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1. Introduction

Let I" be a discrete subgroup of PSL(2, I) and let X: 1-’ -- SL(2, ) be a
homomorphism of groups. Then both I" and X (1-’) operate on the Poincar6 upper half
plane by linear fractional transformations. We assume that there is a holomorphic
map w: -- 7-( satisfying w(gz) ((g)w(z) for all g F and z . Given a
pair of nonnegative integers k and with k even, a holomorphic function f: C
satisfying the condition

f(gz) (cz + d)k (cxw(z) + dx)l f(z)

for all z 7-/and

g= F
c d X (g) ( axcx bx)dx

6 SL(2, IR)

is a holomorphic mixed automorphic form ofone variable oftype (k, l) associated to 1-’,
w and X if f satisfies an additional condition of regularity at the cusps of lr’ (see 16]).
Certain types of such mixed automorphic forms occur naturally as holomorphic forms
of the highest degree on elliptic varieties which are fiber varieties over an arithmetic
variety with generic fiber a product of elliptic curves (cf. [10], [15]). Holomorphic
mixed automorphic forms of several variables were also introduced in [17] and [18],
and it was proved that a certain class of such automorphic forms can be interpreted as
holomorphic forms on some families of abelian varieties over an arithmetic variety.

The purpose of this paper is to describe mixed automorphic forms in the setting of
representations of semisimple Lie groups following such descriptions for the usual
automorphic forms initiated by Selberg and Langlands (e.g., see [3], [4], [9], [21]).
More specifically, we define mixed automorphic forms on semisimple Lie groups
which generalize holomorphic mixed automorphic forms, and construct Poincar6
series and Eisenstein series for such automorphic forms.

2. Mixed automorphic forms on a semisimple Lie group

First, we shall review the definition of the usual automorphic forms on semisimple
Lie groups (e.g., see [3], [4], [5], [6]). Let G be a semisimple Lie group, and let g be
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its Lie algebra. If V is a finite-dimensional complex vector space, then g operates on
smooth functions f: G V by

d
(Y f)(g) -;T f ((exptY)g}

t=O

for Y g and g G. Let Z(g) be the center of the universal enveloping algebra U($)
of the complexification $c of g. Then a vector-valued function f: G V is said to
be Z($)-finite if Z(t) f is a finite-dimensional vector space. If : G GL(W) is
a finite-dimensional complex representation whose kernel is finite and whose image
is closed in End(W), then we can define a norm I1" I1 on G by

Ilgll Tr a(g)*, a(g)

where denotes the adjoint with respect to a Hilbert space structure on W invariant
under a maximal compact subgroup K of G. If/ is another such representation, then
there is a constant M > 0 and a positive integer rn such that

IIx I1 < M Ilx [[m

for all x G. A vector valued function f: G --+ V is said to be slowly increasing if
there is a norm on G, a constant C > 0, and a positive integer rn such that

If(g)l < CIIgll m,

where I" [is a norm on V.

Definition 2.1. Let K be a maximal compact subgroup of G, F a discrete sub-
group of G, and or: K GL(V) a representation of K in a finite-dimensional
complex vector space V. A smooth vector-valued function f: G V is an auto-
morphicformfor F and tr if the following conditions are satisfied:

(i) f(kg,) --tr(k)f(g) for all k K and ?’ F.
(ii) f is Z(l)-finite.
(iii) f is slowly increasing.

Let G, K, F, and the representation tr: K --+ GL(V) be as in Definition 2.1, and
consider another semisimple Lie group G’. Let K’ be a maximal compact subgroup
and F’ a discrete subgroup of G’. Let/9: G G’ be a homomorphism such that
p(K) C K’ and p(F) C F’, and let tr’: K’ --+ GL(V’) be a representation of K’
in a finite-dimensional complex vector space V’. Then we obtain the representation
tr (R) (tr’ o Pit): K --+ GL(V (R) V’) of K in V (R) V’, where Pit: denotes the restriction
of,o to K.
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Definition 2.2. A mixed automorphicformfor F oftype (p, a, a’) is an automor-
phic form for r and the representation a (R) (or’ o P I).

Let f" G - V (resp. f’," G’ - V’) be an automorphic form for 1-" (resp. r’)
and a" K --> GL(V) (resp. or’: K’ --> GL(V)), where V (resp. V) is a finite-
dimensional complex vector space. We denote by fi,,,, the function from G to
V (R) V’ given by

f;,,,(g) (f (R) (f’, o p))(g) f(g) (R) f,(p(g))

for all g e G.

PROPOSITION 2.3. Thefunction fp,a,a," G V (R) V’ described above is a mixed
automorphicformfor F oftype (p, a, a’).

Proof. We must show that fo,,, satisfies the conditions (i), (ii) and (iii) in
Definition 2.1 for the discrete group F and the representation a (R) (a’ o Pig). For
geG, keKandy eF, wehave

fp,a,,(kgy) f(kgy) (R) f’(p(k)p(g)p(y))

a(k)f(g) (R) a’(p(k))f’(p(g))

(a (R) (a’o plc))(k). (f (R) f’o p)(g),

which shows the condition (i). Now, given Y e Z(1), we have

d
Y fo,o,,(g) -j= fo,,,((exptf)g)

t"O

-fa((exptY)g) (R) f,(p(g))
t--0

+ f(g) (R) -f’,(p((exptY)g))
t--o

-f,((exptr)g (R) f’,((g))
t--’-O

+ f(g) (R) -f,,((exptdoY)(g))
Thus the condition (ii) follows from the fact that fo is Z(l)-finite and
finite. As for the condition (iii), since f and f,, are slowly increasing, we have

Ifi,,,.,(g)l If(g)(R)/’,(o(g))[ _< cllgll", c:llo(g)ll



MIXED AUTOMORPHIC FORMS ON SEMISIMPLE LIE GROUPS 467

for some constants C, C2, positive integers m, m2, and representations
GL(W), : G GL(W’). However, we have

IIp(g)llt --Ilgll,op _< C311gllm

for some constant C3 and positive integer m3. Thus we have

If,,,,,,’(g)l _< CC2C311glI’’+m,

and fp,,, is slowly increasing. E1

Example 2.4. Let p: G -- G’, K, K’, V, V’ be as above. Assume that the
symmetric spaces D G/K and D’ G’/K’ have G-invariant and G’-invariant
complex structures, respectively. This assumption implies that D and D’ are equiv-
alent to bounded symmetric domains (e.g., see [8]). Let J: G x D GL(V) and
J’: G’ x D’ GL(V’) be automorphy factors, and let r: D D’ be aholomorphic
map satisfying

z(gz) p(g)z(z)

for all g e G and z e D. Then we can define a mixed automorphic vector bundle
AA (see [18]) on the Shimura variety X [’\D whose sections can be considered as
holomorphic mappings f" D V (R) V’ satisfying

f(gz) (J(g, z) (R) J’(p(g), r(z)))f (z)

for all g e G and z e D. Given such a bundle A4 associated to J, J’, p and r, we
define mappings tr" G -- GL(V) and ix’: G’ GL(V’) by

r (k) ] (k, 0), r’(k’) J’(k’, 0’),

where 0 D and 0’ D’ are the fixed points of K and K’, respectively. Then cr and
r’ are representations of G and G’, respectively, and the sections of A4 are mixed
automorphic forms for 1-’ of type (p, or, or’).

Remark 2.5. In Example 2.4, if G’ is a symplectic group and if r’ is cocompact,
then it was shown in [18] that for some specific automorphy factors J and J’ the
sections of the mixed automorphic vector bundle A//can be identified with holomor-
phic forms on certain families of abelian varieties parametrized by a Shimura variety.
In the elliptic modular case, that is, when G SL(2, IR), various results have been
obtained concerning the corresponding mixed automorphic forms (e.g., see 10], 15],
16]). Similar geometric aspects for the Siegel modular case were treated in 17].
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3. Poincar series

In this section, as our first examples ofmixed automorphic forms, we shall construct
Poincar6 series. Let F (resp. 1-") be a discrete subgroup of a semisimple Lie group
G (resp. G’), and let K (resp. K’) be a maximal compact subgroup of G (resp. G’).
Let p: G -- G’ be a homomorphism such that p(K) C K’. If f: G -+ V is a
vector-valued function and if h is an element of G, we denote by l(h) and r(h) the
translation operators given by

l(h)f(g)-- f(h-lg), r(h)f(g)-- f(gh)

for all g G.

Definition 3.1. A vector-valued function f: G V on G is said to be left (resp.
right) K-finite if the set of left (resp. fight) translations

{l(k) f k 6 g} (resp.{r(k)flk6K})

of f by elements of K spans a finite-dimensional vector space.

PROPOSITION 3.2. Let V and V’ be finite-dimensional complex vector spaces,
and assume that thefollowing conditions are satisfied:

(i) f (R) (f’ c, p) 6 LI(G) (R) (V (R) V’), where LI(G) denotes the set ofintegrable
functions on G.

(ii) f is Z(fj)-finite and f’ is Z(g’)-finite.
(iii) f is right K-finite and f’ is right K’-finite.

Then the series Pp, f, f, (g) defined by

Pp,f,f,(g) (f (R) (f’o p))(g ,)

converges absolutely and uniformly on compact sets. Furthermore, the series

[(f (R) (f’o p))(g. ’)1
yl"

is bounded on G where [. denotes the norm on V (R) V’.

Proof As in the proof of Proposition 2.3 we can show that the function f (R) (f’ o
p)" G -- V (R) V’ is Z(g)-finite using condition (ii). For k 6 K and g 6 G, we have

r(k)(f (R) (f’o p))(g) (f (R) (f’o p))

(gk) f(gk) (R) f’(p(g)p(k))

r(k)f(g) (R) r(p(k))f’(p(k)).
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Hence condition (iii) implies that f (R) (f’ o p) is fight K-finite. Therefore the
proposition follows from [1, Theorem 23], [2, Theorem 5.4], or [3, Theorem 9.1].

Definition 3.3. The series

Pp,f,f,(g) (f (R) (f’o p))(g V)

is called a Poincard series associated to p, f and f’.

COROLLARY 3.4. Let or" K --> GL(V) and or’: K’ --> GL(V’) befinite-dimen-
sional representations of K and K’, respectively. Assume the f and f’satisfy the
conditions (i), (ii) and (iii) ofProposition 3.2 together with the condition that

f(kg) cr (k) f(g), f’ (k’g’) or’ (k’) f’ (g’)

for k K, g G, k’ K’ and g’ G’. Then the Poincard series ep,f,f, is a mixed
automorphicformfor F oftype (p, r,

Proof. Since f (R) (f’ o p) is Z(I})-finite on the left, so is the Poincar6 series

Pa,f,f,. From the definition of ep,f,f,(g) the fight l"-invafiance of Pa,f,f, follows
immediately, and Pa,f,f, is slowly increasing by Proposition 3.2. As in the proof of
Proposition 2.3, we have

(f (R) (f’ o p))(kg) (or (R) (a’ o PlK))(k)(f (R) (f’ o p))(g);

hence it follows that

Pp,f,f,(kg) (or (R) (a’o PlK))(k)Pp,f,f,(g),

and the proof of the corollary is complete.

Let G, G’, K, K’, p, and r be as in Example 2.4. In particular, D G/K and
D’ G’/K’ are symmetric domains, and z" D D’ is a holomorphic mapping
satisfying

r(gz)

for all g G and z D. Let J: G x D --> GL(V) (resp. J’: G’ x D’ --> GL(V’))
be the canonical automorphy factor (see [2, 1.8], [20, II.5]), and let j" G x D --> C
(resp. j’: G’ x D’ --> C) be the corresponding Jacobian determinant function.

LEMMA 3.5. If and m are nonnegative integers with >_ 2, then the mapping

g - j(g, O) (R) j’(p(g), 0’)m" G (3

is in L I(G).
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Proof The mapping g - [j(g, 0)[ (resp. g’ - Ij’(g’, 0’) lm is left and right K
invariant (resp. K’-invariant) (see [2, 5.8]); hence it can be considered as a function
on D (resp. D’), and we have

fG Ij(g, o)ljt(P(g), ot)mldg

where dtz(z) denotes the invariant Bergmann measure on D (cf. [1, 4.3]). If dz is
the usual Euclidean measure on D, then we have

dlz(z) Ij (z, 0)l-:dz

up to a positive factor. Thus we have

lj(g, o)lj’(P(g), o’)ml fo o)ll-21J’(v(z)’ O’)lmdz.dg Ij(z,

However, both Ij (z, 0)1 and Ij (r(z), 0’)1 are bounded by [2, Proposition 1.12]; hence
the lemma follows.

LetF: D-- V andF’: D’ V’bemappingssuchthatF(R)(F’oz)" D V(R)V’
is a polynomial mapping. Given nonnegative integers l, m with > 2, we define the
functions f: G V and f’: G’ -- V’ by

f(g) j(g, O)lF(Trg), f’(g’) j’(g’, o’)mF’(yr’g’)

for g 6 G and g’ G’, where 0 6 D and 0’ 6 D’ are the fixed points of K and K’,
respectively, and rr" G D and yr" G’ D’ are canonical projection mappings.
We set

a (k) j (k, 0)l, a’(k’) j (k’, 0’)m

for k e K and k’ K’. Then a and a’ are representations of G and G’ in V and V’,
respectively. We set

p,,jm, j,(g) -(f (R) (f’o p))(g?’)
,F

for g G, which is the Poincar6 series Pp,f, f, in the sense of Definition 3.3.

THEOREM 3.6. The Poincard series pp,,jm, j,(g) is a mixed automorphic form for
F oftype (p, a, or’).

Proof For each g 6 G we have

(f (R) (f’o p))(g) (j(g, O)lF(rrg)) (R) (j’(p(g), o’)mF’(yr’(p(g))))

(j(g, O)l" j’(p(g), o’)m)(F(yrg) (R) F’(oo(rrg))).
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Thus from Lemma 3.5 and the fact that F (R) (F’ o w) is a polynomial mapping on the
bounded symmetric domain D it follows that

I(f (R) (f’o P))(g)l dg <

hence f (R) (f’ o p) is in L (G) (R) (V (R) V’). Since f(kg) tr (k) f (g) and f’ (k’g’)
r’(k’) f’(g’) for k K, k’ K’, g G and g’ G’, it follows that f is Z-finite and
f’ is Z,-finite. For k K and g G we have j (gk, 0) j (g, 0)j (k, 0), and the set
of right translates r(k)F(zr(gk)) are polynomials of the same degree as F; hence f is
right K- finite. Similarly, f’ is right K’-finite. Thus it follows from Proposition 3.2

l,mthat the series Yr I(f (R) (f’ o P))(gY)I is bounded on G. In particular, Pp,j,j, is
slowly increasing. As in the proof of Proposition 2.3, f (R) (f’ o p) is Z-finite, and
for k K and g G we have

(f (R) (f’o p))(kg) (a (R) (cr’o plt,:))(k)(f (R) (f’o p))(g);

hence it follows that

l,mP’,jm, j,(kg) (a (R) (a’o pltc))(k)Pt,,j,j,(g).

Therefore plp,,jm, j,(g) is an automorphic form for 1-" of type (p, r, a’) in the sense of
Definition 2.1.

4. Eisenstein series

In order to discuss Eisenstein series, instead of the usual semisimple Lie group G
we shall first consider an algebraic group whose set of real points will coincide with
G. Let G be a connected, semisimple, linear algebraic group defined over a subfield
k of I, and let l? be a k-parabolic subgroup of G containing a maximal k-split toms
S of G. Let 1?0 be a minimal k-parabolic subgroup of G such that S C ]?0 C l?. We
define an ordering on the set Ek of k-roots ofG with respect to S as follows: A k-root
ct Ek is positive if and only if the subgroup of G generated by the ct-eigenspace of
the adjoint representation of S is contained in l?0. We denote by Ak the set of simple
positive k-roots in E.

If U, is a subset of Ak, we set

(n )0gz Kerct

where )0 denotes the connected component of the identity. Let 19 be the subset of
A such that lP is generated by the unipotent radical U0 of ]P0 and by the centralizer
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Z(o) of o. Let Uo be the unipotent radical of I?, and let 1VJIo be a subgroup of G
such that Z;(o) o 1Vl[o with o fq 1MIo finite. We set

P ]F’(IR), A o(), M 1VJIo(), U Uo().

Then we obtain the Langlands decomposition

P=MAU

of P and the corresponding decomposition

G KP KMAU

ofG G(IR). Ifg kmau G with k e K, m e M, a A and u e U, then k. m,
a and u are uniquely determined. We write a a (g).

Let {A}ezxk be the set of fundamental dominant k-weights of G that satisfy

for all a, e Ak, where 8 is the Kronecker delta and d, is a positive real number
(see [3, 11 ]). Let u be the Lie algebra of U and let X det Adu be the character of
P with pX det Adup for p e P. We set Ak (R). Then X is a positive linear
combination of the A,, for c e , i.e.,

O.X 2_, e, e, >

If {s,},e6 is a set of complex numbers s, e C associated to each ot e (9, and if
p e P, then we set

ph, H Ip^ Is"

LEMMA 4.1. Let F be a discrete subgroup of G and let Fo be a subgroup of
F N MU. Suppose that there is a set {s,}u of complex numbers satisfying the
following conditions:

(i) a(,)^" > > Ofor all y F and (9.
(ii) MU/ r’o hasfinite measure.
(iii) Re sa > e for all (9.

Then the series

E(g,s) Z a(g?/)-

converges uniformly on any compact subset of G.
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Proof. See Lemma 4 in [1] or Lemma 11.1 in [3] (see also [7]).

Let G’ G’(R) be another semisimple Lie group associated to a connected
algebraic group G’ defined over a subfield k of N. We consider the corresponding
subgroups K’, P’, M’, A’, U’, etc. defined in a way similar to the case of G above.
Thus we have decompositions

P’ K’A’U G K’P’ KM’A’U

Let p: G G’ be a Lie group homomorphism such that

p(K) C K’, p(P) C P’, p(A) C A’.

THEOREM 4.2. Let F and I’ be as in Lemma 4.1, and let f: G -- V and
f’: G’ -- V’ be smooth vector-valuedfunctions, where V and V’ are finite-dimen-
sional vectorspaces. Suppose that there is a set {s} ofcomplexnumbers satisfying
thefollowing conditions:

(i) a(,)^ > e > Ofor all ?, F and
(ii) MU/F hasfinite measure.
(iii) Re s > e for all a
(iv) (f (R) (f’ o p))(gy) (f (R) (f’ o p))(g) for all y F.
(v) If (gp)llf’(p(gp))lp^" is boundedfor p P and g in afixed compact set.

Then the series

Ep,f,f,(g) (f (R) (f’o p))(g?,)

converges absolutely and uniformly on any compact set of G.

Proof. Since G KP, we have

(f (R) (f’ o p))(g) a(g)^s (f (R) (f’ o p))(kp) a(kp)As

(f (R) (f’o p))(kp), a(p)^s

(f (R) (f’o p))(kp), p’

for g kp with k 6 K and p 6 P. Hence by (v) I(f (R) (f’ o p))(g) a(g)^s is
bounded for g 6 G. Therefore, the series defining Ef, f,,p is majorized by a constant
times the series

a(g?’)-^,

which converges uniformly on any compact set by Lemma 4.1. Hence the theorem
follows.
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Definition 4.3. The series

E,o,f,f,(g) (f (R) (f’o p))(gy)
yrl roo

is called an Eisenstein seriesfor F associated to p, f and f’.

5. Eisenstein series as mixed automorphic forms

In this section we discuss a special class of Eisenstein series and show that they
are mixed automorphic forms. Let G, P, M, A, and U be as in 4. Thus we have
decompositions

P MAU, G KP KMAU.

Let or: K ---> GL(V) be a representation of K in a finite-dimensional complex vector
space V. Let zr" MU ---> M be the natural projection, and let K4 rr(K N MU).
Then Kt is a maximal compact subgroup of M, and cr induces the representation crM
of KM given by

O’M(Y(k)) o’(k)

for all k K fqMU. Let F be an arithmetic subgroup of G, and let I’M r(F fqMU)
be the corresponding arithmetic subgroup of M. We denote by L:(M/FM, aM) the
space of square-integrable functions 09: M - V satisfying

tp(kmv) crM(k)tp(m)

for all k KM, rn M and V FM. Any function 09: M --> V satisfying
tp(km) rM(k)tp(m) for k KM and rn M can be extended to a function
tpG: G ----> V on G by the formula

PG (kmau) cr (k)tp(m)

for all k K, rn M, a A and u U. Then p is tr-equivariant; i.e.,

for k K and g G. Although a decomposition g kmau is not unique, the
extension PG is uniquely determined. We shall identify a trM-equivariant function tp
on M and the corresponding cr-equivariant function p6 on G. Thus each element of
L(M/FM, aM) will be regarded as a function of G into V.

Let a be the dual space of the complexification Ctc of the Lie algebra ct of A, and
let

(ct)- {A ct: (Re A + p, u) < 0 for all u E},
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where E is the set of simple roots of the Lie algebra fl of G. For q) 6 L2(M/FM, aM)
and A 6 cruz, we set

PA (x) p(x)e(h-p)(tt(x))

for x e G, where H(x) denotes log a (x). Then we have

qg^ (kgy) a(k)qg^ (g)

forallg G,k K and?, 6 U(r’f’IP). Given p 6 L2(M/FM, aM)andA (a)-,
the series

E(A, o, x) 0A (Xy)
F FCIP

is called an Eisenstein series (see [9]; also see [11], [12], [13], [14], [19]).
Let X be a representation of Z(fl) in V. We denote by L2(M/FM, aM, X) the sub-

group of L2(M/I’M, aM) consisting of functions f: G ---> V satisfying the condition

(Y f)(g) f(g)x(Y)

for all Y 6 Z(I).

LEMMA 5.1. If (p L2(M/ IM, aM, X) and y U(F C P), then there are a
positive real number C and a positive integer N such that

IqgA(x)I CIIxllN
r/rcP

for all x G.

Proof. This follows from [9, Lemma 24]. [2]

Let G’ be another semisimple Lie group, and consider the corresponding objects
K’, P’, M’, A’, U’, a’, a, (a)- and the representation a’: K’ --> GL(V’) of K’
in a finite-dimensional complex vector space V’. Let p" G ---> G’ be a Lie group
homomorphism such that

p(K) C K’, p(P) C P’, p(A) C A’.

As in the case of G, for p’ L2(M’/I’M a’M, and A’ (a)-, we set

o^,(y) o’(y)e(^ -p )(H (y))

for y e G’, where H’(y) denotes log a’(y).
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PROPOSITION 5.2. Let X and ’ be representations of Z() and Z(’) in V and
)V’ respectively, and let o^ LZ(M/ FM, aM, X) and p, LZ(M’/ r,, aM,, x

with A (a)- and A’ (a)-. Then there are a positive real number Co and a
positive integer No such that

er/rnP
I(P^ (R) (ok, o p))(xy)l < c011xll

for all x G.

Proof By Lemma 5.1 there are C, C’, N, and N such that

Io^(xy)l _< Cllxll u,
YF/rnP 7"r’/r’nP,

Io2,(x’y’)l _< C’llx’ll u’

for all x 6 G and x’ 6 G’. In particular, we have

I(,o,(p(xy))l y.
ysF/rnP vsr/rnP

I(p,(p(x)p(y))l

< C’llp(x)ll’ c’ v,_< Ilpll Ilxll’V’
for all x 6 G, since p(y) F’/F’ n P’ whenever y 6 r/F n P. Thus we obtain

I((p.,,. (R) (q:’, o p))(xy)l
vr/rnP yr/rnP

Io^ (xy)l. Io’,(p(xy))l

_< I.,,.(xy)l. ’),r/rnP yr/ rnP

_< C. C’. Ilpll N’. Ilxll+N’;

hence the proposition follows. E]

We set

Ep,o,(A, A’, x) (PA (R) (P, o p))(xy)
yer/FnP

for x e G, which is an Eisenstein series for r associated to p, #h, and #, in the
sense of Definition 4.3 with F F n MU F n P (see [9, p. 6]).

THEOREM 5.3. The Eisenstein series Ep,o,o,(A, A’, x) is a mixed automorphic
formfor F oftype (p, a, or’).

Proof. Recall that PA can be regarded as a function PA" G --> V on G satisfying
OA (kmau) a(k)OA (m). Thus we have

PA (kg) a (k)OA (g)
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for all k K and g G. Similarly, we have

for all k’ K and gt Gt. Hence it follows that

(tp^ (R) (tp, o p))(kg) (a (R) (a’o PlK))(k)(tPA (R) (tp, o p))(g)

and

Ep,,(kg) (a (R) (at o PlK))(k)Ep,,(g)

for all k K and g G. By Theorem 5.2 we have

’ (o^ (R) (o’, o p))(x)
,F/FNP

I(PA @ (tPX, o p))(xy)l _< CollxllN

and consequently the mapping g -> Ep,0,(A, At, x) is slowly increasing. Now
from the conditions

(Y qg^)(g) A(g)x(Y), (Y" tPA,)(g’) P^,(g’)x’(Y’)

for Y e Z(fl), Y’ e Z(fl’), g e G and g’ e G’, it follows that p^ is Z(fl)-finite
and ox, is Z(fl’)-finite; hence, as in the proof of Proposition 2.3, o^ (R) (ox, o p) is
Z(fl)-finite. Therefore Ep,, is also Z(ft)-finite, and the theorem follows, rl
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