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DAY POINTS FOR QUOTIENTS OF THE FOURIER
ALGEBRA A(G), EXTREME NONERGODICITY OF THEIR

DUALS AND EXTREME NON ARENS REGULARITY

EDMOND E. GRANIRER
To the Memory of Mahlon M. Day

Introduction

Let J be a closed ideal of the Fourier algebra A A(G) of the metrisable locally
compact group G, with identiy e, and F Z(J) C G its zero set. G need not be
abelian, yet the results that follow are new even if G R or T (the real line or the
toms). Let PM(G) A(G)*.

Call a F aMahlonM. Day pointof J and let D1 (J) be the set ofall such, ifthere is
a sequence Un AfqCc(G) such that (i) Un(a) Ilull, (ii) for any neighborhood
V ofa there is some k such that F Nsupp Un C F A V ifn > k and (iii) {Un} is a Sidon
sequence in A/J, i.e. there is some d > 0 such that Otjujlla/J > d Yn Iotjl for
all complex otj and n > 1.

The usefulness of this concept comes from our Theorem 4. It implies that if
D1 (J) 0 thenP (A/J)* is extremely nonergodic at each a D (J) and (if G is
separable metric) the Banach algebra A/J is extremely non Arens regular. Namely
P/Wp(a) (hence P/WAPp) has e as a quotient and the set of topologically invariant
means on P at a, TIMp(a), contains the big set .F’, hence card TIMp(a) > 2c.

Hence, if we discover points in D (J), we get big sets TIMp(a). We do that in
Theorems 2 and 3 and then apply the results to arbitrary G in Cor. 6,7. In Ch. III we
applythe results to abelian G, i.e. to w* closed translation invariant subspaces P of
L(G) with a(P) G (3 P F, where P {f; f P}.
A very mild application of this to second countable abelian G and even to G T

is the following" Let P C (Z) (or L(G)) be a w* closed translation invariant
space such that a (P) G f3 P F. If F contains, or is, an ultrathin symmetric set
F0 ([GMc] p. 333) (or the Cantor 1/3 set), then the set of topological invariant means
on P, TIMp(e) [and in fact TIMp(x)], contains the big set .r [tp *;
(o, 1) IIoll, o 0 on co] (which contains fiN N) [for each x F0]. Hence
card TIMp (e) 2c card P*.

If however F is a perfect Helson (or compact scattered) S subset of T or R and
e F then card TIMp (e) 1 card IMp (e).
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This new result for P C o(Z) with r (P) F0 cannot be obtained by the usual
methods used to prove that if Q (z) then TIMQ(e) is big. Since P is not a
pointwise subalgebra ofo(Z), finite intersections of translates of sets A C Z which
are building blocks for elements of TIM on o(Z) do not play the same role for P as
they play for (Z) (see Paterson [Pa], Ch. 7).

Again, let J C A, Z(J) F, P (A/J)* be as above. LetH C Gbea
closed nondiscrete metrisable subgroup. We show that (the interior of F N H in H)
intH F C D1 (J). Hence C TIMp(x) and card TIMp(x) >_ 2c if x intHF (and
this holds even for P C PMp(G) Ap(G)* la Herz [Hz].

If G H F (thus P PM(G)), x e and G is separable metric, this is
due to Ching Chou [Ch2] (for beautiful definitive results see Z. Hu [Hu] and also
Lau-Paterson [LP]).

Our results also improve results of Fournier and Cowling in [FC] in showing the
existence and prevalence of convolution operators on LE(G) (LP(G)) with "thin"
support which are far from being ’ergodic’ at a D1 (J) (afortiori very far from
being convolution by a bounded measure). They also improve and simplify results
of ours in [GrS] (see more attributions in [GrS], p. 53).
We delineate now in more detail the results we obtain in this paper.
Restricting our results to metrisable G, in Section 1 we get:

THEOREM 2. Let J C A(G) be a closed ideal and F Z(J). Assume that R
or T is a closed subgroup ofG and S C R (or T) is an ultrathin symmetric set such
that aSb C Ffor some a, b G. Then aSb C Dl (J).

THEOREM 3. Let J be a closed ideal of A A(G) (or of A Ap(G) l la
Herz [Hz]) with F Z(J). Let H C G be a closed nondiscrete subgroup. Then
intaHbF C D1 (J) in particular D1 (0) G. (intHo F is the interior ofF f’) Ho in Ho).

In Theorem 2 we improve a result of Y. Meyer [Me] for A(R) and then using
theorems of Herz [Hz] lift the result to A(G).

In Theorem 3, while F is not as thin as in Theorem 2, the result holds for all
Ap(G), 1 < p < oo [Hz], where A2(G) A(G). Methods in abelian harmonic
analysis fail in this case, and a global approach is taken.

If p 2, Ap(G) is very different from A2(G). Since if G1, G2 are compact abelian
and Ap(G1)*, Ap(G2)* are isometric as Banach spaces then G1, G2 are isomorphic as
topological groups by Benyamini and Lin [BL]. While AE(G)* is isometric to (Z)
for all infinite metric compact abelian G.

Let A A(G) [or Ap(G)]. If A* let supp , be the support of as
an element of A*, (see sequel and [Hz], p. 120). If P C A* let Pc ncl{
P; supp is compact} (where ncl is norm closure). If a G let Ep(a) ncl{
P; a supp }; We(a) C(,a) + Ep(a), where ()ta, 1)) v(a) if v A. Let
or(P) {x G; .8x e}. Let TIMe(a) { e*; 1 (, .a) I111, P
0 on Ep(a) }; WAPp PfWAP where A* is in WAP iff {u. ;u A, Ilu _<
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is relatively weakly compact in A*, where (u , v) (, uv) for u, v A. We
prove in Section 2

THEOREM 4. Let G be arbitrary, J a closed ideal of A A(G), or Ap(G).
Let Q C A* be a norm closed A module such that Pc C Q c P (A/J)* and
DI(J) ::fi

Then Q/WQ(x) (afortiori Q/WAPQ and Q/M(F)) has e. as a quotient and

TIMQ(x) contains .r, (i.e., Q is ENE)for each x DI(J).
Consequently A/J is ENAR ifG is second countable nondiscrete.

Here M(F) ncl{4z; /z M(F)} where (Z/z, v) f vd/z for v A. The
Banach algebra A/J is Arens regular if P WAPp. A/J is extremely non Arens
regular (ENAR) if P/WAPp is "as big as P" namely if it contains a subspace which
has P as a quotient. We abbreviate the conclusion of Theorem 4 about Q writing that
Q is extremely nonergodic (ENE) at each x D1 (J).

Assume, for simplicity, in Corollaries 6 and 7 that G is metrisable.

COROLLARY 6. Let A A(G)and J C A, P (A/J)*, Pc C Q c P,
(P) F be as in Theorem 4. Assume that R (or T) is a closed subgroup ofG, and
C R (or T) an ultrathin symmetric set (see Section 1) such that aSb C F,for some

a,bG.
Then Q is ENE at each x aSb. Thus AJ is ENAR if G is second countable

nondiscrete.

The reader should note that even the fact that Q WQ(x) is a nontrivial result. If
G T and F C T is ultrathin symmetric, it has been proved by Woodward [Wol]
that P 5 Wp(x) for some x F. Corollary 6 implies that P/Wp(x) has even the
big nonseparable space as a quotient for each x F. Corollary 6 also improves
Theorem 12 in [Gr5].

COROLLARY 7. Let A A(G)orAp(G), < p < expand J C A,P (A/J)*,
Pc C O. C P, r(P) F be as in Theorem 4. Assume that H C G is a closed
nondiscrete subgroup, a, b G and intat4b F - 0.

Then {2 is ENE at each x intat4bF. Thus A/J is ENAR ifG is second countable
nondiscrete.

Corollary 7 improves a particular case of Theorem 6 in [Gr5] with a simpler proof.
It (and Corollary 6) show the prevalence of convolution operators P on Lp (G)
(on L2(G)) which are nonergodic at certain x tr(P), i.e. such that ’ Wp(x)
a fortiori ’ M(F)). (See [Gr5], p. 53.) Parts of Corollaries 6 and 7 have been
improved to nonmetrisable G, H, F in [Gr6].

In Section 3 we apply the above machinery to locally compact abelian (lca) groups
G. Let : LI() -- A(G) [grs’M() -- B(G)] denote Fourier [Stiltjes] trans-
form. Thus Or*: PM(G) --> L(G) is an isometry and w*-w* homemorphism.
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If f L(G) let E(f) G N w*cllin{f; ?, G}, where fr,(X) f(?’X), G
is the dual of G, ands. lin, w*cl denote linear, span, w* closure,respectively.

Let P C L(G) be anorm closed M(G) module thus M(G), P C P. This is the
case iffP ’*- P is a B(G) module, i.e., B(G).P C P where (u. , v) (, uv)
for u c=_ B(G) v A(G). Then define

Dp(a) ncllin{ (X)a-’ (I); )(. . G, e P}; Vp(a) C()a) -t- Dp(a).

De(a) ncllin{f -a()(.)fx; )(. G, f P}; Ve(a) Cgt + De(a)

Ep(a) ncllin{f (gth) f; 0 < h L(’), fhdx 1, f P}; We(a)
Cfi + Ep(a).

The next paragraph shows the relevance and need of the above definitions. It should
be reread before going through Section 3.

The space Ep (a) is of interest in commutative harmonic analysis since Ep (a)
ncl{f P; a ’ E(f)} whenever P C L(G) is a norm closed M(G) submodule
(Lemma 8’), and hence the reasonfor this definition. In this case JC*Ep(a) Ee(a)
and.*Wp(a) Wp(a), ’*Dp(a) De(a) and JC*Vp(a) Ve(a) (Lemma 8). It
so happens then that De(a) C Ep(a), Ve(a) C We(a) with equality ifP C UC(G)
(UCfrom uniformly continuous) (see Prop. 9), afortiori ifcr(P) G (q P is compact
where P {f; f P}. lfa or(P) let

TIMe(a) [IMp(a)] {gt e P*; (ap, fi) I111, 0 on Ee(a) [on De(a)]}

(thus TIMe(a) C IMp(a)) respectively. Ifa e, these become the set ofhonest to
goodness topologically invariant [invariant] means on P. Also TIMe (a) IMe (a)
if P C UC(G) (by Prop. 9).

In the next two corollaries let P [Q] be a w* [norm] closed M(G) submodule
ofL(G)* such thatUCe C Q c P, where U.Ce UC(G) C) P. Thus P
(Ll()/J)* for a unique closed ideal J C LI(G), with or(P) G f3 {x
G; (f)(x) 0 if f 6 J}.
Q is called ENE at x if Q/Wa(x) has g as a quotient and TIMQ(X) contains

COROLLARY 10. Let G be a metrisable 1.c.a. group UCe C Q c P c L(G)
and or(P) F. Assume that R or T is a closed subgroup of G, S C R (or T) an
ultrathin symmetric set such that aS C Ffor some a G.

Then Q (hence P and UCe) are ENE at each x aS.

COROLLARY 11. Let G, P, Q, F be as in Corollary 10. Assume that H is a
nondiscrete closed subgroup and a G be such that intat4 F 7 91.

Then Q (hence P and UCe) are ENE at each x intat4 F.
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If B(G, F) .T’sM(F) then ncl B(G, F) C WAPQ C Va(x) C Wa(x) for
all x 6 F. A consequence of Corollary 10 [or 11] is that Q/VQ(X), Q/WAPQ,
Q/ncl B(G, F) have as a quotient and IMa(x) D TIMQ(X) both contain for
all x aSb [x intat4b F] respectively. Furthermore, if G is second countable, then
the Banach algebra L1 ()/J is ENAR.

1. It has been proved by J. P. Kahane that there exist continuous [smooth] curves
F C R2 [F C Rn, n >_ 3] which are Helson sets (see [Mc], [Mu] or [Ka 1,2,3]).
Thus if P w* cllin F C L() where F C G Rn [R2], then P Wp(x)
Vp(x) B(, F) for all x 6 F. Our Corollary 10 implies that for any line L in R2

[Rn ], L C F cannot contain an ultrathin symmetric set.
2. Assume that G is 1.c.a. metrisable, K 1IKn C G where Kn are finite

nontrivial abelian groups. Asume that intaKbF 7 0. Then Q is ENE at each x 6

intarb F by Corollary 11.

Additional definitions and notations

Let . (or dx) be a fixed left Haar measure and Lp (G), 1 < p < cxz, the usual
complex valued function spaces (see [HR]). Let C(G), [UC(G)], WAP(G), Co(G),
Cc(G) denote the bounded [uniformly] continuous complex functions on G which
are in additon weakly almost periodic, tending to 0 at oe, have compact support,
respectively.

If f C(G) let supp f cl {x G; f(x) 0} where cl denotes closure. If
F C G is closed then M(F) are the complex bounded regular Borel measures on F
with variation norm, thus M(F) Co(F)*. All convolution formulas are as in [HR].

If f is a function on G, x, y 6 G then fV(x) f(x-1), fx(y) f(xy). A
neighborhood (nbhd) of x is any open set U C G containing x.

If F, H C G then int/F is the interior of F A H in H. Thus x 6 int/F iff for
some nbhd V (in G) ofx, x 6 V C) H C F f’l H. Denote F H {x 6 F; x ’ H}.

Let A(G) denote the Fourier algebra of G, as in [Ey]. Ap(G), < p < x, are
the regular tauberian Banach algebras on G defined in [Hz]; thus A2(G) A(G).

Let A(G)* PM(G), the dual of A(G) (denoted VN(G) in [Ey] or CV2(G) in
[Gr5]). If G is abelian then A(G) .T’L1 ().

If J C A(G) A is a closed ideal let Z(J) {x G; v(x) 0ifv 6 J}.
Equip the quotient algebra A/J with the norm IIVlIA/J inf {lip ull; u J}, If
FcGletIF={V6A; v=0onF}.

If G is a locally compact abelian group then the linear space P C L(G) is a
M() [L () module iff M().. P C P [L (). p C P].

Examples of norm closed M(G) modules are anyw* (/) [norm] closed translation
invariant subspace (or Ll() submodule) of L(G) (C(G)) [UC(G)] respectively
(see [Co], p. 221).

If X is a Banach space (always over C the complex numbers) X* denotes its dual.
If Y C X let ncl Y [lin Y] denote the norm closure [linear span] of Y in X.
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The Banach spaces co C c C over the complex field are as in [LT]. Let
c- {o e*; o 0 on co C e} and {o c-; (o, 1) I1o11}.." is
a w* compact perfect convex set such that card ,r card* 2c where c is the
cardinality of the reals. X -, Y denotes isomorphism of Banach spaces [LT].

The Banach algebra (A, IIa) is called (in this paper) a regular Banach algebra
on (the locally compact space) X if, with the notation in [HR], (39.1), (39.11), A is
a regular Banach algebra in Co(X) where X is the structure space of A.

If in addition A tq Cc(X) is norm dense in (A, IIa) then A is called a regular
tauberian Banach algebra on X (which coincides with [Hz], p. 100).

For example if J is any closed ideal of A(G) (or Ap(G)) and F Z(J) then J
[A(G)/IF] is a regular [regular tauberian] Banach algebra on G F [F] respectively
([HR], (39.15), [Hz], p. 101).

Let (to the end of this section) A be a regular Banach algebra on X and tp A*.
Define, supp o C X by: x supp o iff for any nbhd U of x there is some f A
such that supp f C U and (qg, f) 0. supp o is a (possibly void) closed set such
that supp (f o) C supp f N supp o if f A, o A* where (f .o, g) (tp, fg)
for g A, as is easily shown.

LetP C A* be a closed subspace. Lettr(P) {x X; x P}andPc
ncl { P; supp is compact}. If a X let Ep(a) ncl { P, a supp };
Wp(a) C(Za) + Ep(a); TIp(a) {p A**; 0 on Ep(a)}; TIMp(a)
{ TIp(a); 1 (, Zta) "--I111} if a tr(e).

Let J c A be a closed ideal with F Z(J) (J {0} may occur). In memory
ofM. M. Day, see [Da], define the set D1 (J) C F as in the introduction, with A(G)
replaced by A. Define Db(J) C F (b from "bounded") in the same way as DI(J)
except that (i) is replaced by (i)’ un (a) < sup Ilun [Ia

Clearly D1 (J) C Db(J) and if I C J are closed ideals in A with F Z(I)
Z(J) then DI(J) C DI(I) and Db(J) C Db(I) (since llulla/i > Ilulla/j).

A* is in WAP(A*) iff {u. ; u A, Ilull _< 1} is a relatively weakly compact
subset of A*. A is Arens regular iff A* WAP(A*). A is ENAR iff A*/WAP(A*)
contains a closed subspace which has A* as a quotient. Note that if A is separable
and {Xn} is dense in the unit ball of A, then t" A* o given by (tp)(n) (p, xn)
is an isometry, thus A* C . Hence if A*/WAP(A*) has as a quotient then A
is ENAR (since if q" A*/WAP(A*) -- is onto then X q-l(A*) has A* as a
quotient).

1. When D1 (J) is nonempty

DEFINITION. The set E C R is called symmetric (see [Me] or [GMc]) if there
are t > 0 such that tn > "n+l ti for all n, and E {-? eiti; 8i 0 or 1}. If in
addition 1 (ti+l/ti < o then E is called ultrathin symmetric.

In the next two lemmas, for closed F C R, let A(F) A(R)/IF. The following
is due to Y. Meyer ([Me], p. 246).
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LEMMA. Let E C R be ultrathin symmetric. Let fk A E) be such that
Ilfklla(e 1 for k > 1 and Ilfklla(m "-+ O for each compact K C E with 0 K.
Then fk contains a subsequence which is Sidon in A E).

We improve this as follows:

LEMMA 1. Let E Y-7 iti i O, 11 c R be ultrathin symmetric and a
E. Let uk A(R) be such that uk(a) < Ilullae _< B < o and Ilulla ---> 0
for all compact K C E with a q[ K. Then {uk} contains a subsequence which is
Sidon in A E).

Remark. This lemma also holds for sets E for which -E {-x; x E} is
ultrathin symmetric.

Proof. (i) Let a s Y’ ti. Then s E E and if u’(x) u(s x) for
u A(R) and x R then u" u and Ilu’ll Ilull, where Ilull denotes IlulIAR.
Also u le iff u’ Ie. Let K C E be compact and K’ s K. Then Ilu IIag
inf{llu/vll; o Itc} inf{llu’+v’ll; v I/} inf{llu’+vll; v I/,} Ilu’lla’,
sincev’(x) v(s--x) 0forx K’iffv(y) 0fory s-K’ K. In
particular Ilullae IlU’IIAE since E’ E. If K C E is compact and 0 ’ K then

then,Ilukllag Ilukllag’ "-- 0 since s ’ K’ s K. If vk (llukllaE)-luk
since B-1 < (llukllae)-1 < 1, Ok has a subsequence which is Sidon in A(E) by
Y. Meyer s lemma, hence so does {uk }. This proves the case a s.

(ii) Assume that a Y tn where {mj {n > 1; n q {hi is infinite. Consider
the set a + E0 where E0 {Y7 ej tmj ej 0 or 1}. Then E0 is ultrathin symmetric
and a + E0 C E. Let u’(x) u(a + x) if x R; thus Ilu’ll Ilull. Clearly, if
D C F then IF C Io and IlulIAF >_ IlulIAo. Hence IlUllaa/Eo inf{llu + o11; v
la+Eo} inf{llu’ / v’ll; v la+Eo} inf{llu’ / o’11; v’ leo} Ilu’llaeo.
And B > IlukllaE > Ilukllaa/Eo IlukllaEo > Uk(O) 1.
Ifnow K C E0 is compact then u Ir iffu’(x) u(x +a) 0forallx K-a

iff U’ IK-a. And Ilullaa/g inf{llu + o11; o Ia/} inf{llu’ + o’11; o
la+K} inf{llu’ + v’ll; v’ Ia+K-a} Ilu’lla<g).

If K C Eo is compact and 0 K then ]lU’lla<g) ]]uklla<a+g) -’-> 0 since
a ’ a + K. Hence we can apply Meyer’s lemma and get that some subsequence U’nk
is Sidon in A(Eo). Thus {Unk} is Sidon in A(a + Eo) since [lUllaa+eo) Ilu’llae0),
by the above. But B > Iluklla<e) > IlukllAa+eo). Hence {un} is Sidon in A(E).

(iii) Assume now that a Y tni where {n; nt {hi} is finite. Thus a Y-] tni +
YN+I tj with ni < N for < k. Define then the sequence {Sn} by si tni if < k
and si ti if/ > N + 1. Then the set E1 ii; 0 or 11 is an ultrathin
symmetric set and a Ysi. Also B > IIUkIIA<E) > Iluklla<E,) > uk(a) 1.
And if K C E1 is compact and a ’ K then K C E is compact and a ’ K. Thus
Iluk IIag) 0. Hence by case (i) there exists a subsequence {Ukj} which is Sidon in
A(EI), afortiori in A(E).
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ProofofRemark. If u’(x) u(-x) for all x, then Ilu’IIA(R) IlulIA(R). And
if F -E then (Ie)’ IF, thus ]]U’IIA(F) ]IUIIA(E). Use of Lemma for the
sequence {u’n} at -a 6 F will imply that {Un has a subsequence which is Sidon in
A(E).

THEOREM 2. Let G be any locally compact group J C A(G) be a closed ideal
and F Z(J). Assume that R (or T) is a closed subgroup of G and S C R is an
ultrathin symmetric set such that aSb C Ffor some a, b G.

If F is first countable at each x aSb, afortiori if F is metrisable then aSb C
D(J).

Remarks. (i) We show that if F is first countable at x aSb then x 6 D1 (J).
(ii) IfLemma holds for Ap(R) then this theorem holds for Ap(G), since only results
in [Hz] are used.

Proof Fix s 6 S and let Vn be open in G such that asb Vn, let cl Vn be compact
and Vn tq F be a neighborhood base in F at asb F (F is first countable at asb).
Let Un A(G) A be such that vn(asb) 1 IlVnll and supp v C Vn. If V is a
nbhd of asb there is some no such that F f) supp Vn C V f) F if n > no.

Let A’ A/J where for v A(G), v’ v + J and IIv’ll inf {llv / ull; u J}.
We show, using Lemma 1, that there is a subsequence v’,j which is Sidon in A’.

Let r" A(G) A(R) be the restriction map (rv)(x) v(x) if x 6 R. Then r
is onto and Ilrll < 1 by Herz [Hz], p. 92. Now g.a, rb defined by aU(X) u(ax),
rbu(x) u(xb) are isometric isomorphisms on A(G) ([Hz], p. 97) and garb rba.

Ifu .arbVn thenrun(S) vn(asb) IlVnl[ > IlrgarbVnll > g,arbl)n(S)
hence run (s) Ilrun II.

For closed L C G [L C R] let IL {V 6 A(G); v 0 on L}, [IR {u 6

A(R); u 0 on L}]. Let A(L) A(G)/IL, AR(L) A(R)/Iff and q" A(R) --AR (S) be the cannonical map (thus IIq _< 1.)
Let K C S be compact such that s ’ K. Then asb aKb C F. Hence there is

an no such that for n > no, Vn f) aKb 13; thus a-1Vnb-1 N K 0 (and asb V,).
Now supp Un sup arbVn C a-1Vnb-1. Hence if n > no, K N supp run C
K N a-1Vnb- 0 and Ilrun lIAR(K) 0. Hence Ilrun liaR(K) 0 for any compact
K C S such thats ’ K. We also note that qrun (S) > Ilqrunll >_ qru,(s); hence
qru, (s) Ilqrun II. We now apply Lemma and get that there is a subsequence
Un and some c > 0 such that otjqrunj >- c Ictjl for all k >_ and complex

Fix v A(G) and let u arbV. We claim that IIolla/g > Ilqrulla(s). This will
show that v’ is a Sidon sequence in A’ A/J One has Ilolla/J inf{llv + wll’wnp
J} > inf{lle.ar(v + w)ll; w e J} inf{llu + wll; w e earbJ} > inf{llu + wll; w e
IH} (where H a- Fb-) > inf{llru + rwll; w e IH} > inf{llru + wll; w e IR}
(since rIH C IRHR) > inf{llru + wll; w e Iff} (since S C a- Fb- fqR H fqR)
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nj A/J
and complex cj.

>_ c Iotj for all k >_ 1,

COROLLARY 2’. Theorem 2 holdsfor any set S C R expressible as a union S
et(x+Sa) where S or -Sa are ultrathin symmetric, x R and I is any index
set. In particular it holds if S is any symmetric set.

Proof. To make the additive and multiplicative notation consistent replace x,
by xS and -S by S-1. The proof of Theorem 2 works if S or S-1 are ultrathin
symmetric by the remark after Lemma 1. Let now S I..J1 xS C R with S or

S-1 ultrathin symmetric and aSb C F. If s S then asb axtSb C F for some
/. Use of Theorem 2 with S replaced by St shows that asb (ax)Sb C D1 (J).

Let S {Y eiti; ei 0, 1} be symmetric where o > tm > Y’n+l tj > 0 for
alln > 1. Letx E t,, andM {m > 1;m ’ {hi}}. IfM {mj}isinfinite
let sj tm. Choose sj Sl and if sjk was chosen let jk+l > jk be such that
sjk+ < (1/2)sj. then E(sj+/sj)2 < ocz and Sx {Eeksj, ek 0, 1} is ultrathin
symmetric such that x / Sx C S.

IfM is finite thenx E tni +YN+I tk wherenk < N. Choose then N+ 1 < k <

k2 < such that Yj(tk+/tk)2 < cz. Let Sx { ejt; ej 0, 1}. Then Sx is
ultrathin symmetric and x Sx C S. [::]

THEOREM 3. Let G be a locally compact group, H C G a closed nondiscrete
subgroup. Let J C A Ap(G) be a closed ideal, F Z(J) and a, b G. Let F
be metrisable.

Then inta/-/b F C D (J). In particular D1 (0) G ifG is metrisable, nondiscrete.

Remark. We show that for any closed F, if F is first countable at y F and
y inta/b F, then y DI(J).

Proof. Let V be open such that xo Vo N aHb C F, cl V0 is compact, cl
V,+ C V, for n > 0, and V, N F is a neighborhood base in F at x0. Let vn A
be such that v(xo) II0nll and supp v C V for n > 0 (see [Gr3], p. 379).
We show that vn A/J has no weak Cauchy sequence in A/J, where for v A,
we let v’ v + J A/J with o’ inf{ o / u II; u J}. It will follow from
H. Rosenthal’s theorem [Ro], p. 808, that Vn contains a subsequence Vnk such that

{Vn is a Sidon sequence in A/J; thus x0 D (J).
Assume that uk’ v’ is a weak Cauchy sequence in A/J and let P A*’,
0 on J} (A/J)*. Let r" Ap(G) --> Ap(H) be the onto restriction map; thus

rv(x) v(x) if x H, v A, Ilrll < 1, and rAp(G) Ap(H) (due to Herz [Hz]).
Let Ap(H)* and w J. Then

* * r*(arb[(earbVO) P], W) (alp, rearb(vOW)) (P, O) 0
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since if h 6 H and garb(vOw)(h) vo(ahb)w(ahb) 0 then ahb Vo NaHb C F
and then w(ahb) 0 since F Z(J). Thus rgarb(VoW) 0 Ap(H). Hence
e*ar[(earbVo), r*] P for all 6 Ap(H)*.

It follows that (e*ar[(earbVO).r*], u) (, rgarb(vOUk)) is a Cauchy sequence
of scalars for all 6 Ap(H)*. (Note that (, u) (, u’) for 6 P, u 6 A is well
defined.)
Now supp r(earbvoUk) C a-1Vob-1 fq H and the latter set has closure K which

is compact. If follows (from the Hahn Banach theorem) that rearb(voUk) is a weak
Cauchy sequence in APt(H) {u Ap(H); suppu C K}. Now by a joint result
of Cowling and ours [Gr5], p. 131, APt(H) is weak sequentially complete. Hence
rearb(vOUk) --+ Wo weakly in APt(H) (hence in Ap(H)) for some wo Ap(H). (If
p 2, then A(G) as a predual of a W* algebra is weak sequentially complete, hence
this result in [Gr5] is not needed.) Since )6h Ap(H)*, vo(ahb)uk(ahb) wo(h),
for all h 6 H.

If h0 a-lxob- a- Vob- fq H then vo(ahob)uk(ahob) 1; thus wo(a-lxo
b-1) 1. If a-lxob-1 hi a-1Vob- H, then xo 5 ahlb Vo aHb C F.

But Vn F is a base ofneighborhoods in F at x0. Thus for some ko, uk (ah b) 0 if
k > ko. Hence vo(ahb)u(ahlb) 0 w0(hl) ifk > k0. Butx0 6 VofqaHb C F
and x0 is not an isolated point of F since H is not discrete. It follows that wo Ap(H)
is not a continuous function, a contradiction, lq

Remark. We prove in Theorem 2[3] more than stated. Namely we show that
if x aSb [x inta/b F] and Vn A fq Cc(G) is any sequence satisfying (i)
Vn (x) 1 On II, and (ii) F f) supp vn Kn is such that for any nbhd V of x there
is some k such that Kj C V if j > k, then Vn has a subsequence which is Sidon in
A/J.

2. Extreme nonergodicity ofP (A/J)* at any a D (J)

If J C A(G) (or Ap(G)) a closed ideal with F Z(J) then A/IF, [J] are regular
Banach algebras on F [G F] respectively, hence so are Ap(G), A(G). This is the
reason for stating Theorem 4 in terms of regular Banach algebras.

THEOREM 4. Let A A(G) be a regular Banach algebra on the locally compact
space G. Let J C A be a closed ideal and Q c A* be a norm closed A module such
that Pc C Q c P A/J *

If a Db(J) [a DI(J)] then Q/WQ(a) has g. as a quotient and TIQ(a)
contains c [and TIMQ(a) contains .7" ].

Remarks. Specifically we show that there is an onto operator t" P --> such
that the into norm (and w*-w*) isomorphism t*: e P* satisfies t*c C TIp(a)
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[t* .jr C TIMp(a)]. FurthermoreQ WQ(a) also has as a quotient and if i" Q P
is the imbedding then i* restricted to TIp(a) is a norm (and to*- w*) isomorphism
such that i’TIp(a) TIQ(a)and i* TIMp(a) C TIMQ(a).

Proof. Let F Z(J) and 1)n E A be the required sequence for a Db(J)
[a 6 D1 (J)] (see definition). Denote for v 6 A, v’ v + J and IIo’ll Ilvlla/. Let
Vn {x _. G; Vn(X 0}.
By possibly taking a subsequence again denoted by vn we can assume that F N

cl Vn+l C F N Vn, Vn F is a nbhd base in F at a, and cl Vn is compact.
If v e A, u E J, and P, (v + u) v , hence (v’. , w’) (, v’w’)

if w’ A/J is well defined and v’. _< v’ II. Thus P is an A/J module and
PCA*.

Define t’P --+ e by (t)(n) (, vn) (, Vn). Since Ilvnll is bounded,
(P) C e and IItll sup I(, vn)l -< B, where B sup Vn II. [Hence

Iltll _< if a e D1 (J)]. But tP . Since if b (bn) with norm Ilbll define
nthe linear functional Fo on lin {v; n > 1} C A/J by (Fo, Y’7 ctivi) YI aibi.

then I(Fo, Y7 otiv)l < ,n Ibil <_ Ilbll I,1 _< Ilbll(/d)ll " tivll, where d
is the constant for the Sidon sequence {v’, in A!J. By the Hahn Banach theorem
there is an extension 0 E P (A/J)* of F0. Then (to)(n) (Fo, v’,) bn, thus
to=b.
We show now that Ep(a) C co and Wp(a) C c.
Let Pbe such thata ’ supp and let Uo be a nbhd of a, withcl U0

compact and such that (, u) 0 if u A and supp u C U0. Let Vo A be such
that vo on U0 and supp v0 is compact (A is regular). There exists k0 such that
V, F C U0 F C U0 if n > k0. Now K, supp(voVn Vn) C Vn-1 U0 since
U0 is open.

But KnfqF C (Vn-1 Uo)f3F Vn-I NF UoF 0ifn > k0+ and Kn is
compact, since supp vn is compact. It follows that VOVn vn is in the smallest closed
ideal JF whose zero set is F and JF C J (see [HR], (39.18)). Thus vov Vn J and
(, Vn) (, voVn) 0 if n > k0 + 1, since supp v0v C U0. Hence (, v) -- 0.
Now { E P; a ’ supp} is norm dense in Ep(a) and sup I]onll < oz. Thus
(, Vn) -- 0forall 6 Ep(a) andtEp(a) C co. But (t,ka)(n) Vn(a) 1. Thus
Wp(a) C c, and Wp(a) C t-l(c).
Hence P/Wp(a) has P/t-l(c) /c as a quotient.
If q e* is such that 4 0 on co C then t*q 0 on Ep(a) since

t(Ep(a)) C co. Thus t*c C TIp(a). [If a 6 DI(J)and 4 6 .,r, thus
11411 4(1)and 4 0 on co, then 1 (t*4, .) < IIt*4ll _< 11411 1. Since

t*4 TIp(a), t*(.’) C TIMp(a)]. Now t’P --+ is open since is onto,
hence t{ 6 P; IIll _< 1} contains a ball B8 of radius > 0 around 0. Thus
IIt*4ll sup {(4, t); I111 _< 1} >_ sup {1(4, b)l; Ilbll _< } 11411. Thus 611411 _<
IIt*ll _< BI4II for all 4 6 e* and t*"* P* is a w*-w* continuous norm
isomorphism into such that t*(c) C TIp(a) [t* C TIMp(a)].
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Consider the Q/WQ(a! case where Pc c Q c P. Let q" e ---> e/c be the
canonical map. Let u fq Cc(G) be such that u on some nbhd U of a and
P. Letv A(G)besuchthatsuppv C U. Then (-u., v) (dp, v-vu)

(, 0) 0; thus a supp( u ) and u. p Ep(a).
Hence t(u dp) co and qt(u ) qt(). But u Pc C Q since

suppu c suppu. Thus qt(Pc) qt(Q) qt(P) g,/c.
Letnowr be q restricted to Q; thusr qtfor Q. Since EQ(a) c Ep(a)

we have rEQ(a) C qtEp(a) {0}. Now ,Sa Pc C Q and r)a qt(Ja) 0

since t).a 1 C. Thus r WQ(a) {0} and WQ(a) C r-l(0). But rQ qtQ
e/c; thus Q/r-1 (0) , e/c (isomorphism). But e/c [hence Q/r-1 (0)] contains
an isometric copy Y [Y0] ore (see [Sa] for e/co or [Gr2], p. 161 for e/c). And since
e is injective [LT] there exists a bounded projection P0 of Q/r-l(O) onto Y0. If
P: QwQ(a) -- Q/r- (0) is the canonical quotient map then PoP maps QwQ(a)
onto Yo e.

Let i: Q P be the inclusion map iq for all Q; thus qti r
if Q. We claim that i* restricted to TIp(a) is a w*-w* continuous norm
isomorphism such that i*(TIp(a) TIQ(a) and i*(TIMp(a)) C TIMQ(a). In
fact let uo A N Cc(G) be fixed such that u0 on some open U0 with a

Uo and Iluoll d > 0. Let p TIp(a) and o P be such that I1oll
and (ap, o) > IIPll . Then uo. Po Pc C Q and Iluo, oll _< d. Hence
(i*p, uo. o) (, uo. o) (, o) since uo. o Po Ep(a). Thus
(i*, d-uo o) > d-(IIPll e) and IIPll >_ IIi*Pll >_ d-lllll, if TIp(a).

Ifnow EQ(a) c Ep(a) and ap TIp(a) then (i*p, ) (ap, ) 0 since
0 on Ep(a). Thus i’TIp(a) C TIQ(a).

But i’TIp(a) TIQ(a) since if TIQ(a) then 1 TIp(a) defined by
0P, ) (, uo) for in P satisfies i* p. This holds since if Q then
(i*, ) (, uo ) (, ), since uo. P EQ(a). If P and a ’supp then a supp uo. and uo. P EQ(a). Thus 0Pl, ) (P, uo. ) 0.
Since 1 P*, 1 0 on Ep(a), hence 1 TIp(a).

If, in addition, e TIMe(a)then (i*, .a) (, .a) IIPll >-IIi*Pll >-
(i*ap, ’Sa) 1.

But t*" e* -- P* is a w*-w* continuous norm isomorphism into such that
t*(c) C TIp(a) [t* C TIMe(a)]. Thus i’t* restricted to c- is a w*-w* con-
tinuous isomorphism into TIQ(a) [such that i’t*(., C i* TIMe(a) C TIMQ(a)].

PROPOSITION 5. Let G be a locally compact group and A A(G) the Fourier
algebraofG or A Ap(G). LetP C A* be anormclosed A module and F tr(P).
Then WAPp C CZta " Ep(a) We(a)for all a G.

Proof. The proof involves routine arguments such as Prop. 9 and Prop. 4 of [Gr4]
and is left to the reader. D
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In the following, G is an arbitrary locally compact group, J C A A(G) is a
closed ideal with Z(J) F, and Q is a norm closed A submodule of PM(G) such
that Pc C Q c e A/J *

COROLLARY 6. Assume that R (or T) is a closed subgroup of G, S C R (or T)
a symmetric set such that aSb C Ffor some a, b G and F is metrisable. Then

(,) Q/WQ(x) (afortiori Q/WAPQ and Q/M(F)) has o as a quotient and

TIMQ(x) contains ." for all x a Sb.

Consequently A/J is ENAR ifG is second countable nondiscrete.

In the next corollary, A A(G) can be replaced by Ap(G). It improves part of
Theorem 6 in [Gr5], with a much simpler proof.

COROLLARY 7. Assume that H is a closednondiscrete subgroup ofG andintaHbF
for some a, b G, where F is metrisable.
Then (,) holds truefor all x intaHbF.
Consequently A/J is ENAR ifG is second countable nondiscrete.

Proofof Corollaries 6 and 7. If x aSb [x intat4bF] then x DI(J)by
Corollary 2’ [Theorem 3]. Hence by Theorem 4, (,) holds for such x.

But by Prop. 5, WAPQ c wQ(x) holds true. Taking Q P we get that P/WAPp
has e as a quotient.

If, in addition, G is second countable then A is norm separable and since P
(A/J)*, A/J is ENAR.

Remark. (i) In Corollary 6 it is enough that the relative topology of F is first
countable at each x 6 F.

(ii) If F C T is any perfect compact Helson set [He] then A(F) A(T)/IF
C(F) is Arens regular as is well known (see more such F in Section 3).

(iii) If P C A* is a w* closed A module and r(P) contains a metrisable compact
perfect set then Pc and P have as a quotient if G is amenable as discrete, even if
A Ap(G) by our Theorem 2 in [Gr5].

COROLLARY 7’. Let A Ap(G), J C A a closed ideal such that Db(J)
Then AJ is ENAR provided G is second countable.

Question. Let J C A(R) be a closed ideal such that Db(J) . Is then A/J
Arens regular?
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3. The abelian case

Let Us" M() -- B(G) [gr: LI() --+ A(G)] denote Fourier Stiltjies [Fourier]
transform. Thus -s(x) = f x (x)d(x) for x 6 G, see [Ru] or [HR]. For
be M(), g L(), f LI() let beY(E) be(E-l), fv(:) f(X-1),
f f d(gbe) f fg dbe, where E C is a Borel set. PM(G) is a B(G) module by
(u do, v) (do, uv). It is known that

(*) -,[(gVsbe). do] bey, .T’*do if be e M(G), do PM(G).

To pro.ve (,) note that (h, be f) (bey , h, f) if f e L (), h e L(),
be e M(G), by Fubini’s theorem (or [Pi], p. 83). Hence (J:’*[(Y:’sbe)" do], f)
(do, .T’(be, f)) (bey, .T’do, f).

If P C PM(G) and .T*P P then B(G) P C P iff M(G) P C P as readily
follows from (,) Thus P is a norm [w*] closed B(G) module iff P is a norm
[w*] closed M(G) module, respectively since .T* is an onto isometry and w*-w
homeomorphism.

DEFINITION. Let P C L () be a norm closed M() module, P .T’*-I p,
and a G. We defined the spaces Dp(a), Vp(a), Dp(a) Vp(a) in the introduction.

Let IMp(a) { P*; (, ) IIPlJ, P 0 on Dp(a)}. Note that 0
on Dp(a) iff ap(hx) a(x)q/(h) for all X 6 G and h 6 P. Let a(P) G fq P.

PROPOSITION 8. Let P C PM(G) be a norm closed B(G) module, a 6 G and
.*P-- P. Thenf*Ep(a)= Ep(a),.*Dp(a)= Dp(a),hence*Vp(a)= Vp(a)
and*Wp(a) Wp (a).

Proof If do P, be M(G), one gets from (,) that

(**) ."*[(.fi"Sbe)a-’" (I)] .T’*[grs (abe) do] (abe)v , .T’do (fiber), .T’do.

v 8x-’, we getTake be 8x, so that 9rs 6x -, and let h 9r* do. Then, since 8x

,’[(ff2"S(x)a-, (I)] .fi"*[(j)a-I O] (aSx)v , h (a(X)Sx)v h a(x)hx

Hence .T*{do ,a-’" (I); do P, X G} .T*{do ()a-’" do; do P, X e G}
{h a(X)hx; h P, X G}. Thus .T’*Dp(a) Dp(a); hence .T*Vp(a) Vp(a).

Let FM {be M(); be > 0, be(G) 1}, F1 FM f3 LI( {0 < f
LI(); f f dx 1}. Then Fv El. By Prop. of [Gr5],

(* * *) Ep(a) ncl lin {do l)a-, dO; do . P, v SA (e)}

where S(x) {u 6 B(G); 1 u(x) Ilull} and SA(X) S(x) ("l A(G), since
(SA (e))a SA (a) (by [Ru], (1.2:4)), or see the following lemma.
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Clearly .T’* F1 SA (e) and .T’* Va-, I); I) E P, v SA (e) .* q

(.T’f)a- ; P, f F1} (by (**)) {h (fifv), h; h P, f F}
{h- (fif)*h; f E F, h 6 P}. Hence *Ep(...a) Ee(a)and*Wp(a) We(a)
since .T’* is an isometry of PM(G) onto L(G).

We prove (, ,) and more in the next result.

LEMMA 8’. Let P C PM(G) be a norm closed B(G) module. Then Ep(a)
ncl {-v.; 4p p, v Si(a)}fori 1, 2, 3 where Sl(a) Sa(a), S2(a) S(a),
S3(a) {v 6 B(G); v(a) }. In addition ncl can be replaced by ncl lin.

Proof Note that S(a) C S2(a) C S3(a). Let E P with a ’ supp . Let
v 6 S (a) be such that supp vN supp 0, thus supp v 0. Hence v 0
and v. , which proves Ep(a) C ncl { v. ; 6 P, v 6 $1 (a)}.

Let 6 P and vo A fq Cc(G) be such that vo on a nbhd V of a. Then
a ’ -vo.and-vo. Ep(a) (see Prop. 5). Thus ifu 6 S3(a) then
(-u.)-vo(-u.) Ep(a). But vo.(-u.) (vo-vou). Ep(a). In
fact (vo-uvo)(a) 0andsince {a} is a synthesis set [Hz] let Vn AfqCc(G),n > be
such that Vn 00n anbhd Vn ofa and IlOn--(O0--uo0) --+ 0. Butthena
and Vn’ Ep(a). Thus IlOn’-(Vo-Uv0)’ll--> O, hence(vo-vou). Ep(a)
and u Ep(a). Hence Ep(a) D ncl { v. ; 6 P, v E S3(a)}.
Now { 6 P; a ’supp } (hence Ep(a)) is a linear space, from the definiton of

support.

PROPOSITION 9. Let P C L(G) be a norm closed M(G) module, a rr(P).
Then De(a) C ffe(a),Ve(a) C We(a)and TIMe(a) C IMe(a).

IfP C UC(G) then De(a) Ee(a), Ve(a) We(a),andlMe(a) TIMe(a).

Proof. Ifx 6 G thenu Ux is an isometric homomorphism of B(G) onto B(G)
which maps A(G) onto A(G), see [Ru], (1.2.4) and (1.3.3). Also S(X)SA (X) C SA (x).
If u S(e), v SA (e), P, then Ua- (UV)a-t + Va- (Ua-
) (Ua- ) Ep(a) by Lemma 8’ and since P is a B(G) module. It follows
that Ep(a) ncl lin { Va- ; v Sa(e), P} ncl lin { Ua-

u S(e), 6 P} D ncl lin { Xa- ; X G, P} ,----- Dp(a). And by
Proposition 8, De(a) C Ee(a). If a 6 or(P), thus E P then, TIMe(a)= {ap
P*; 0P, fi) 11711, P 0 on Ee(a)} C IMe(a) {ap P*; (ap, )
P II, P 0 on De (a) }.
Assume in addition that P C UC(). Clearly P f’*-P C .T’*-Iuc()

(PM(G))c. Let 6 P. Then vo. 0 for some vo A(G), and o E PM(G).
Let uo 6 Sa(e). We show that I, (U0)a 6 Dp(a); hence by (, ,), Ep(a)
Dp(a). Let u be a net in Co{x; ) G} C S(e) (where Co denotes convex hull)
such thatu uo in the w* topology of B(G) (uo is continuous and positive definite).
Then, by a theorem of Leinert and ours [GrL], II(u u0)oll ---> 0 for all v A(G).
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But ,)(a-’ t E Dp(a), hence (uot)a-, t . Dp(a). Thus I1(
(not)a-’" ) (t (UO)a_,. )11 _< II((uot)a-’ (U0)a-’)O01111011 0, since
II((uot)a-1- (U0)a-l)o011 II(uot--Uo)(OO)a-’ll O. Hence --(U0)a- " Dp(a)
since Dp(a) is norm closed. Thus TIMp(a) IMp(a) if h P. E!

COROLLARY. 10. Let G be a cally compact abelian, group, P [Q] a w* [norm]
closed M(G) submodule ofL(G) such that UCp(G) C Q c P and F a(P)
GNP, aG.

Assume that R (or T) is a closed subgroup ofG, S C R (or T) a symetric set such
that aS C F and F be metrisable.

(i) Then Q/WQ(X) (afortiori Q/Va(x), Q/WAPQ and Q/ncl B(G, F)) has
as a quotient and both TIMQ(X) and IMa(x) contain " ,for all x aS.

(ii) IfG is second countable nondiscrete then L()/(P)o is ENAR.

Remark.
0ifg E P}.

B(, F) {Us/Z;/z e M(F)} and (P)o {f e L(); (g, f)

COROLLARY 11. Let G, P, Q be as above and assume that H C G is a closed
nondiscrete subgroup such that intaH F 0 and F is metrisable.

Then [(i)] and (ii) of Corollary 10 hold or each x intaH F].

Proofof Corollaries 10 and 11. Let Q ’*- Q. By Proposition 8, Wp(x)
.*- Wp(x). Let x aS [x intaHF] respectively. By Corollaries 6 and 7,

Q/WQ(X) has e as a quotient and TIMQ(x) contains . Since .T’*: Q -- Q
is an-isometry onto and *wQ(x) Wa(x)we get that Q/WQ(X) (and, since

Va(x) C Wa(x) by Prop. 9, Q/VQ(X)) has as a quotient and TIMQ(X) (and,
since IMp(x) TIMQ(X) by Prop. 9, IMa(x) contains ."

If/z M(G), f LI(), then(’*Z/z, f) ff f(x)X("ydxdlz(y) (’slZ,
f); hence ’*)/z .T’s/Z in L(G). Thus ’*)M(F) B(G, F) But by [Gr5],
Prop. 3, M(F) ncl M(F) C WQ(X). Thus *M(F) ncl B(G, F) C Wa(x).
Thus Q/ncl B(G, F) has as a quotient. Furthermore by Prop. 5, WAPQ c wQ(x)
and since it is known that .*WAPQ WAPQ we get that Q/WAPQ has as a
quotient. This proves (i). Part (ii) is proved as in Corollary 6 or 7. El

DEFINITION. Let G be a separable metric 1.c.a. group. The closed F C G is
an ENE set if for each w* [norm] closed M(G) module P [Q] of L(G) with
a (P) G N P F and UCp C Q c P, Q is ENE at each x F (i.e., Q/Wa (X)
has as a quotient) and TI_MQ (x) contains .

Let (Otl Ctn), fl (fl fin) be in Rn. If S {t; S’} where
S’ C R is ultrathin symmetric then S is called an ultrathin symmetric set in Rn. Since
R {tt; E R}, S + fl is ENE in Rn (Corollary 10). Any closed F which is a
union of translates of sets Sot where Sot or -Sot are ultrathin symmetric in Rn, is ENE
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(Corollaries 2’ and 10). Afortiori any closed F C Rn which is a union of nontrivial
convex subsets of Rn is ENE.

And yet any Kahane curve in Rn n >_ 2 is not ENE (at any point on it). If n > 2k
there exists a k dimensional manifold F C Rn G which is a Helson set. Thus if
P w* cl lin F C L(G)then P Wp(x)= Vp(x)= B(G, F)for all x F
(see [Mc], [Mu]).

Problem. Characterize closed ENE subsets of Rn (of any 1.c.a. group G).
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