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1. Introduction

This paper relates two properties of varieties or rather of constructible sets. The
first is the manner in which we can parametrize our sets, and we will be interested in
polynomial parametrizations. The second is the fact that the set is etale exotic (see
[4], [5], [6]).

In the second section we will prove a theorem on polynomial parametrizations of
complex spheres (Theorem 1). An n-dimensional complex sphere is the hypersurface
in Cn+l which is defined by the equation

Xl2 -4-...-t- Xn2/l

We will see that the complex sphere has a polynomial parametrization whenever it
is even dimensional. We do not know the answer in the odd dimensional case. In
the one dimensional case the answer is negative as can be seen easily. The manner
in which these polynomial parametrizations were derived is via varieties which are
generalizations of the etale exotic surface $2 [6] and of the Winkelmann’s quadratic
which is a 4 dimensional variety that is embedded in C [8]. This already hints that
there is a connection between the possibility of polynomially parametrizing a variety
of a certain type and the fact that the variety is etale exotic.

In the third section we will generalize the definition of an etale exotic surface
given in [6] to higher dimensions, and motivated by the 2 dimensional result on the
exoticity of $2 we will prove that Winkelmann’s quadratic is a 4 dimensional etale
exotic variety (Theorem 2). The method of proof of that fact is a generalization of
the "grading by weights" that was used to prove the exoticity of S [5], [6]. The
grading that is chosen in the course of the proof of Theorem 2 simply separates the 5
variables that parametrize Winkelmann’s variety into 2 pairs of symmetric variables
in a natural way plus an extra variable.

Finally, we will mention that our motivation to study etale exotic varieties emerges
from a certain approach to the Jacobian Conjecture that relates it to the excluding of
the existence of asymptotic values for maps which are built out of Jacobian pairs. In
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that connection we mention the nice counterexample of S. Pinchuk [7] that solves the
Real Jacobian Conjecture. See also [4], [5], [6].

Recently, we found that these varieties were of interest also because of other
reasons (see [9]).

2. Polynomial parametrizations of complex spheres

Definition 1. Let V be a variety over a field K. A parametrization of V will be
called polynomial if it is realized by polynomials over K, i.e., if

X1 P1 (U1 Urn)

Xn en(U Urn)

where Pj(U1 Urn) E K[U1 Urn], 1 < j < n.

Remark 1. As usual such a parametrization defines an injective (polynomial in
this case) map from Km into V. Not all of V is necessarily covered, in fact quite
often the parametrization covers a Zariski dense constructible subset of V.

Example 1. The doubly ruled surface $2: XZ Y(Y / 1) which is etale exotic
has the polynomial parametrization

X V, Y VU, Z VU2 -Jr- U

which originates in the structure of the ring I (X-1 X2y X) [5], [6].

Definition 2. The complex n-sphere Sn is the complex variety

2 --1}.Sn Vc(X +... + XZn+ 1) {(a a,+l) E Cn+l a +... +a,+

Remark 2. It is well known that Sn has a rational parametrization for any n, it is
of genus 0. An elementary way of proving this is via the streographic projection, as
follows. We connect the point (0 0, 1) on Sn to the point (U1 Un, 0) on the
hyperplane Un+ 0. This line is parametrized by (TU TUn, 1 T), T C.
To find the value of T that corresponds to the line’s intersection with Sn we substitute

Xl TU1 Xn TUn, Xn+l 1- T

into the defining equation of S,X +... + Xn2+l and obtain

(U2 +... + U2 + 1)T: 2T 0.
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This gives the solution we want, T 2/(U +... + UZ + 1). Hence we get the
desired parametrization of Sn"

X1 TU1 2Wl/(W? -[-...-b W2n -[- 1)

Xn TUn 2Un/(U +’" + U2n + 1)

Xn+l T (U +... + UZn 1)/(U 4-’" + Unz + 1).

Here we will be interested in polynomial parametrizations of Sn and not merely in
rational parametrizations. To motivate the construction ofthe polynomial parametriza-
tions that will be given in the proof of Theorem we will now solve the cases of Sl,
S2 and of S4.

S has no polynomial parametrization.

Proof 1. The most naive way to prove this is as follows. Let us assume that
S l" X2 / Y has a polynomial parametrization over C, say

X =amTm +...+alT +ao

Y bm Tm +’’" nt- bl T + bo
with am 7 O. Then we obtain the following identity

(am Tm -Jr- -Jr- al T + ao) + (bin Tm +"" + bl T + bo) 1.

On pluging in T 0 we geta + bo2 1. On the other hand if we equate coefficients
on both sides we obtain a + bo2 0 which will lead to the desired contradiction. To
see that a + bo2 0 we consider the m highest coefficients on the left hand side. All
must be 0 and so we have

2 2am -Jr- bm 0

amam-1 "+" bmbm-1 0

2 22amain-2 + am_ -t- 2bmbm-2 + bm_ 0

amao -Jr- bmbo O.



POLYNOMIAL PARAMETRIZATION AND ETALE EXOTICITY 505

From the first of these equations we get bm iam or bm -iam, say, bm iam.
From the second equation,

amain-1 at- (iam)bm-1 0

or bm-1 iam-1 (for am 0 ). From the third equation,

22amain-2 "+- am_ q- 2(iam)bm-2 -F (iam-1)2 0

or bm-2 iam-2 (for am y 0 ). A simple inductive argument shows that

bj--iaj, j--m 0

or

bj -iaj, j --m O.

In particular bo iao (or bo -iao and so a -t- bo2 0.

Proof2. A much simpler proof that hints of the other two cases to come goes as
follows. Consider S1" X12 + X22 1. The following regular linear transformation T
maps S onto the curve Z1W 1:

T: X 1/2(Z1 -b Wl)

X2 i/2(Z W).

Now any polynomial parametrization ofS induces such a parametrization on ZW
1. However, the last curve clearly has no polynomial parametrizations (because of
degree considerations). D

S2 has the polynomial parametrization

X V (VU2 - U)

Y -i(V + (VU2 -- U))

Z=I+2UV.

This parametrization does not cover the whole of S2. The straight line

{(-T,-iT,-1) 6 C3 IT 6 C}

is not covered.
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Proof.
tion

The etale exotic surface $2" XZ Y(Y+ 1) has the polynomial parametriza-

X=V

Y=VU

Z=VU2+U
which covers the whole of $2 except for the line

L {(0,-1, Z) C z C}.

See [5], [6]. The linear transformation

X= 1/2(X1 +iX2)

T" Z 1/2(-X1 + iX2)

has the inverse transformation

Y 1/2(X3 1)

X1--X-Z

T-1" X2 -i(X + Z)

If we use T on $2 we get

X3 l+2Y.

0 XZ-Y(Y+I)

(1/2(X1 + iX2))(1/2(-X1 + iX2))- (1/2(X3- 1))(1/2(X3- 1)+ 1)

(-1/4)(X2 + X22 + X- 1)

or X2 + X22 + X and we have $2 linearly transformed to S2. We use T-1 and
the polynomial parametrization of $2 in order to get a polynomial parametrization of
S2, namely

Xl X-- Z V (VU2 + U)

X2 -i(X + Z) -i(V + (VU2 + U))

X +2Y +2VU.
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Since the original parametrization of $2 did not cover the line L and since the image
of L under T is the line

T(L) {(0 Z, -i (0 + Z), + 2(- 1)) (3 Z C}
{(-Z,-iZ,-1) C31Z C},

this last line is not covered by the polynomial parametrization we found for S2. The
claim is now proved. V1

We end this introductory discussion by treating the 4 dimensional case:

S4 has a polynomial parametrization which covers the whole ofthe variety except

for a copy of 122.

We are not giving the precise formulas of the parametrization and the defining
equations for the uncovered C2 because later we will treat the general even dimen-
sional case in full detail in Theorem 1.

The motivation for the following construction originates in a beatiful talk by
Hanspeter Kraft in August 1993 at the Technion, Haifa,Israel. The title of the talk was
"Cancellation in algebra and geometry" and it was given in the course of a workshop
on "Affine Algebraic Geometry". Among other things, Hanspeter Kraft described a
work of Winkelmann concerning a derivative acting in C5 and exotic manifolds. We
refer the reader to the paper of J. Winkelmann [8]. The derivative mentioned was

d WIOIOW3 + W2010W4 + (1 + Dw)O/OW5

where Dw W W
W3 W4

A C+-action is given by

W W
w wz
W3 W3 + W
w4 Wa + W2
W5 W5 + t(1 Dw)

Generators of the invariants of the action are given by

Z1 W1, Z2 W2, Z3 W3(1 + Dw)- WWs,

Z4 W4(1 + Dw)- W2Ws, Z5 Dw.

There is a relation among these generators given by

Zl Z4 Z2Z3 Z5 (1 + Zs).
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This is the defining equation for an affine quadratic in C5 that we’ll denote by Q. We
let

Q’= Q- {Z Z2 0, Z5 -"-11
which is not affine. Winkelmann [8, Lemma 3] proved the following:

THEOREM. 7/" C5 --+ Q’ is a principal C+-bundle.

Remark 3. Q’ is diffeomorphic with C4 (we will see that later).

We can cover Q’ as follows: Q’ U1 u U2 u U3 where U1 Qzto,U2 Qz2o
and U3 Qz3o and here each Uj is isomorphic with C* x C3. Another fact that
was proven by Winkelmann [Lemma 4 in 8] is the following

PROPOSITION. There exist infinitely many non-equivalent 4-bundles P over
and all are affine varieties.

P, is diffeomorphic with C5, however, it is not known if P, is isomorphic with
C5

We tum to Winkelmann’s quadratic in C5 that relates the generators ofthe invariants
of the above C+-action. In fact it will be more convenient to look at the following
affine quadratic in

Z1 Z4 + Z2Z3 Z5 (1 + Z5)

One can, no doubt, see resemblance of that quadratic to the etale exotic surface $2.
Moreover, the image ofC5 under zr is Q minus a plane C2, Z1 Z2 0, z5 },
which reminds one of the fact that the polynomial parametrization of $2 covered $2
minus the line L {X 0, Y }. Thus we are led to make an analogy between

Z Z4 "1- Z2Z3 Z5 (1 + Zs)

and

XZ-- Y(1 + Y)

where Z, Z2 will correspond to X and Z3, Z4 will correspond to Z and Z5 will
correspond to Y. We recall the polynomial parametrization of $2:

X=V

Y=VU

Z--VU2+U
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This immediately leads us to assign the following guess for a parametrization of Q’:

ZI V1

Z4- V1U? 4- U1 4-...

Z2 V2

z3 v:u + u +...

Z5-- V1 U1 4- V2U2.

Plugging that into the defining equation of Q we get

Z Z4 4- Z2Z3 V V1U 4- U1 "Jr’...) -Jr" V2 V2U 4- U2 4-" ")

Zs(1 4- Zs) (VU 4- V2U2)(1 -4- V1U1 4- V2U2);

comparing both sides of this equation one immediately gets the desired polynomial
parametrization of Q’, namely

Z1-- V1

Z4 VlU 4- U1 4- U1V2U2

Z2 V2

z3 v:u + +

Z5 gl U1 -Jr- g2 u2

Now it is a matter of a regular linear transformation of Q onto S4"

Zl 1/2(Xl 4- iX2)

Z4 1/2(-Xl 4- iX2)

Z2 1/2(X3 4- X4)

Z3 1/2(-X3 4- iX4)

so that

Z5 1/2(X5 1)

Zl Z4 4- Z2Z3 -1/4(X12 + X22 + X + X42)
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and

Zs(1 4- Z) 1/2(Xs 1) 1/2(X 4- 1) 1/4(X 1)

which, indeed, shows that Q is linearly equivalent to $4. Xl2 + X 4- X + X42 1.
And hence we obtain a polynomial parametrization of S4 minus a Ce.

From here it is rather clear how to go about proving such a result for any even
dimensional sphere Sen

THEOREM 1. Let n be a positive integer. Let S2n be the 2n-sphere

2 =1+ r? +... + + +
Then Sen has the polynomial parametrization

Xj Vj U (14- VIUk

for < j < n and

Xn+ 4- 2 VkU.
k=l

Thisparametrization does notcover the whole ofS2n Thefollowing Cn is not covered:

{(-Wl,-iW1 -Wn,-iWn,-1) E C2n+l Wl Wn e C}

Proof One quick way of proving the theorem is by a direct check of all the
details. We prefer, however, to give a proof along the lines of the Winkelmann’s
manifold in C5 described before. Thus we consider the following affine quadratic in
(2n+l.

Q2n" Z1Wl 4-... 4- ZnWn Y(1 + Y)

An immediate generalization of the polynomial parametrization of the Winkelmann’s
variety gives the following polynomial parametrization for our quadratic a2n"

Zj=Vj, Wj’-Uj(14-VkUk),k=l <j<n
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Now we make the obvious regular linear transformation

Zj 1/2(Xj + iYj)

Wj 1/2(-Xj + iYj)

forl<j <hand

Y 1/2(Xn+- 1).

This transforms our affine quadratic Q2n onto S2n" X4- Y21+...4-Xn4-yn224-Xn+12
The inverse transformation is given by

Xj

Yj -i (Zj + Wj)

forl <j <nand

Xn+ + 2Y.

Thus we get the desired polynomial parametrization of S2n"

n

% +
k=l

Yj -i(Zj + Wj) -i(Vj + Uj(1 + VU))
k=l

for < j < n and

Xn+ 1 + 2Y + 2 VUk.
k=l

Finally, since the original parametrization covers Q2n minus the Cn

Ln {Zl Zn 0, Y =--1}

it follows that the polynomial parametrization of S2n covers S2n minus the Cn which
is the image of Ln"

Xj 0- Wj, Yj -i(O + Wj), < j <_ n, Xn+l 4- 2(-1) -1

which is the Cn

{(-W1,-iW -Wn,--iWn,--1) 6 Cn+l Wl Wn C}

The theorem is now proved.
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3. Etale exotic varieties of higher dimensions

Etale exotic surfaces are important because of their connection with the Jacobian
conjecture [4], [5], [6]. In fact one possible way to prove the conjecture is to try to
exclude the existence of asymptotic values of maps whose coordinates form Jacobian
pairs. Now any asymptotic value of a regular etale map could be realized along a
rational curve that extends to the point at infinity. In fact the two components of
such an etale map satisfy a so called asymptotic identity with respect to the rational
parametrization of the asymptotic curve. This means that the composition of each
of the polynomials in the pair with a certain rational map C2 C2 gives rise to
another polynomial which is called the dual polynomial of the original one. This
behaviour is singular in the sense that usually the composition of a polynomial with
a rational map results in a rational function (and not in a polynomial). This singular
behaviour originates in certain cancellation properties that are simultanously shared
by the polynomials in the Jacobian pair and result in the cancellation of the expected
poles.

As a conclusion, one can use the above in order to disprove the Jacobian conjecture.
In fact all that is needed is to be able to construct a Jacobian pair whose polynomials
satisfy asymptotic identities with respect to the same rational map. Such a Jacobian
pair will serve as a counterexample to the conjecture. This is the way the Real
Jacobian conjecture was disproved by S. Pinchuk [7]. His nice example is composed
of a real Jacobian pair both of which polynomials satisfy an asymptotic identity with
respect to the rational map (X-1, YX2 X).

Thus we are naturally led to explore the structure of the ring of all the polyno-
mials which satisfy an asymptotic identity with respect to (X-1, YX X) (or in
general with respect to the underlying rational map R(X, )). This ring is denoted
by I (X-1, YX2 X) (or in general by I (R(X, Y)). For a wide family of rational
maps it is possible to show that this ring is in fact a polynomial ring. For example in
the Pinchuk’s case we have

/(X-1, YX2 X) K[V, VU, VU2 -+- U]
where K R the real field. As opposed to this it can be shown that there is no
(complex) Jacobian pair for the case K C, i.e., in the ring C[V, VU, VU2 + U]
[5], [6], [9]. Surprisingly, one recognizes the polynomial parametrization of $2 in
the set of generators of the ring I (X-1 YX2 X). The algebraic fact that there is
no Jacobian pair in that ring over the complex field is the equivalent of the geometric
fact that $2 is an etale exotic surface.
We now recall the definition of an etale exotic surface from [6].

Definition 3.
properties:

An etale exotic surface S over C is a surface which has the following

(a) There is a diffeomorphism 4: Cz -- S which is realized by a birational map 4.
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(b) There is no regular etale map S - C2 Oust into).

Examples of such surfaces in CN+I are given by

SN" X1 V, X2 VU, X3 VU2 + U XN+l VUIv + Uiv-l, N _> 2

See [6]. In fact Sv is not Zariski closed, it is only a constructible set. Its affine closure
is given by

XIX3 X2(X2 + 1) 0, XIXj+2 X2Xj+I 0, 2 < j < N

In the previous section we saw that the closure of $2, namely, XZ Y(Y / 1) 0,
is linearly equivalent to the 2-sphere X2 / y2 / Z2 1. In terms of the previous
section the diffeomorphism p: C2 S is merely a polynomial parametrization of
the constructible set S. These are the relations between the existence of polynomial
parametrizations and being etale exotic in the 2 dimensional case.

The main purpose of this section is to generalize the notion of being etale exotic,
to higher dimensions and then to give an example of a variety that has this type of
exoticity. The generalization we have in mind will bear the same kind of relation with
respect to polynomial parametrization as in the 2 dimensional case.

Definition 4. A constructible set V of dimension n over C is called etale exotic
if it has the following properties"

(a) There is a diffeomorphism p" Cn V which is realized by a rational map
(b) There is no regular etale map V Cn Oust into).

Remark 4. As in the 2 dimensional case the diffeomorphism tp" C V is a
polynomial parametrization of the constructible set V.

We will now give an example of an etale exotic variety of dimension higher than
2. Guided by our intuition from the previous section we consider Winkelmann’s
quadratic in C5 as a natural candidate for such an example.

THEOREM 2. The constructible set Q’4 which has thepolynomialparametrization

Q" Z1 Vl, Z2-- V2, Y V1U1 dr- V2U2,

Wl UI(1 -F- V1U1 + V2U2), W2 U2(1 + V1U + V2U2)

is an etale exotic constructible set ofdimension 4.
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Remark 5. (1) As noted in the previous section the affine closure of Q is the
Winkelmann’s quadratic

ZW + ZzW2 Y(1 + Y).

(2) The proof ofTheorem 2 will be purely algebraic. It will merely be an extension
of the "grading by weights" technique that was used in [5], [6] to handle the 2
dimensional case.

(3) The weights in the proof will naturally split the 5 variables into the two pairs
(Z, W) and (Ze, We) and the extra variable Y.

(4) We still do not know of geometric proofs for theorems such as Theorem 2, not
even in the two dimensional case. There are classifications of ruled surfaces even up
to biregular classes ], [2], [3]. However, there does not seem to be any attempt to
geometrically classify these surfaces into regular etale classesma classification we
seek here.

Proof. In order to prove that Q is etale exotic we need to show the following:
If Pj(Z, Ze, Y, W, We) C[Z, Zg., Y, W, We], < j < 4, then

O(P, Pc, P3, P4)/O(U, V, Ue, Ve) ’ C*

where the Jacobian is evaluated after we substitute into (Z, Z2, Y, W, W2) the ex-
pressions that parametrize Q. We call

Z V,Z2--- Vz, Y VU + VeU2,

Wl UI(1 -+- V1U1 f- V2U2), W2 U2(1 + V1U1 2r- V2U2)

the generators, for they generate the polynomial ring we are dealing with, namely

I C[V1, V2, V1U + V2U2, UI(1 + V1U1 -]- VeU2), U2(1 + V1U1 -" V2Ue)].

We assign the weights

deg V1 1, deg U -1, deg V2 ’,, deg U2

With these weights the generators become homogeneous of degrees
1, ,,f, 0, -1, -/ respectively. We will let T V1U, Te VeU2. Note that the
set of degrees in our grading is exactly the set

{n + mc/ n, m Z}.

Also, since 1, are independent over Z, the effect of this grading is to separate the
pairs (U, V) and (Us, V2). If k n + m./, n, m Z then we will denote the
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homogeneous part (with respect to our grading) of degree k of a polynomial P I
by Pk or by Pn,m. If kj nj + mj./, 1 < j < 4, then clearly

deg{8(Pkl, Q,2, Rk3, &4)/8(U|, V|, U2, V2) kl + k2 + k3 -t- k4

where P, Q, R, S I. So if P, Q, R, S I satisfy the identity

8(P, Q, R, S)/O(UI, V, U2, V2)=

then

O(Pk,, a2, gk3, Sk4)/0(U1, Vl, U2, V2) (1)
k +k2+k3+k4--0

where the summation goes through all the ordered 4-tuples (k, k2, k3, k4) such that
k + k2 + k3 -+- k4 0.
We want to classify the homogeneous polynomials in our grading. Recall that for

each pair (n, m) Z2 we think of the degree n + m,/. So if n, rn > 0 then one can
easily check that we have the following structures of homogeneous polynomials in I:

en,m Vvnfl(T1)f2(T2)

Pn, -m VVmTn -t- T1 -+- T2 m f T1)f2 T2

e-n,m VFVT(1 + T + T2)fl(T)f(T)

P-n,-m V-nv-mTTn(1 -+- T -4- T2)n+m fl (T1) f2(T2)

for some f(T) C[T], f2(T2) C[T2]. Finally, if k n + mV, < j _< 4,
thenk +k2+k3+k4 0is equivalentto n +n2+n3+n4 m +m2+m3+m4 O.
With all that at hand we can check case by case that for any (k, k2, k3, k4) (Z -F
Z/)4 such that k + k2 + k3 q- k4 0 we have

(1 + T1 + T2) O(Pt,,, Q,2, R,3, Sk4)/8(Ul’ VI’ U2’ V2)" (2)

This, however, is in conflict with equation (1) which proves the theorem.

To check (2) in the proof above it is, in fact, more convenient to work with the
variables (T, V, T2, V2) instead of (U, V1, U2, V2). Since

O(P, Q, R, S)/8(U1, V1, U2, V2)

O(P, Q, R, S)/O(T, V1, T2, V2)O(TI, V1, T2, V2)/O(U1, V1, U2, V2)

vireo(P, Q, R, S)/a(T1, V, T2, V2),

instead of equation (1) we have

V1 V2 9(Pkl, a,2, R,3, Sk4)/O(T1, V1, T2, V2) 1.
k1-4-k2 q-k3 +k4-’0

(3)
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Let us consider the case where

nl + n2 -f- n3 n4 ml + m2 + m3 m4 O, nj, mj > O,

We use the notation

P1 Vn,,m, VT’ V:tfl (TI)f2(T2)

l<j<4.

P2 Vn2,m V Vgl (Tl)g2(T2)

P3 Pl’13,m V V:3hl (T1)hE(T2)

P4 e-n4,-m4 vn4 v:m4 T4T:4 -+-Zl "- T2)n4+m411(Tl)12(T2)
We note that

V’V’ ff mlV’V’-’ flf2
V VZg,g m2 V( V-’g,g2
VsV3h,h2 m3V3VS-’h,h2
13 14

where

We note that

(1 + Tl %- T2)n4+m4-1l I1, 13, (1 + T1 + z2)n4+m4112, 14.

We will expand O (P1, P2, P3, P4)/O(T1, V1, T2, V2) using the last row (ll,/2,/3, I4)
and will, in fact, show that (1 + T + T2) divides each one of the 4 summands in the
expansion. The first summand is

nl... ml...
n2... m2...
n3... m3...

If n4 0 then n n2 n3 0 and this summand is 0.
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If m4 0 then m m2 m3 0 and this summand is 0.
If n4, m4 > then n4 + m4 >_ 1 and since (1 + T1 + T2)n4+m4-1 I1 it follows

that (1 + T1 + T2) divides the first summand.
The third summand is treated the same.
The second summand vanishes if m4 0 and if m4 >_ then n4 + m4 > 1 and

since (1 + T1 + T2)n4+m4 I2 it follows that (1 + TI + T2) divides the second summand.
The fourth summand is handled the same.
Identical arguments hold in the other cases, namely, the factor (1 + T1 + T2) gets

raised to a power that is a sum of a contribution that comes from the pair (U, V1)
and a contribution that comes from the pair (U2, V2) (sometimes, minus 1). If any
of these contributions is zero then the whole determinant vanishes and so we may
assume that both contributions are at least in which case (1 / T1 + T2) factors the
determinant.

Remark 6. It is very plausible that the obvious extension ofthe above techniquem
of assigning weights that are independent over Z in order to separate the intermedi-
atesmworks for all the varieties of Winkelmann’s type in any even dimension (see
Theorem 1). If so, it provides us with examples of etale exotic varieties of any even
dimension. However, we do not know of an example of an etale exotic variety of odd
dimension.
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