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CONNECTIONS BETWEEN ADDITIVE COCYCLES
AND BISHOP OPERATORS

HERBERT A. MEDINA

1. Introduction

T will denote the circle group written additively so that its elements are real
numbers in [0, 1) and are added modulo 1. For any y R, Ily is the distance from y
to Z and {y} is the fractional part of y, so that {y} T and {y} _-- y mod 1. If ot R
is irrational, then x {x + ot defines an ergodic transformation on T.
A measurable function : T - R is called a trivial a-additive cocycle (or just

trivial) if there exists a measurable function : T R and c R such that

(x) p({x + or}) (x) + c for almost every x T.

The function is called a coboundingfunction for . The functional equation above
has generated much interest since its solvability has connections to areas such as
ergodic theory and group representations (e.g., [3], [6], [10]). Much of the research
that has been done goes the way of showing that certain families of functions are
not u-additive cocycles for all ot or for a set of ot (e.g., [2], [8], [10], [12].) There
has also been recent research in the construction of c-additive cocycles with certain
properties. For example, in it is shown (via construction) that for any t there is
a continuous trivial ct-additive cocycle whose cobounding function is non L. One
commonality among most of this work is that the functions that have been studied
are bounded. Very little is known about the case when is unbounded.

Long ago, E. Bishop suggested the following operator as one that might not have
any closed non-trivial invariant subspaces: For c R irrational, define B: L2(T) --L(T) by

(Bof)(x) x f({x + a}).

These operators have come to be known as Bishop operators. In 1974, A. M. Davie
[4] showed that Bishop operators have closed non-trivial hyperinvariant subspaces
when ot is not a Liouville number. It is still not known if all Bishop operators have
closed non-trivial invariant subspaces. His secondary result was that these operators
never have eigenvalues.

An immediate connection between the study of additive cocycles and the study of
Bishop operators is that Davie’s second result is equivalent to: For all or, log(x) is a

Received April 18, 1995.
1991 Mathematics Subject Classification. Primary 47B38.

(C) 1996 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

432



CONNECTIONS BETWEEN COCYCLES & BISHOP OPERATORS 433

non-trivial a-additive cocycle. This result appears to be not very well known among
the mathematicians who study cocycles of an irrational rotation. More importantly,
the technique that Daie uses can be applied to study a large family of functions with
one infinite jump.

On the other hand, there are techniques familiar to those who study cocycles of an
irrational rotation that can be applied to study Bishop operators. In particular, G. W.
MacDonald, who generalized Davie’s work by proving results about other multipliers
besides the function m(x) x, asked if operators of a certain type commute with
Bishop operators where the irrational is a Liouville number 11 ]. (If this were the
case, one could conclude that all Bishop operators have closed non-trivial invariant
subspaces.) MacDonald’s question can be answered using familiar techniques from
the study of additive cocycles.

In this article, we show these two interesting connections between the study of
additive cocycles and Bishop operators. In Section two, we use Davie’s technique to
show that a large class of unbounded functions are not a-additive cocycles for any c.
This family includes the functions xa for a < 0. And in Section three, we state and
solve the problem of MacDonald.

2. A family of non-trivial additive cocycles

Let Z(T) denote the vector space of all complex measurable functions on T defined
almost everywhere and where we identify functions that are equal almost everywhere.
Fix a (0, 1) irrational. This first lemma shows the connection between a function
being a trivial or-additive cocycle and the eigenvalues of a certain operator on Z(T).

LEMMA 1. Let cp (T) be a real-valued function, dp is a trivial a-additive
cocycle ifand only if the operator Eel" /(T) -- (T) defined by

(E4f)(x) e4x) f({x + or})

has an eigenvalue.

Proof. (=) If there exists a real measurable function ap 6 Z(T) and c 6 R such
that p(x) p({x + or}) (x) + c a.e., then

e4(x) e({x+’l)e-/(x)ec a.e.

So e-g’(x) is an eigenfunction for the eigenvalue ec.
(=) If there exists g 6 I(T) and c 6 C such that

eO(X)g({x + or}) c g(x) a.e.,

we may take absolute values and can thus assume that c > 0 and g(x) > 0 a.e. If
c 0, then g(x) 0 a.e., therefore c > 0. It is clear that {x" g(x) 0} is invariant
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under translation by or, and since it cannot be a measure 1, it must be of measure 0.
We may take logarithms to get

q(x) + log g({x + or}) log c + log g(x) a.e.

The next theorem is a generalization of the theorem of Davie already mentioned at
the end of the last section [4, Theorem 2]. The proof uses the techniques developed
by Davie.

THEOREM 1. Let 4: T - R be an increasing convex function with qb(O) O.
Then : /(T) --/(T) defined by

(f)(x) qb(x)f ({x + or})

has no eigenvalues.

The proof will require the following lemma from classical analysis. The proof is
very simple and thus omitted. (Drawing the graph of b shows how to obtain a proof.)

LEMMA 2. Let dp be an increasing convexfunction on [a, b] with dp(a) O. Then
{x [a, b]: I1 t(x)l > 5} has measure > b-a

Proofof Theorem 1. We will show that if there is a L C such that ep(x)f({x +
ct}) .f(x) a.e., then f(x) 0 a.e. If . 0, then f(x) 0 a.e., so assume k # 0.

Let {qn be the sequence of denominators to the convergents of or. (The reader
unfamiliar with the number theoretic terminology and elementary results of continued
fractions is asked to look in [5, Chapter X].) Since [[qnctl[ 0, If(x) f({x
qnOt })[ 0 in measure. Passing to a subsequence, we may assume

If(x) f({x qnOt})l < (1)

qnon a set of measure > . f --qn ( f. That is,

f(x)=)-q"(:__ol({x+kot}))f({x+qnt}) a.e.

Translate both sides by -qnOt to get

f({x-qnot})=.-qn(-IdP({x-kot}))f(x) a.e.
\k=l
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T can be divided into intervals on each of which ,qn Hnl t ({X kot}) satisfies the
hypothesis of Lemma 2. Thus

an
If(x) f([x q,,a])l If(x)l --qn H ([X ko])

k=l

1
> -If(x)l on a set of measure >

aoeo

Equation 1 now implies 5If (x)l < on a set of measure > . Letting n --+ c, we

have f(x) 0 on a set of measure > . Since {x" f(x) 0} is invariant under
translation by ct, it must be a measure of 1. 121

COROLLARY 1. For any a < 0, Xa is not a trivial a-additive cocycle.

Proof. Define q 6 Z(T) by
I-a

Xe-r- ,x #O4(x)
0 ,x=0

Since 4’(x) > 0 Yx 0 and qV’(x) > 0 ’v’x - 0 (the constant a has been chosen
so that qV’ has this property), 4 satisfies the hypothesis of Theorem 1. By Lemma

1-axa is not a trivial c-additive cocycle For any r R, r O, rf is a trivial
a

u-additive cocycle if and only if f is one; therefore xa is not a trivial u-additive
cocycle. 121

Remark 1. Theorem can be used to show that many increasing or decreasing
functions with one infinite jump are not trivial c-additive cocycles. For example,
log(x) (this was Davie’s original result) and log log(x)l are not trivial.

Remark 2. Theorem has an obvious improvement. Let qb: T -- R be an
increasingfunction with qb (0) 0 and such that n is convexfor some n N. Then

has no eigenvalues. This result can be used to show that many other functions
with one infinite jump are not trivial u-additive cocycles. For example, log sin x is
not trivial. But there are functions of this type for which this method does not work.

for a > 0 is trivial.For example, we do not know if log x-a

Remark 3. A result of Helson and Merrill can be used to show that given a
irrational, there exist many functions with two infinite jumps which are not trivial
t-additive cocycles. Let f" T --+ R be a function with one infinite jump which
is not a trivial c-additive cocycle (e.g., logx, x-k, log sinx). For any irrational/3,
f({x +/3}) f(x) is a function with two infinite jumps. Section 2 of [7] implies the
existence ofmany/3 (the set of/3s may depend on t and f) such that f({x+/})- f(x)
is not a trivial or-additive cocycle.
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3. Bishop operators

MacDonald showed that if ot is not a Liouville number, then for a large collection
of real valued q L(T) with log I1 LP(T), P > (p depends on or), the
operator ,: L2(T) L2(T) defined by

(4,,o f)(x) dp(x)f({x +

has a closed non-trivial hyperinvariant subspace. (For the specifics, see 11, Theorem
2.61.)

MacDonald suggested the following approach for attacking the unsolved Bishop
operator problem: For ct a Liouville number, find a/ that is not a Liuoville number
and a q L(T) covered by his theorem such that B commutes with ,. Since
his result gives hyperinvariant subspaces for , we could conclude that B has a
closed non-trivial invariant subspace.

The following theorem shows that this approach will not work.

THEOREM 2. Let ot R be irrational. If there exists R irrational and
b L(T) with log [b[ LI(T) such that Ba dpO,/ dpe, Ba, then fl {pot}for
some p Z.

Remark 4. If a is a Liouville number, then so is {pa} Yp 6 Z. Thus, even if we
consider {4 6 L(T): log 141 LI(T)}, we cannot find a/ that is not a Liouville
number such that, commutes with B.

The proof of Theorem 2 will require three lemmas. The first is a recent result
from the theory of continued fractions, the second is an immediate consequence of
the first, and the third is a lemma from classical analysis.

LEMMA 3 (Kraaikamp and Liardet) [9]. Let a be irrational and let {qn be
the sequence of denominators of the convergents of a. For each R we have
{/3} {pt} for some p Z ifand only if llqnll <_ 1/4qllqallfor all large n.

This lemma has an immediate consequence. (This strengthens a result in 13].)

LEMMA 4. Let a, R be irrationals and let {qn be the sequence ofdenomi-
nators to the convergents ofa. If

11 e2riq"#
lim sup < ,

,--, [q,(1 e2riq"a)l 2rr

then {/} {pa} for some p Z.
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Proof. There exists no such that n >_ no,

qn e2riqntl1 e2riqn#l < - I1 I.

Since 41Ix < I1 e2rix[ < 2zr IIx V x R, we have 4[[qnfl < qn IIqc II. Lemma
3 implies that fl {pot for some p Z. El

LEMMA 5. Let (log)^(n) be the n-th Fourier coefficient of the function log x on
c for some C > 0 and all large In I.T. Then I(log)^(n)l >_ ]E

Proof. [(log)^(n)l Ifo logx e-2zrinx dx I. We integrate by parts: u logx,
i._.L_e_2rinxdu dx, do e-2zrinx dx, v 2:rrin

I(lg)^(n)l
2zrlnl

log x e-2zrinx fo e-2zrinXxdx
To get the desired estimate, we need only consider the imaginary part.

1
I(lg)^(n)l >-IIm[(lg)^(n)]l-"

2zrlnl i1 f01 sin 2zrnx
log x sin 2zrnx

0 x
dx

Since limx0+ log x sin 2zrnx 0, we have

IIm[(lg)^(n)]l
2zrlnl

sin 2zrnx
x

dx

-7- $, ’x’ ""c ElTherefore, there is a C > 0 such that for Inl large enough, I(log)^(n)l >_ 2.1n-’--7"

ProofofTheorem 2. If Ba, ,Ba, then applying this operator to the
constant function 1, we getx ({x +a}) (x) {x + fl} a.e. Taking absolute values,
we may assume > 0. And since log 6 L (T), we may take logarithms to get

logx log{x -4- fl} log (x) log ({x -4-c}) a.e.

Computing Fourier coefficients of both sides we get

(log)^(n)(1 e2"in) (log )^(n)(1 e2rrina).

(1--e2rin#)And thus (log )^(n) (log)^(n) (1-e2n)’ for n 0. Now we use Lemma 5 to get

I(log)^(n) >_ C
(1 e2rin#)
n (1 e2rina)

for all large In I,
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But log L (T), and the Riemann-Lebesgue lemma implies that

limlnl--,o I(log q)^(n)l 0,

and we have

lim
(1 e2rtin#)
n(1 e2rina)

Lemma 4 implies that fl {pet for some p

Remark 5. In the language of cocycles, the result says that ifwe restrict ourselves
to cobounding functions in LI(T) and {fl} #{pct} for any p Z, then log{x + r}
log x is not an u-trivial additive cocycle.

Remark 6. It is clear that the argument works not only for the multiplier x but
also for any real valued multiplier re(x) L(T) such that log [m(x)l LI(T) and
such that the Fourier coefficients of log [m(x)[ satisfy the same decay condition as in
the hypothesis of Lemma 5.
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