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ARITHMETIC MACAULAYFICATIONS
USING IDEALS OF DIMENSION ONE

IAN M. ABERBACH

1. Introduction

Let R be a commutative Noetherian ring. For an ideal I c_ R the Rees ring is
R[lt] R It I2t2 ..., where is an indeterminate. R has an arithmetic
Macaulayfication if there exists an I

_
R such that R [I is Cohen-Macaulay. In this

case Proj(R[lt]) is a Macaulayfication for Spec(R), however, the property that R[It]
is Cohen-Macaulay is significantly stronger than the condition that Proj(R[It]) is a
Cohen-Macaulay scheme.

Brodmann [Brl,3] and Faltings [F] have results on the existence of Macaulayfica-
tions. In essence, the argument involves blowing up an ideal generated by (part of) a
system of parameters, where the parameters kill certain local cohomology modules
which obstruct the Cohen-Macaulay property.

WorkofBrodmann [Br2] and Goto and Yamagishi [GY, 7.11 show the existence of
an arithmetic Macaulayfication for local rings whose completions are equidimensional
and Cohen-Macaulay on the punctured spectrum. The main result of [AHS] gives
an explicit construction of an arithmetic Macaulayfication for rings of postive prime
characteristic p (see Sections 2 and 3 for information on tight closure and parameter
test elements):

THEOREM 1.1 [AHS, THEOREM 4.1]. Let (R, m) be an excellent normal local
domain of dimension d. Let X Xd be any system of parameters such that
each xi is a (parameter) test element. Then R[Jt] is Cohen-Macaulay, where
J ((x1 xd)d-2)*.

In particular, if R is F-rational on the punctured spectrum, then such a J may
always be found. The fact that each xi is a test element is analogous to (in fact,
stronger than) killing the local cohomology which obstructs the Cohen-Macaulay
property.
We extend this result to the following:

THEOREM 4.1. Suppose that (R, m) is an excellent normal local domain of di-
mension d >_ 3. Let X Xd be a system ofparameters such that X Xd-1 are
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parameter test elements. Set J ((Xl xa_l)a-2)*. Then R[Jt] is a Macaulay-
fication of R.

Under mild conditions, the non-F-rational locus is closed. See [V]. As a corollary
of Theorem 4.1, whenever the dimension of the non-F-rational locus of R is or less,
then R has an arithmetic Macaulayfication.

Kurano has independently obtained similar results. See [K].
I wish to thank the referee for helping to make this paper both more readable and

more correct.

2. Tight closure and Rees ring results

We start with a short review of relevant tight closure results found in [HH1-2],
[AHS].

Let R be a Noetherian ring of positive prime characteristic p and let I c_ R be an
peideal. For I (Xl xn), let I [pe] (X Xn

p ). The element x is in the tight
closure of I, denoted by I*, if there exists c R, but not in any minimal prime (this

pe peset is denoted by R), such that cx I [pe] for all >> 0. The element c depends
on both x and I. If c works for all tight closure tests (for all ideals) then c is called a
test element. Test elements are often plentiful as shown by a result of [HH2].

PROPOSITION 2.1. If (R, m) is a reduced excellent local ring, c R, and Rc is
regular then some power ofc is a test element.

If I (xl Xk) has height k then we say that I is a parameter ideal. The
element c is a parameter test element if it works for all tight closure tests involving
all parameter ideals. See Theorem 3.4 below.

One important category of results which we will apply here is colon capturing.
Whenever R is suitably nice (e.g., excellent local and equidimensional) then colon
ideals involving ideals generated by polynomials in parameters lie in the tight closure
of the "expected" answer (which comes from treating the parameters as a regular
sequence). In particular we quote [AHS, Theorem 2.3] (see also [HH1-2]).

THEOREM 2.2. Let (R, m) be an equidimensional excellent local ring. Let
X Xd be any system ofparameters for R and let I and J be any two ideals

of the (polynomial) subring A (Z/pZ)[Xl Xd] of R generated by monomials
in the variable. Then

(IR)*:R JR c_ ((I:A J)R)*,

(IR)* N (JR)* c_ ((I J)R)*.
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Section 3 contains more results when the parameters are assumed to be (parameter)
test elements.

Let (R, m) be a Noetherian ring of dimenesion d and I

___
R a proper ideal of R.

Let R[It] be the Rees ring and let G G(I) R/I 1/19. ... be the associated
graded ring. If r I It+l, let G be the form of degree obtained from r. Let_

G be the unique homogeneous maximal ideal. By [TI, Theorem 1.1 ], the Rees
ring is Cohen-Macaulay if and only if both

(1) n(G)n 0forn > 0, and
(2) n]h(G)n ---0 for n -1 when 0 < < d.

Since rh is maximal, the module H,(G) is Artinian, so ad(G) sup{nlH (G)n 0}
is finite. The integer ad(G) is called the a-invariant of G.
When I is equimultiple (i.e., the analytic spread of I is equal to ht(I)) and has a

minimal reduction generated by ht(1) elements (this is automatic when R contains
an infinite field) then we may pick Yl Yd R such that 1 d is a homoge-
neous sequence of parameters by choosing (yl ys) a minimal reduction of I and
ys+l Yd a system ofparameters for R/I (where s ht(I)). Note that deg i
for < < s, while deg i 0 for > s.

Whenever 1 k is (part of) a system of homogeneous system of parameters
for G, then H(/I y) (G) is the cohomology of the (graded) (ech complex (obtained
via a direct limit of Koszul cohomology)

Remark 2.3. As in [AHS] we note that we may rewrite the conditions for Cohen-
Macaulayness of R[It] given in [TI, Theorem 1.1 as

(1) H, (G), 0 for all n >_ 0, and
(2) (,, i)(G),, =0forn :)/: -1 for all subsets {il ik} _c {1 d}.

This equivalent form follows from an extension of [AHS, Lemma 4.3].

LEMMA 2.4. Let G be an I-graded ring, and let Z z be any homogeneous
elements of G. Let S be any subset of Z that is bounded above. Suppose that for
each subset {il i} c {1 d} of size k, the module Hk-1

z z(G) is zero in

all degrees q S. Thenfor all i, Hin (G) is zero in degree q ,5, where n is any ideal
ofG generated by more than ofthe elements zj.

Proof We will use the long exact sequence in cohomology

Hi-1z,, z,_,)(Gz,) Hiz,, z,)(G) Hz,, z,_)(G) --+
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All of the maps preserve degree.
Suppose that the lemma is false, and choose the smallestk such thatn (z Zk)

(after possibly relabelling) and Hi (G)t 0 for some < k, where S. By as-
sumption H- (G)t O, SO we may assume that < k 1. By our choice of k,

H(izi-t zik_,)(G)t 0 for all S. Because Hi-1 i-1
<Z,, z,k (Gz H<zi, zi

(G) (R)

Gz and S is bounded above, we have H<iz- zi_) (Gzk) 0 if deg Zk > 0 and

Hi-<z, zi_,) (Gz)t 0 for S if deg zk 0. In either case it follows from the

above long exact sequence that Hi, (G)t 0 for

3. Results for ideals generated by parameter test elements

We will use a number of results proved in [AHS] for ideals generated by parameter
test elements.

LEMMA 3.1. Let x xd be parameters in an equidimensional reduced excel-
lent local ring and let I (Xl xd). Assume that each xi is a parameter test
element. Then

(1) (IN)* IN-1I* for all N >_ 1,
(2) (X Xk)* fq I (x Xk) and
(3) (IN)* (I*)N.

Proof. Parts (1) and (2) are [AHS, Lemma3.1]. Part (3), which is used in [AHS],
follows from (1) since (IN)* IN- I* C_ (I*)N. The other containment holds for
any ideal.

Lemma 3.1(1) implies that (Xl xd) is a (minimal) reduction of I*, so I* is
equimultiple.

MAIN LEMMA 3.2. Let (xi Xd) be parameters in an equidimensional excel-
lent local ring and let I (Xl Xd). Assume that each xi is a parameter test
element. Thenfor all integers N, > 1 and any k < d,

ti))* --(IN), til--1 tij--1() (IN "+" (Xtl Xk 21- Xil Xij (Xil Xij)*,
where the sum ranges over all subsets {i ij c_ k}.

We need a slight extension of the above lemma. By convention, Im R for
m<0.

LEMMA 3.3. Under the same hypotheses as above, ifz E (IN 21- (x Xktl *

(Ia), where A <_ N then the coefficient ofxi’ -1 tij --1

Xi in equation () may be taken

)* fq (IA-(tt+’"+t)+J))*to be in (xi, xi
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Proof. We repeat much of the proof given in [AHS], with the changes that lead to
the stronger statement. The proofwill be by induction on ti. Let I1 (x2 xd).

The case that each ti 1 follows from (), since if z (IN + (Xl Xk))* (q

(Ia)* C___ ((IN)* + (Xl Xk)*) FI (Ia)* and we write z u + v with u (IN),
and v (x Xk)* then v (x xk)* FI (IA)*.
We may now assume that t _> 2 (after possibly reordering the parameters) and

that the stronger statement holds for ti smaller. By Theorem 2.2,

tk iN t iA-t .+. _+_ tk iA-t ,.(IN -+- (Xtl Xk )) FI (Ia) * C_ + X Xk

t A),Suppose that z (IN + (xtl xk ))* fq (I Because xl is a test element and the
above inclusion holds,

t IA-txz IN + xtl IA-t -+- -t" Xk

This can be rewritten as

t2 tk t,-ll) i1N + xt:22i#-t2 + + XkXI (Z U X2u2 Xk l,tk X

where u IN-, Uj C:. IA-t -1 and v lA-t By Theorem 2.2,

t9 t t --1
Z l,l X:U2 Xk lk X

Elements of the right hand side may be expanded out in the desired manner by the
induction hypothesis.

t t-1Thus we may assume that z u + xt2u2 +... + xk uk +x v for u -] um,
where ma is a monomial of degree N in x Xd. By altering v and the uj
for 2 < j < k, we may assume without loss of generality that in any monomial the
exponent of xi is strictly less than ti and the exponent of xl is strictly less than tl 1.
It then follows from Theorem 2.2 and the fact that u (I + (xtl-1 x x))*
that each u (xl xd)*. Hence u (IN)*. Thus we may assume that

t2 t X tl ta
Z X2 U2 --’’"-- Xk Uk -- 1) (IN + (xt Xd )), f-) (IA),,

where uj . IA-tj- and v IA-t,. If we can show that each uj is actually in (IA-tj),
--1

)* a-tjthen we will be able to eliminate that term, since x! uj x (xj (I )*, is one
of the terms in the desired large sum.

Suppose that we have succeeded in reducing to the case that z x! uj + +
Xtkk Uk -[- Xt v for some 2 < j < k. Write uj , u,m wherem is a monomial of
degree A tj 1 in x xa. By adjusting uj+l uk and v we may assume that
in any monomial the exponent of xi is strictly less than ti (for j + < < k) and the

t -1exponent ofxl is strictly less than tl 1. Since x! uj (Ia 21-(xjtj Xtk X ))*,
t -1by Theorem 2.2 we have uj (Ia-t + (xjtl x, x ))*. The only way that
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a sum of monomials of degree A tj 1 in x Xd (where in any monomial the
exponent of xi is strictly less than ti and the exponent ofx is strictly less than t 1)
can end up in (Ia-tj .)f_ (.jtjl tk tl-xk x ))* is for the coefficients to be in I*. The
point here is that Theorem 2.2 allows us to treat the xi’s as if they were variables (and
hence a regular sequence) up to tight closure.

tl- IAt this point we have reduced to the case that z x v where v
Applying Theorem 2.2 again yields

t2 td1) (IN-t+I -- (Xl, X2 Xd )) N (Ia-h+l)*,

which may be expanded using the induction hypothesis in order to conclude that

xt-lv is in the desired ideal.

The statement of Lemma 3.3 is actually stronger than what is needed to prove
Theorem 4.1. The following weaker result is given in [AHS]"

LEMMA 3.4. Let X Xd be parameters in an equidimensional excellent local
ring R and let I denote the ideal they generate. Assume that each xi is a parameter
test element. Then for any integers N, ti >_ 1, k < d and for any integer a with

l<i<k(ti 1) + 2 _< a _< N,

ti (ia-ti) ,.(IN d- (xtl Xtkk)) * fq (Ia) * (IN) d- X

l<i<k

The proof of this uses the following result [AHS, Corollary 3.3]"

LEMMA 3.5. Let x Xd be parameters in an equidimensional excellent local
ring R and let I denote the ideal they generate. Assume that each xi is a parameter
test element. For arbitrary integers N and t, with N > > 1,

X (IN-t)* X ),(Iv q (x j (xi
where {il ij} is any subset of{1 d}.

Ideals of parameter test elements which fulfill the hypotheses of Lemmas 3.2-5
are abundant by virtue of the following results (see [AHS, 5]).

THEOREM 3.6. Let (R, m) be a reduced, equidimensional, excellent local ring.
Forevery c R such that Rc is F-rational, there is apowerofc which is a test element
for all m-primary ideals I such that R/I hasfinite phantom projective dimension.

It follows from this (see [AHS, Corollary 5.2]) that such a c has a power which is
a test element for all ideals generated by monomials in parameters. A ring is called
F-rational if every ideal generated by parameters is tightly closed. All regular rings
and direct summands of regular rings actually satisfy the stronger condition that every
ideal is tightly closed.
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4. The main theorem

THEOREM 4.1. Suppose that (R, m) is an excellent normal local domain of di-
mension d > 3. Let x xa be a system ofparameters such that x xa- are
parameter test elements. Set J ((x xa_)a-z)*. Then R[Jt] is an arithmetic
Macaulayfication of R.

Proof The proof of this theorem is very similar to the proof of Theorem 4.1 in
[AHS]. We have followed the general outline of [AHS], but have made the necessary
modifications.
We note that for all n, (jn), jn. This follows from Lemma 3.1(3).
Let G G(J). We would like to show that the two conditions given in Remark

2.3 hold for S {- }. Let th be the homogeneous maximal ideal of G.
Let Yi X/d-2 for < < d. Then deg i for < < d and deg d 0.

The ideal ( d) is primary to fit, so we may compute H-(G) via the limit of
Koszul cohomology on l d.
We first observe that each i is a nonzerodivisor. This can be checked on ho-

mogeneous elements, so assume that has degree a and i 0. Set deg i
(so either or 0). Then yiz E ja+t+l, so by colon capturing we have
Z ja+t+l. Yi (ja+l), ja+l, contradicting the assumption that deg a.
We next check that condition (2) of Remark 2.3 holds for k 2. Choose any pair

il, i2, and by abuse of notation, relabel the elements so that we are considering, z, where deg 1 and deg 2 m {0, }. To see that Hlh,h) (G) 0
we need only show that l, 2 is G-regular. This condition can be checked using
homogeneous coefficients. Suppose that2 thai where a deg t deg +
m. Then zyz wyl ja+2, hence z (ja+2 -4c- Yl R)" Y2 C_ (ja+2-m q_ y R)* C_
ja+2-m_.x-3(x1), ja+2-m +(y), using Lemma2.2, the main lemma, andthe fact
that principal ideals are tightly closed in a normal domain. Without loss of generality,
z ylu where u jdeg?:. Yl ja-l+m, y ja+m-2 by colon capturing. Hence
E (y). Therefore , Y2 is G-regular.
We now show that the a-invariant of G is negative. Let 1"" d. Any

element r/ e H,(G) can be represented as 0 [/yt] where deg r/= a (d 1)t
if deg a. Note that can be assumed to be as large as we desire since we can
multiply and divide by t’ for any t’ > 0. We need to show that if a > (d 1)t then
r/ 0. We will use the fact that for any ideal B (r rk) and any integer n,

n (n-1)(k-1)B(n-1)k+l (r’ rk)B
Saya t(d- 1)+s wheret >_ ands _> 0(i.e., deg7 >_ 0). Letl

(Xl xd-1). Suppose that z 6 J. Then

Z (la(d-2))* Ia(d-2)-lI* by Lemma 3.1(1)
I (t(d-1)+s)(d-2)-l I* I (d-1)(t(d-2)-l)+(s+l)(d-2) I*

(xtl (d-z) Xtd(d-2))l I* by the above fact

(y ytd_l)Jt(d-2)+s.
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From this we may conclude that (1 d-1), thus /t U= Im(Gly
G/y, ), so that r/= 0.
We now need to show that H-(,, ,(G) vanishes in degree # -1 for 3 k d

in order to fulfill the paa of condition (2) of Remark 4.3 that we have not yet shown.
Choose k minimal if some cohomology module fails to vanish in degree # -1.
Again abusing notation, renumber so that we call the elements {9 9k }, where
deg j except possibly t, which may have degree 0. Let 9 1 91.

Let [ ] represent a cohomology class of degree b # -1, which,
if nonzero, is written wth the fewest number of nonzero entries.

Since is a cohomology class, and 9 is a nonzerodivisor, we know that 91 +
+? 0. Let k’ max{j Ij # 0}. If we can show that r,

then 0 is equivalent to a cohomology class that can be written with a 0 in the k’ spot
and we will be done.

Let a deg 1 and let c deg ,. Note that c a if deg k, and c a + if
deg , 0, but either way, c b + (k 1)t (recall that b deg O).

Back in R, we have yrl +... + y,r, ja+t+l so using Lemmas 2.2 and 2.4
(and letting I (Xl Xd-1)),

rk, [(ja+t+l nt" (y Y’-I)" yt,] f3 jc___
(jc+l + (y Y’-I))* f’) jc

)*C_ (l(d-2)(c+l)) * nt- y(Xi, ...Xij)(d-2)t-l(Xil Xi

wherethe sumisover {i ij} c_ k’} and each coefficient is in (Xi, Xij)*
f"l (l(d-2)c-(d-2)jt+j) *.
Sincec(d-2)-(d-2)jt+j (d 2)[b + (k j -1)t] + j and we may

assume that is as large as we like, we conclude the following about the summands:

(1) If j < k then (d 2)[b + (k j 1)t] + j > (by taking large enough)
so that the coefficient is in (xi, xij)* iq (I2).

___
(xi xij)* f3 1

_
(xit xij by Lemma 3.1 (1) and (2).

(2) If j k- and b < -1 then (Xl...xk-)(d-2)t- . jc+ since then
(k-)[(d-2)t-1] (k-1)(d-2)t-(k-1) >_ (d-2)(k-)t+b(d-2) (=
(c + 1)(d 2)).

(3) Ifj k-1 andb >_ Othenc(d-2)-(k-1)(d-2)t+k-1 (b+(k-1)t)(d-
2)- (k- 1)(d- 2)t +k- (d-2)b+k- >_ 2, since b >_ 0andk >_ 3.
Hence the coefficient of (Xl...x_)t(d-2)- is in (xl x-)*(I2)*

__
(x x_)* A I

___
(x X-l) by Lemma 3.1(1) and (2).

In all cases we have shown that rk (jc+l + (y yt jc-1)) A .ByLemma3.5,
in G, fk ( tk-l), proving the theorem.
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COROLLARY 4.2. Let (R, m) be an excellent normal domain ofdimension d >_ 3.

If the non-F-rational locus of R is closed and has dimension < then R has an
arithmetic Macaulayfication.

Proof Suppose that A _c R defines the non-F-rational locus. Then dim(R/A) <
1, so ht(A) > d since R is a catenary domain. Thus we can pick d parameters
in A and taking high enough powers we obtain X xd-1 to be parameter test
elements by Theorem 3.6. Now apply Theorem 4.1. []

COROLLARY 4.3. Let(R, m) beanexcellentnormaldomainofdimension 3. Then
R has an arithmetic Macaulayfication.

Proof The non-regular locus of R is closed and has height at least 2, since R is
normal. Thus by Proposition 2.1 we may pick xl, x2 which are test elements and are
part of a system of parameters.

Remark 4.4. When the defining ideal of the non-F-rational locus has dimension
two, the methods used here and in [AHS] no longer work. For instance, when
dim R 4 we can choose J (Xl, x2)*, where x and x2 are parameter test elements
and consider R[Jt] and G(J). When considering H(G) we will be considering the
condition that rx / + r4xt4 E JN, however, the Main Lemma will no longer be
applicable to analyze r4.
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