (x) + a-1Xx.

We can also provide E with the metric ((x, y))a (ax, y). Then:

THEOREM 3.6. The map x -- ((1 + a)x, (1 a)x) from 1C into the fixed space
ofe F(a) is an isomorphism ofbundles with connection and metricfrom E onto

F*() where isomorphic in the case of the metrics is to be understood as "up to

positive constant".

Proof. Suppose that x(t) is a section of E over the curve a(t) G+. Then

p ((1 +a)x, (1 a)x)

1 ( 1 +-12(a+a-1)
g 1/2(-a + 1/2(a-a-I))( hx+(1-l-a))l(a+a-hx + (1 a)J:

-hx as a routine calculationhas the form ((1 -+- a)y, (1 a)y) where y + ia
shows. This amounts to: the map x (1 + a)x, (1 a)x) preserves the connections
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of E and F* (). To see that it is also isometric, calculate

Bp((1 q- a)x, (1 a)x) ((1 + a)x, (1 -+- a)x) ((1 a)x, (1 a)x)

4(ax, x) 4(x, X)a

and so the metrics differ by a factor of 4. [21

The next issue we want to take up is the description of the image of the map F.
We present two characterizations, of which the first is rather simple:

3.7. The image of F is the set ofelements of O. p that anti-commute with

A direct application of 3.3. gives 3.7.
The second characterization requires some preliminaries. In particular we need

a description of the elements of Qp similar to the description of the elements of Up
given in the previous section. Suppose that b 4 and define 0 < k (1 + b’b) 1/2,
0 < (1 + bb*) 1/2. Then

’k=(b)=( kb b*)l
describes the arbitrary positive element in Op and the representation is unique (see
[4], end of Section 3). Notice that ,k(-b) Z(b) -1. According to 3.3 in [4], an
arbitrary element e Qp can then be written as e )p.-1 p)-2, or

+ 2b*b
e

2bk

The reflection e has fixed space the image under ) of the fixed space of/9 (which is
/C 0), so the fixed subspace of e is

,{e 1}= bx
;x 1C

and the reverse space of e is

{e -1} ly Y 1C

The elements k and are invertible and so we can define m bk-1 n b*1-1 Then
we can paraphrase the foregoing:
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THEOREM 3.8 ([4]). Thefixed and reversed spacesfor e p)(b) -2 are the graphs
in 1C 1C ofthe maps

rn b(1 + b*b)-l/2: 1C tC 0 --+ 1C 0

n m* b*(1 + bb*)-/2: 1C 0 1 --+ 1C 1C O.

In other words, e(x @ y) x y is equivalent to y mx and e(x y) -x y
is equivalent to x ny or y m*x. The element rn has Ilmll < and any map
1C -- 1C with norm less than is such an m. The correspondence e - rn m(e) is
analyticfrom Op into the space oflinear operators in 1.

To prove that all rn with Ilmll < are obtained in this way simply define b
m(1 m’m)-1/2 and verify the identity. In our situation, we have:

LEMMA 3.9. For a G+ the element rn corresponding to F(a) is the Cayley
transform rn (1 a)/(1 / a) ofa.

Proof. It follows from F(a) pf(a) that )-2 f(a), or )2 f(a-). With
the previous notations this reads

-1),+ 2b*b -(a + a -2bk -(a- a-l).

But + 2b*b 2kz so the first equation gives k2 1/2 (1 + 1/2 (a + a-1)). Then
from the second equation we get

-(a -a-1)
-2bk-1

2 (1 + 1/2(a + a

and this simplifies to bk-l (1 a)/(1 + a), as claimed. [21

With this the second characterization of the image of F is immediate:

THEOREM 3.10. The image of F" G+ --+ O_.p consists ofthe e where m(e)
is self-adjoint.

Together with the embedding of G+ into Q given by (F, f) we can consider the
orbit 2 (F, f) C Hom(G+, ) of (F, f) under the group 0. This orbit decom-
poses as a disjoint union of G-orbits of elements of g2 (F, f). We show here that
this space of G-orbits can be parametrized by a natural moduli space. The proposed
moduli space is the Oo-orbit.

Or {AhO hrlh-1; h (_]p} C O.
where r/ is the reflection defined in 3.1.ii. Define a map f2(F, f) x_ O7 by
x(F’, f’) r 6 0 where the fixed space of r is the graph of limaom(F’(a))
and the reverse space of r is the graph of lima m(F’(a)). Then we have:
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THEOREM 3.11. The map X is constant on G-orbits in f2 (F, f) and defines a
bijection ofthe space f2 F, f)/G of G-orbits onto 0

Proof. By homogeneity it suffices to show that X describes 0 when the morphism
is (F, f). But in this case the formula for m given in 3.9 shows the result and we are
done. [3

THEOREM 3.12. The elements r of(Do are characterized by r O. and r -r.

Therefore the set 0 is a closed analytic submanifold of.
Proof. It is clear that if 3 0 then it satisfies the announced properties since r/

does and the elements of Op commute with the involution x x.
Now suppose that 3 satisfies 3 -3. Then by polar decomposition
=/ztr =/zl/2tr/z-/2 with/z > 0 and r unitary. We conclude (see [4]) that tr 2 1

so that cr is an orthogonal reflection and/ztr tr/z-. Next write -3 p3*p
pt:r-llzp pcrlzp or/z(-tr) (plzp)(pcrp). Thus/z plz-lp and -tr pap by
uniqueness or polar decompositions. A direct calculation shows that a has the form

with u 4 unitary. Furthermore/z is in 0p for, /z being positive, the condition

lz
-1 ptzp is equivalent to/z =/z-. Then according to 3.1 in [4], 3 can be written

as 3 =/zcr =/zl/2tT/z-1/2. But

t0 u-, t tu-, 0 tO" pp-I where v
u 0 0

Hence 3 S(r)OS(’t’) -1 with s(r) /z1/2p which is obviously in Op being the
product of two elements of Up. [3
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