DAY POINTS FOR QUOTIENTS OF THE FOURIER ALGEBRA A(G), EXTREME NONERGODICITY OF THEIR DUALS AND EXTREME NON ARENS REGULARITY

EDMOND E. GRANIRER To the Memory of Mahlon M. Day

Introduction

Let J be a closed ideal of the Fourier algebra A = A(G) of the metrisable locally compact group G, with identity e, and $F = Z(J) \subset G$ its zero set. G need not be abelian, yet the results that follow are new even if G = R or T (the real line or the torus). Let $PM(G) = A(G)^*$.

Call $a \in F$ a Mahlon M. Day point of J and let $D_1(J)$ be the set of all such, if there is a sequence $u_n \in A \cap C_c(G)$ such that (i) $1 = u_n(a) = ||u_n||$, (ii) for any neighborhood V of a there is some k such that $F \cap \text{supp } u_n \subset F \cap V$ if $n \ge k$ and (iii) $\{u_n\}$ is a Sidon sequence in A/J, i.e. there is some d > 0 such that $||\sum_{i=1}^{n} \alpha_i u_j||_{A/J} \ge d \sum_{i=1}^{n} |\alpha_j|$ for all complex α_j and $n \ge 1$.

The usefulness of this concept comes from our Theorem 4. It implies that if $D_1(J) \neq \emptyset$ then $P = (A/J)^*$ is extremely nonergodic at each $a \in D_1(J)$ and (if G is separable metric) the Banach algebra A/J is extremely non Arens regular. Namely $P/W_P(a)$ (hence P/WAP_P) has ℓ^{∞} as a quotient and the set of topologically invariant means on P at a, $TIM_P(a)$, contains the big set \mathcal{F} , hence card $TIM_P(a) \ge 2^c$.

Hence, if we discover points in $D_1(J)$, we get big sets $TIM_P(a)$. We do that in Theorems 2 and 3 and then apply the results to arbitrary G in Cor. 6,7. In Ch. III we apply the results to abelian G, i.e. to w^* closed translation invariant subspaces P of $L^{\infty}(\widehat{G})$ with $\sigma(P) = G \cap \overline{P} = F$, where $\overline{P} = \{\overline{f}; f \in P\}$.

A very mild application of this to second countable *abelian* G and even to G = T is the following: Let $P \subset \ell^{\infty}(Z)$ (or $L^{\infty}(\widehat{G})$) be a w^* closed translation invariant space such that $\sigma(P) = G \cap \overline{P} = F$. If F contains, or is, an ultrathin symmetric set F_0 ([GMc] p. 333) (or the Cantor 1/3 set), then the set of topological invariant means on P, $TIM_P(e)$ [and in fact $TIM_P(x)$], contains the big set $\mathcal{F} = \{\varphi \in \ell^{\infty*}; 1 = (\varphi, 1) = \|\varphi\|, \varphi = 0 \text{ on } c_0\}$ (which contains $\beta N \sim N$) [for each $x \in F_0$]. Hence card $TIM_P(e) = 2^c = \text{card } P^*$.

If however F is a perfect Helson (or compact scattered) S subset of T or R and $e \in F$ then card $TIM_P(e) = 1 = \text{card } IM_P(e)$.

© 1996 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received January 20, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 43A30, 43A22, 42B15, 22D15; Secondary 42A45, 46J20, 43A07, 44A35, 22D25.

This new result for $P \subset \ell^{\infty}(Z)$ with $\sigma(P) = F_0$ cannot be obtained by the usual methods used to prove that if $Q = \ell^{\infty}(Z)$ then $TIM_Q(e)$ is big. Since P is not a pointwise subalgebra of $\ell^{\infty}(Z)$, finite intersections of translates of sets $A \subset Z$ which are building blocks for elements of TIM on $\ell^{\infty}(Z)$ do not play the same role for P as they play for $\ell^{\infty}(Z)$ (see Paterson [Pa], Ch. 7).

Again, let $J \subset A$, Z(J) = F, $P = (A/J)^*$ be as above. Let $H \subset G$ be a closed nondiscrete metrisable subgroup. We show that (the interior of $F \cap H$ in H) int_H $F \subset D_1(J)$. Hence $\mathcal{F} \subset TIM_P(x)$ and card $TIM_P(x) \ge 2^c$ if $x \in int_H F$ (and this holds even for $P \subset PM_p(G) = A_p(G)^*$ à la Herz [Hz].

If G = H = F (thus P = PM(G)), x = e and G is separable metric, this is due to Ching Chou [Ch2] (for beautiful definitive results see Z. Hu [Hu] and also Lau-Paterson [LP]).

Our results also improve results of Fournier and Cowling in [FC] in showing the existence and prevalence of convolution operators on $L^2(G)$ ($L^p(G)$) with "thin" support which are far from being 'ergodic' at $a \in D_1(J)$ (a fortiori very far from being convolution by a bounded measure). They also improve and simplify results of ours in [Gr5] (see more attributions in [Gr5], p. 53).

We delineate now in more detail the results we obtain in this paper.

Restricting our results to metrisable G, in Section 1 we get:

THEOREM 2. Let $J \subset A(G)$ be a closed ideal and F = Z(J). Assume that R or T is a closed subgroup of G and $S \subset R$ (or T) is an ultrathin symmetric set such that $aSb \subset F$ for some $a, b \in G$. Then $aSb \subset D_1(J)$.

THEOREM 3. Let J be a closed ideal of A = A(G) (or of $A = A_p(G)$ à la Herz [Hz]) with F = Z(J). Let $H \subset G$ be a closed nondiscrete subgroup. Then $int_{aHb}F \subset D_1(J)$ in particular $D_1(0) = G$. ($int_{H_0}F$ is the interior of $F \cap H_0$ in H_0).

In Theorem 2 we improve a result of Y. Meyer [Me] for A(R) and then using theorems of Herz [Hz] lift the result to A(G).

In Theorem 3, while F is not as thin as in Theorem 2, the result holds for all $A_p(G)$, $1 [Hz], where <math>A_2(G) = A(G)$. Methods in abelian harmonic analysis fail in this case, and a global approach is taken.

If $p \neq 2$, $A_p(G)$ is very different from $A_2(G)$. Since if G_1 , G_2 are compact abelian and $A_p(G_1)^*$, $A_p(G_2)^*$ are isometric as Banach spaces then G_1 , G_2 are isomorphic as topological groups by Benyamini and Lin [BL]. While $A_2(G)^*$ is isometric to $\ell^{\infty}(Z)$ for all infinite metric compact abelian G.

Let A = A(G) [or $A_p(G)$]. If $\Phi \in A^*$ let supp Φ , be the support of Φ as an element of A^* , (see sequel and [Hz], p. 120). If $P \subset A^*$ let $P_c = \operatorname{ncl}\{\Phi \in P; \text{ supp } \Phi \text{ is compact}\}$ (where ncl is norm closure). If $a \in G$ let $E_P(a) = \operatorname{ncl}\{\Phi \in P; a \notin \operatorname{supp} \Phi\}$; $W_P(a) = C(\lambda \delta_a) + E_P(a)$, where $(\lambda \delta_a, v) = v(a)$ if $v \in A$. Let $\sigma(P) = \{x \in G; \lambda \delta_x \in P\}$. Let $TIM_P(a) = \{\psi \in P^*; 1 = (\psi, \lambda \delta_a) = \|\psi\|, \psi = 0$ on $E_P(a)$ }; $WAP_P = P \cap WAP$ where $\Phi \in A^*$ is in WAP iff $\{u \cdot \Phi; u \in A, \|u\| \le 1\}$ is relatively weakly compact in A^* , where $(u \cdot \Phi, v) = (\Phi, uv)$ for $u, v \in A$. We prove in Section 2

THEOREM 4. Let G be arbitrary, J a closed ideal of A = A(G), or $A_p(G)$. Let $\mathbf{Q} \subset A^*$ be a norm closed A module such that $\mathbf{P}_c \subset \mathbf{Q} \subset \mathbf{P} = (A/J)^*$ and $D_1(J) \neq \emptyset$.

Then $Q/W_Q(x)$ (a fortiori Q/WAP_Q and Q/M(F)) has ℓ^{∞} as a quotient and $TIM_Q(x)$ contains \mathcal{F} , (i.e., Q is ENE) for each $x \in D_1(J)$.

Consequently A/J is ENAR if G is second countable nondiscrete.

Here $\mathbf{M}(F) = \operatorname{ncl}\{\lambda\mu; \mu \in M(F)\}$ where $(\lambda\mu, v) = \int v d\mu$ for $v \in A$. The Banach algebra A/J is Arens regular if $P = WAP_P$. A/J is extremely non Arens regular (ENAR) if P/WAP_P is "as big as P" namely if it contains a subspace which has P as a quotient. We abbreviate the conclusion of Theorem 4 about Q writing that Q is extremely nonergodic (ENE) at each $x \in D_1(J)$.

Assume, for simplicity, in Corollaries 6 and 7 that G is metrisable.

COROLLARY 6. Let A = A(G) and $J \subset A$, $P = (A/J)^*$, $P_c \subset Q \subset P$, $\sigma(P) = F$ be as in Theorem 4. Assume that R (or T) is a closed subgroup of G, and $S \subset R$ (or T) an ultrathin symmetric set (see Section 1) such that $aSb \subset F$, for some $a, b \in G$.

Then Q is ENE at each $x \in aSb$. Thus A/J is ENAR if G is second countable nondiscrete.

The reader should note that even the fact that $Q \neq W_Q(x)$ is a nontrivial result. If G = T and $F \subset T$ is ultrathin symmetric, it has been proved by Woodward [Wo1] that $P \neq W_P(x)$ for some $x \in F$. Corollary 6 implies that $P/W_P(x)$ has even the big nonseparable space ℓ^{∞} as a quotient for each $x \in F$. Corollary 6 also improves Theorem 12 in [Gr5].

COROLLARY 7. Let A = A(G) or $A_p(G)$, $1 and <math>J \subset A$, $P = (A/J)^*$, $P_c \subset Q \subset P$, $\sigma(P) = F$ be as in Theorem 4. Assume that $H \subset G$ is a closed nondiscrete subgroup, $a, b \in G$ and $\operatorname{int}_{aHb} F \neq \emptyset$.

Then Q is ENE at each $x \in int_{aHb}F$. Thus A/J is ENAR if G is second countable nondiscrete.

Corollary 7 improves a particular case of Theorem 6 in [Gr5] with a simpler proof. It (and Corollary 6) show the prevalence of convolution operators $\Phi \in \mathbf{P}$ on $L^p(G)$ (on $L^2(G)$) which are nonergodic at certain $x \in \sigma(\mathbf{P})$, i.e. such that $\Phi \notin W_{\mathbf{P}}(x)$ (a fortiori $\Phi \notin \mathbf{M}(F)$). (See [Gr5], p. 53.) Parts of Corollaries 6 and 7 have been improved to nonmetrisable G, H, F in [Gr6].

In Section 3 we apply the above machinery to locally compact abelian (lca) groups G. Let \mathcal{F} : $L^1(\widehat{G}) \to A(G)$ [\mathcal{F}_S : $M(\widehat{G}) \to B(G)$] denote Fourier [Stiltjes] transform. Thus \mathcal{F}^* : $PM(G) \to L^{\infty}(\widehat{G})$ is an isometry and w^*-w^* homemorphism.

If $f \in L^{\infty}(\widehat{G})$ let $\Sigma(f) = G \cap w^* \text{cllin}\{\overline{f}_{\gamma}; \gamma \in \widehat{G}\}$, where $f_{\gamma}(\chi) = f(\gamma \chi), G$ is the dual of \widehat{G} , and lin, w^* cl denote linear span, w^* closure, respectively.

Let $P \subset L^{\infty}(\widehat{G})$ be a norm closed $M(\widehat{G})$ module thus $M(\widehat{G}) * P \subset P$. This is the case iff $P = \mathcal{F}^{*-1}P$ is a B(G) module, i.e., $B(G) \cdot P \subset P$ where $(u \cdot \Phi, v) = (\Phi, uv)$ for $u \in B(G)$ $v \in A(G)$. Then define

$$D_{\mathbf{P}}(a) = \operatorname{ncl} \inf\{\Phi - (\chi)_{a^{-1}} \cdot \Phi; \ \chi \in G, \ \Phi \in \mathbf{P}\}; \ V_{\mathbf{P}}(a) = C(\lambda \delta_a) + D_{\mathbf{P}}(a).$$
$$D_{P}(a) = \operatorname{ncl} \inf\{f - a(\chi)f_{\chi}; \ \chi \in \widehat{G}, \ f \in \mathbf{P}\}; \ V_{P}(a) = C\overline{a} + D_{P}(a)$$

$$E_P(a) = \operatorname{ncl} \inf\{f - (\bar{a}h) * f; 0 \le h \in L^1(\widehat{G}), \ \int h d\chi = 1, \ f \in P\}; \ W_P(a) = C\bar{a} + E_P(a).$$

The next paragraph shows the relevance and need of the above definitions. It should be reread before going through Section 3.

The space $E_P(a)$ is of interest in commutative harmonic analysis since $E_P(a) =$ ncl $\{f \in P; a \notin \Sigma(f)\}$ whenever $P \subset L^{\infty}(\widehat{G})$ is a norm closed $M(\widehat{G})$ submodule (Lemma 8'), and hence the reason for this definition. In this case $\mathcal{F}^*E_P(a) = E_P(a)$ and $\mathcal{F}^*W_P(a) = W_P(a)$, $\mathcal{F}^*D_P(a) = D_P(a)$ and $\mathcal{F}^*V_P(a) = V_P(a)$ (Lemma 8). It so happens then that $D_P(a) \subset E_P(a)$, $V_P(a) \subset W_P(a)$ with equality if $P \subset UC(\widehat{G})$ (UC from uniformly continuous) (see Prop. 9), a fortiori if $\sigma(P) = G \cap \overline{P}$ is compact where $\overline{P} = \{\overline{f}; f \in P\}$. If $a \in \sigma(P)$ let

 $TIM_P(a) [IM_P(a)] = \{ \psi \in P^*; 1 = (\psi, \bar{a}) = \|\psi\|, \psi = 0 \text{ on } E_P(a) [on D_P(a)] \}$

(thus $TIM_P(a) \subset IM_P(a)$) respectively. If a = e, these become the set of honest to goodness topologically invariant [invariant] means on P. Also $TIM_P(a) = IM_P(a)$ if $P \subset UC(\widehat{G})$ (by Prop. 9).

In the next two corollaries let P[Q] be a w^* [norm] closed $M(\widehat{G})$ submodule of $L^{\infty}(\widehat{G})^*$ such that $UC_P \subset Q \subset P$, where $UC_P = UC(\widehat{G}) \cap P$. Thus $P = (L^1(\widehat{G})/J)^*$ for a unique closed ideal $J \subset L^1(\widehat{G})$, with $\sigma(P) = G \cap \overline{P} = \{x \in G; (\mathcal{F}f)(x) = 0 \text{ if } f \in J\}.$

Q is called ENE at x if $Q/W_Q(x)$ has ℓ^{∞} as a quotient and $TIM_Q(x)$ contains \mathcal{F} .

COROLLARY 10. Let G be a metrisable l.c.a. group $UC_P \subset Q \subset P \subset L^{\infty}(\widehat{G})$ and $\sigma(P) = F$. Assume that R or T is a closed subgroup of G, $S \subset R$ (or T) an ultrathin symmetric set such that $aS \subset F$ for some $a \in G$.

Then Q (hence P and UC_P) are ENE at each $x \in aS$.

COROLLARY 11. Let G, P, Q, F be as in Corollary 10. Assume that H is a nondiscrete closed subgroup and $a \in G$ be such that $\operatorname{int}_{aH} F \neq \emptyset$.

Then Q (hence P and UC_P) are ENE at each $x \in int_{aH}F$.

If $B(\widehat{G}, F) = \mathcal{F}_S M(F)$ then ncl $B(\widehat{G}, F) \subset WAP_Q \subset V_Q(x) \subset W_Q(x)$ for all $x \in F$. A consequence of Corollary 10 [or 11] is that $Q/V_Q(x)$, Q/WAP_Q , $Q/\operatorname{ncl} B(\widehat{G}, F)$ have ℓ^{∞} as a quotient and $IM_Q(x) \supset TIM_Q(x)$ both contain \mathcal{F} for all $x \in aSb$ [$x \in \operatorname{int}_{aHb} F$] respectively. Furthermore, if G is second countable, then the Banach algebra $L^1(\widehat{G})/J$ is ENAR.

1. It has been proved by J. P. Kahane that there exist continuous [smooth] curves $F \subset R^2$ [$F \subset R^n$, $n \ge 3$] which are Helson sets (see [Mc], [Mu] or [Ka 1,2,3]). Thus if $P = w^*$ cl lin $F \subset L^{\infty}(\widehat{G})$ where $F \subset G = R^n$ [R^2], then $P = W_P(x) = V_P(x) = B(\widehat{G}, F)$ for all $x \in F$. Our Corollary 10 implies that for any line L in R^2 [R^n], $L \cap F$ cannot contain an ultrathin symmetric set.

2. Assume that G is l.c.a. metrisable, $K = \prod_{i=1}^{\infty} K_n \subset G$ where K_n are finite nontrivial abelian groups. Asume that $\operatorname{int}_{aKb} F \neq \emptyset$. Then Q is ENE at each $x \in \operatorname{int}_{aKb} F$ by Corollary 11.

Additional definitions and notations

Let λ (or dx) be a fixed left Haar measure and $L^p(G)$, $1 \le p \le \infty$, the usual complex valued function spaces (see [HR]). Let C(G), [UC(G)], WAP(G), $C_0(G)$, $C_c(G)$ denote the bounded [uniformly] continuous complex functions on G which are in additon weakly almost periodic, tending to 0 at ∞ , have compact support, respectively.

If $f \in C(G)$ let supp $f = cl \{x \in G; f(x) \neq 0\}$ where cl denotes closure. If $F \subset G$ is closed then M(F) are the complex bounded regular Borel measures on F with variation norm, thus $M(F) = C_0(F)^*$. All convolution formulas are as in [HR].

If f is a function on G, $x, y \in G$ then $f^{\vee}(x) = f(x^{-1}), f_x(y) = f(xy)$. A neighborhood (nbhd) of x is any open set $U \subset G$ containing x.

If $F, H \subset G$ then $\operatorname{int}_H F$ is the interior of $F \cap H$ in H. Thus $x \in \operatorname{int}_H F$ iff for some nbhd V (in G) of $x, x \in V \cap H \subset F \cap H$. Denote $F \sim H = \{x \in F; x \notin H\}$.

Let A(G) denote the Fourier algebra of G, as in [Ey]. $A_p(G)$, $1 , are the regular tauberian Banach algebras on G defined in [Hz]; thus <math>A_2(G) = A(G)$.

Let $A(G)^* = PM(G)$, the dual of A(G) (denoted VN(G) in [Ey] or $CV_2(G)$ in [Gr5]). If G is abelian then $A(G) = \mathcal{F}L^1(\widehat{G})$.

If $J \subset A(G) = A$ is a closed ideal let $Z(J) = \{x \in G; v(x) = 0 \text{ if } v \in J\}$. Equip the quotient algebra A/J with the norm $||v||_{A/J} = \inf \{||v - u||; u \in J\}$. If $F \subset G$ let $I_F = \{v \in A; v = 0 \text{ on } F\}$.

If G is a locally compact abelian group then the linear space $P \subset L^{\infty}(\widehat{G})$ is a $M(\widehat{G}) [L^1(\widehat{G})]$ module iff $M(\widehat{G}) * P \subset P [L^1(\widehat{G}) * P \subset P]$.

Examples of norm closed $M(\widehat{G})$ modules are any $w^*(\beta)$ [norm] closed translation invariant subspace (or $L^1(\widehat{G})$ submodule) of $L^{\infty}(\widehat{G})$ (C(G)) [UC(G)] respectively (see [Co], p. 221).

If X is a Banach space (always over C the complex numbers) X^* denotes its dual. If $Y \subset X$ let ncl Y [lin Y] denote the norm closure [linear span] of Y in X. The Banach spaces $c_0 \subset c \subset \ell^{\infty}$ over the complex field are as in [LT]. Let $c_0^{\perp} = \{\varphi \in \ell^{\infty*}; \varphi = 0 \text{ on } c_0 \subset \ell^{\infty}\}$ and $\mathcal{F} = \{\varphi \in c_0^{\perp}; 1 = (\varphi, 1) = \|\varphi\|\}$. \mathcal{F} is a w^* compact perfect convex set such that card $\mathcal{F} = \text{card } \ell^{\infty*} = 2^c$ where c is the cardinality of the reals. $X \approx Y$ denotes isomorphism of Banach spaces [LT].

The Banach algebra $(A, || ||_A)$ is called (in this paper) a regular Banach algebra on (the locally compact space) X if, with the notation in [HR], (39.1), (39.11), A is a regular Banach algebra in $C_0(X)$ where X is the structure space of A.

If in addition $A \cap C_c(X)$ is norm dense in $(A, || ||_A)$ then A is called a regular tauberian Banach algebra on X (which coincides with [Hz], p. 100).

For example if J is any closed ideal of A(G) (or $A_p(G)$) and F = Z(J) then J $[A(G)/I_F]$ is a regular [regular tauberian] Banach algebra on $G \sim F[F]$ respectively ([HR], (39.15), [Hz], p. 101).

Let (to the end of this section) A be a regular Banach algebra on X and $\varphi \in A^*$. Define, supp $\varphi \subset X$ by: $x \in \operatorname{supp} \varphi$ iff for any nbhd U of x there is some $f \in A$ such that supp $f \subset U$ and $(\varphi, f) \neq 0$. supp φ is a (possibly void) closed set such that supp $(f \cdot \varphi) \subset \operatorname{supp} f \cap \operatorname{supp} \varphi$ if $f \in A$, $\varphi \in A^*$ where $(f \cdot \varphi, g) = (\varphi, fg)$ for $g \in A$, as is easily shown.

Let $P \subset A^*$ be a closed subspace. Let $\sigma(P) = \{x \in X; \lambda \delta_x \in P\}$ and $P_c =$ ncl { $\Phi \in P$; supp Φ is compact}. If $a \in X$ let $E_P(a) =$ ncl { $\Phi \in P, a \notin$ supp Φ }; $W_P(a) = C(\lambda \delta_a) + E_P(a); TI_P(a) = \{\psi \in A^{**}; \psi = 0 \text{ on } E_P(a)\}; TIM_P(a) =$ $\{\psi \in TI_P(a); 1 = (\psi, \lambda \delta_a) = ||\psi||\}$ if $a \in \sigma(P)$.

Let $J \subset A$ be a closed ideal with F = Z(J) ($J = \{0\}$ may occur). In memory of M. M. Day, see [Da], define the set $D_1(J) \subset F$ as in the introduction, with A(G)replaced by A. Define $D_b(J) \subset F$ (b from "bounded") in the same way as $D_1(J)$ except that (i) is replaced by (i)' $1 = u_n(a) \leq \sup ||u_n||_A < \infty$.

Clearly $D_1(J) \subset D_b(J)$ and if $I \subset J$ are closed ideals in A with F = Z(I) = Z(J) then $D_1(J) \subset D_1(I)$ and $D_b(J) \subset D_b(I)$ (since $||u||_{A/I} \ge ||u||_{A/J}$).

 $\Phi \in A^*$ is in $WAP(A^*)$ iff $\{u \cdot \Phi; u \in A, ||u|| \le 1\}$ is a relatively weakly compact subset of A^* . A is Arens regular iff $A^* = WAP(A^*)$. A is ENAR iff $A^*/WAP(A^*)$ contains a closed subspace which has A^* as a quotient. Note that if A is separable and $\{x_n\}$ is dense in the unit ball of A, then $t: A^* \to \ell^\infty$ given by $(t\Phi)(n) = (\Phi, x_n)$ is an isometry, thus $A^* \subset \ell^\infty$. Hence if $A^*/WAP(A^*)$ has ℓ^∞ as a quotient then A is ENAR (since if $q: A^*/WAP(A^*) \to \ell^\infty$ is onto then $X = q^{-1}(A^*)$ has A^* as a quotient).

1. When $D_1(J)$ is nonempty

DEFINITION. The set $E \subset R$ is called symmetric (see [Me] or [GMc]) if there are $t_n > 0$ such that $t_n > \sum_{n+1}^{\infty} t_i$ for all n, and $E = \{\sum_{1}^{\infty} \varepsilon_i t_i; \varepsilon_i = 0 \text{ or } 1\}$. If in addition $\sum_{1}^{\infty} (t_{i+1}/t_i)^2 < \infty$ then E is called ultrathin symmetric.

In the next two lemmas, for closed $F \subset R$, let $A(F) = A(R)/I_F$. The following is due to Y. Meyer ([Me], p. 246).

LEMMA. Let $E \subset R$ be ultrathin symmetric. Let $f_k \in A(E)$ be such that $||f_k||_{A(E)} = 1$ for $k \ge 1$ and $||f_k||_{A(K)} \to 0$ for each compact $K \subset E$ with $0 \notin K$. Then $\{f_k\}$ contains a subsequence which is Sidon in A(E).

We improve this as follows:

LEMMA 1. Let $E = \{\sum_{1}^{\infty} \varepsilon_i t_i; \varepsilon_i = 0, 1\} \subset R$ be ultrathin symmetric and $a \in E$. Let $u_k \in A(R)$ be such that $1 = u_k(a) \leq ||u_k||_{A(E)} \leq B < \infty$ and $||u_k||_{A(K)} \to 0$ for all compact $K \subset E$ with $a \notin K$. Then $\{u_k\}$ contains a subsequence which is Sidon in A(E).

Remark. This lemma also holds for sets E for which $-E = \{-x; x \in E\}$ is ultrathin symmetric.

Proof. (i) Let $a = s = \sum_{1}^{\infty} t_i$. Then s - E = E and if u'(x) = u(s - x) for $u \in A(R)$ and $x \in R$ then u'' = u and ||u'|| = ||u||, where ||u|| denotes $||u||_{A(R)}$. Also $u \in I_E$ iff $u' \in I_E$. Let $K \subset E$ be compact and K' = s - K. Then $||u||_{A(K)} = \inf\{||u+v||; v \in I_K\} = \inf\{||u'+v'||; v \in I_K\} = \inf\{||u'+v||; v \in I_{K'}\} = ||u'||_{A(K')}$, since v'(x) = v(s - x) = 0 for $x \in K'$ iff v(y) = 0 for $y \in s - K' = K$. In particular $||u||_{A(E)} = ||u'||_{A(E)}$ since E' = E. If $K \subset E$ is compact and $0 \notin K$ then $||u'_k||_{A(K)} = ||u_k||_{A(E)} \rightarrow 0$ since $s \notin K' = s - K$. If $v_k = (||u_k||_{A(E)})^{-1}u'_k$ then, since $B^{-1} \leq (||u_k||_{A(E)})^{-1} \leq 1$, v_k has a subsequence which is Sidon in A(E) by Y. Meyer s lemma, hence so does $\{u_k\}$. This proves the case a = s.

(ii) Assume that $a = \sum_{1}^{\infty} t_{n_i}$ where $\{m_j\} = \{n \ge 1; n \notin \{n_i\}\}$ is infinite. Consider the set $a + E_0$ where $E_0 = \{\sum_{1}^{\infty} \varepsilon_j t_{m_j}; \varepsilon_j = 0 \text{ or } 1\}$. Then E_0 is ultrathin symmetric and $a + E_0 \subset E$. Let u'(x) = u(a + x) if $x \in R$; thus $\|u'\| = \|u\|$. Clearly, if $D \subset F$ then $I_F \subset I_D$ and $\|u\|_{A(F)} \ge \|u\|_{A(D)}$. Hence $\|u\|_{A(a+E_0)} = \inf\{\|u+v\|; v \in I_{a+E_0}\} = \inf\{\|u'+v'\|; v \in I_{a+E_0}\} = \inf\{\|u'+v'\|; v' \in I_{E_0}\} = \|u'\|_{A(E_0)}$.

And $B \ge ||u_k||_{A(E)} \ge ||u_k||_{A(a+E_0)} = ||u'_k||_{A(E_0)} \ge u'_k(0) = 1.$

If now $K \subset E_0$ is compact then $u \in I_K$ iff u'(x) = u(x+a) = 0 for all $x \in K-a$ iff $u' \in I_{K-a}$. And $||u||_{A(a+K)} = \inf\{||u+v||; v \in I_{a+K}\} = \inf\{||u'+v'||; v \in I_{a+K}\} = \inf\{||u'+v'||; v' \in I_{a+K-a}\} = ||u'||_{A(K)}$.

If $K \subset E_0$ is compact and $0 \notin K$ then $||u'_k||_{A(K)} = ||u_k||_{A(a+K)} \to 0$ since $a \notin a + K$. Hence we can apply Meyer's lemma and get that some subsequence $\{u'_n\}$ is Sidon in $A(E_0)$. Thus $\{u_{n_k}\}$ is Sidon in $A(a + E_0)$ since $||u||_{A(a+E_0)} = ||u'||_{A(E_0)}$, by the above. But $B \ge ||u_k||_{A(E)} \ge ||u_k||_{A(a+E_0)}$. Hence $\{u_{n_k}\}$ is Sidon in A(E).

(iii) Assume now that $a = \sum t_{n_i}$ where $\{n; n \notin \{n_i\}\}$ is finite. Thus $a = \sum_{i=1}^{k} t_{n_i} + \sum_{N+1}^{\infty} t_j$ with $n_i \leq N$ for $i \leq k$. Define then the sequence $\{s_n\}$ by $s_i = t_{n_i}$ if $i \leq k$ and $s_i = t_i$ if $i \geq N + 1$. Then the set $E_1 = \{\sum_{i=1}^{\infty} \varepsilon_i s_i; \varepsilon_i = 0 \text{ or } 1\}$ is an ultrathin symmetric set and $a = \sum_{i=1}^{\infty} s_i$. Also $B \geq ||u_k||_{A(E)} \geq ||u_k||_{A(E_1)} \geq u_k(a) = 1$. And if $K \subset E_1$ is compact and $a \notin K$ then $K \subset E$ is compact and $a \notin K$. Thus $||u_k||_{A(K)} \to 0$. Hence by case (i) there exists a subsequence $\{u_{k_j}\}$ which is Sidon in $A(E_1)$, a fortiori in A(E). \Box

Proof of Remark. If u'(x) = u(-x) for all x, then $||u'||_{A(R)} = ||u||_{A(R)}$. And if F = -E then $(I_E)' = I_F$, thus $||u'||_{A(F)} = ||u||_{A(E)}$. Use of Lemma 1 for the sequence $\{u'_n\}$ at $-a \in F$ will imply that $\{u_n\}$ has a subsequence which is Sidon in A(E).

THEOREM 2. Let G be any locally compact group $J \subset A(G)$ be a closed ideal and F = Z(J). Assume that R (or T) is a closed subgroup of G and $S \subset R$ is an ultrathin symmetric set such that $aSb \subset F$ for some $a, b \in G$.

If F is first countable at each $x \in aSb$, a fortiori if F is metrisable then $aSb \subset D_1(J)$.

Remarks. (i) We show that if F is first countable at $x \in aSb$ then $x \in D_1(J)$. (ii) If Lemma 1 holds for $A_p(R)$ then this theorem holds for $A_p(G)$, since only results in [Hz] are used.

Proof. Fix $s \in S$ and let V_n be open in G such that $asb \in V_n$, let cl V_n be compact and $V_n \cap F$ be a neighborhood base in F at $asb \in F$ (F is first countable at asb). Let $v_n \in A(G) = A$ be such that $v_n(asb) = 1 = ||v_n||$ and supp $v_n \subset V_n$. If V is a nbhd of asb there is some n_0 such that $F \cap \text{supp } v_n \subset V \cap F$ if $n \ge n_0$.

Let A' = A/J where for $v \in A(G)$, v' = v + J and $||v'|| = \inf \{||v + u||; u \in J\}$. We show, using Lemma 1, that there is a subsequence v'_{n_i} which is Sidon in A'.

Let $r: A(G) \to A(R)$ be the restriction map (rv)(x) = v(x) if $x \in R$. Then r is onto and $||r|| \le 1$ by Herz [Hz], p. 92. Now ℓ_a, r_b defined by $\ell_a u(x) = u(ax)$, $r_b u(x) = u(xb)$ are isometric isomorphisms on A(G) ([Hz], p. 97) and $\ell_a r_b = r_b \ell_a$.

If $u_n = \ell_a r_b v_n$ then $ru_n(s) = v_n(asb) = 1 = ||v_n|| \ge ||r\ell_a r_b v_n|| \ge \ell_a r_b v_n(s) = 1$ hence $ru_n(s) = 1 = ||ru_n||$.

For closed $L \subset G$ $[L \subset R]$ let $I_L = \{v \in A(G); v = 0 \text{ on } L\}$, $[I_L^R = \{u \in A(R); u = 0 \text{ on } L\}]$. Let $A(L) = A(G)/I_L$, $A^R(L) = A(R)/I_L^R$ and $q: A(R) \to A^R(S)$ be the cannonical map (thus $||q|| \le 1$.)

Let $K \subset S$ be compact such that $s \notin K$. Then $asb \notin aKb \subset F$. Hence there is an n_0 such that for $n \ge n_0$, $V_n \cap aKb = \emptyset$; thus $a^{-1}V_nb^{-1} \cap K = \emptyset$ (and $asb \in V_n$). Now supp $u_n = \sup \ell_a r_b v_n \subset a^{-1}V_nb^{-1}$. Hence if $n \ge n_0$, $K \cap \operatorname{supp} ru_n \subset K \cap a^{-1}V_nb^{-1} = \emptyset$ and $||ru_n||_{A^R(K)} = 0$. Hence $||ru_n||_{A^R(K)} \to 0$ for any compact $K \subset S$ such that $s \notin K$. We also note that $qru_n(s) = 1 \ge ||qru_n|| \ge qru_n(s)$; hence $qru_n(s) = 1 = ||qru_n||$. We now apply Lemma 1 and get that there is a subsequence u_{n_j} and some c > 0 such that $||\sum_{1}^{k} \alpha_j qru_{n_j}|| \ge c \sum_{1}^{k} |\alpha_j|$ for all $k \ge 1$ and complex α_j .

Fix $v \in A(G)$ and let $u = \ell_a r_b v$. We claim that $||v||_{A/J} \ge ||qru||_{A^R(S)}$. This will show that $v'_{n_{j,}}$ is a Sidon sequence in A' = A/J. One has $||v||_{A/J} = \inf\{||v+w||; w \in J\} \ge \inf\{||u+w||; w \in J\} \ge \inf\{||u+w||; w \in I\} \ge \inf\{||u+w||; w \in I_H\}$ (where $H = a^{-1}Fb^{-1}) \ge \inf\{||ru+rw||; w \in I_H\} \ge \inf\{||ru+w||; w \in I_{H\cap R}^R\}$ (since $rI_H \subset I_{H\cap R}^R) \ge \inf\{||ru+w||; w \in I_S^R\}$ (since $S \subset a^{-1}Fb^{-1} \cap R = H \cap R) =$ $\|qru\|_{A^{R}(S)}$. Hence $\left\|\sum_{1} \alpha_{j} v'_{n_{j}}\right\|_{A/J} \ge \left\|\sum_{1}^{k} \alpha_{j} qru_{n_{j}}\right\|_{A^{R}(S)} \ge c \sum_{1}^{k} |\alpha_{j}|$ for all $k \ge 1$, and complex α_{j} . \Box

COROLLARY 2'. Theorem 2 holds for any set $S \subset R$ expressible as a union $S = \bigcup_{\alpha \in I} (x_{\alpha} + S_{\alpha})$ where S_{α} or $-S_{\alpha}$ are ultrathin symmetric, $x_{\alpha} \in R$ and I is any index set. In particular it holds if S is any symmetric set.

Proof. To make the additive and multiplicative notation consistent replace $x_{\alpha} + S_{\alpha}$ by $x_{\alpha}S_{\alpha}$ and -S by S^{-1} . The proof of Theorem 2 works if S or S^{-1} are ultrathin symmetric by the remark after Lemma 1. Let now $S = \bigcup_{\alpha \in I} x_{\alpha}S_{\alpha} \subset R$ with S_{α} or S_{α}^{-1} ultrathin symmetric and $aSb \subset F$. If $s \in S$ then $asb \in ax_{\beta}S_{\beta}b \subset F$ for some β . Use of Theorem 2 with S replaced by S_{β} shows that $asb \in (ax_{\beta})S_{\beta}b \subset D_1(J)$.

Let $S = \{\sum_{1}^{\infty} \varepsilon_i t_i; \varepsilon_i = 0, 1\}$ be symmetric where $\infty > t_m > \sum_{n+1}^{\infty} t_j > 0$ for all $n \ge 1$. Let $x = \Sigma t_{n_i}$ and $M = \{m \ge 1; m \notin \{n_i\}\}$. If $M = \{m_j\}$ is infinite let $s_j = t_{m_j}$. Choose $s_{j_1} = s_1$ and if s_{j_k} was chosen let $j_{k+1} > j_k$ be such that $s_{j_{k+1}} < (1/2)s_{j_k}$. then $\Sigma(s_{j_{k+1}}/s_{j_k})^2 < \infty$ and $S_x = \{\Sigma \varepsilon_k s_{j_k}, \varepsilon_k = 0, 1\}$ is ultrathin symmetric such that $x + S_x \subset S$.

If *M* is finite then $x = \sum_{i=1}^{k} t_{n_i} + \sum_{N+1}^{\infty} t_k$ where $n_k \le N$. Choose then $N+1 \le k_1 < k_2 < \cdots$ such that $\sum_j (t_{k_{j+1}}/t_{k_j})^2 < \infty$. Let $S_x = \{\sum_{i=1}^{\infty} \varepsilon_j t_{k_j}; \varepsilon_j = 0, 1\}$. Then S_x is ultrathin symmetric and $x - S_x \subset S$. \Box

THEOREM 3. Let G be a locally compact group, $H \subset G$ a closed nondiscrete subgroup. Let $J \subset A = A_p(G)$ be a closed ideal, F = Z(J) and $a, b \in G$. Let F be metrisable.

Then $\operatorname{int}_{aHb} F \subset D_1(J)$. In particular $D_1(0) = G$ if G is metrisable, nondiscrete.

Remark. We show that for any closed F, if F is first countable at $y \in F$ and $y \in int_{aHb} F$, then $y \in D_1(J)$.

Proof. Let V_n be open such that $x_0 \in V_0 \cap aHb \subset F$, cl V_0 is compact, cl $V_{n+1} \subset V_n$ for $n \ge 0$, and $V_n \cap F$ is a neighborhood base in F at x_0 . Let $v_n \in A$ be such that $v_n(x_0) = 1 = ||v_n||$ and supp $v_n \subset V_n$ for $n \ge 0$ (see [Gr3], p. 379). We show that $v'_n \in A/J$ has no weak Cauchy sequence in A/J, where for $v \in A$, we let $v' = v + J \in A/J$ with $||v'|| = \inf\{||v + u||; u \in J\}$. It will follow from H. Rosenthal's theorem [Ro], p. 808, that v_n contains a subsequence v_{n_k} such that $\{v'_{n_k}\}$ is a Sidon sequence in A/J; thus $x_0 \in D_1(J)$.

Assume that $u'_k = v'_{n_k}$ is a weak Cauchy sequence in A/J and let $P = \{\Phi \in A^*; \Phi = 0 \text{ on } J\} = (A/J)^*$. Let $r: A_p(G) \to A_p(H)$ be the *onto* restriction map; thus rv(x) = v(x) if $x \in H, v \in A, ||r|| \le 1$, and $rA_p(G) = A_p(H)$ (due to Herz [Hz]). Let $\Phi \in A_p(H)^*$ and $w \in J$. Then

$$(\ell_a^* r_b^* [(\ell_a r_b v_0) \cdot r^* \Phi], w) = (\Phi, r \ell_a r_b (v_0 w)) = (\Phi, 0) = 0$$

since if $h \in H$ and $\ell_a r_b(v_0 w)(h) = v_0(ahb)w(ahb) \neq 0$ then $ahb \in V_o \cap aHb \subset F$ and then w(ahb) = 0 since F = Z(J). Thus $r\ell_a r_b(v_o w) = 0 \in A_p(H)$. Hence $\ell_a^* r_b^*[(\ell_a r_b v_o) \cdot r^* \Phi] \in P$ for all $\Phi \in A_p(H)^*$.

It follows that $(\ell_a^* r_b^* [(\ell_a r_b v_0) \cdot r^* \Phi], u'_k) = (\Phi, r \ell_a r_b (v_0 u_k))$ is a Cauchy sequence of scalars for all $\Phi \in A_p(H)^*$. (Note that $(\Phi, u) = (\Phi, u')$ for $\Phi \in P$, $u \in A$ is well defined.)

Now supp $r(\ell_a r_b v_0 u_k) \subset a^{-1} V_0 b^{-1} \cap H$ and the latter set has closure K which is compact. If follows (from the Hahn Banach theorem) that $r\ell_a r_b(v_o u_k)$ is a weak Cauchy sequence in $A_K^p(H) = \{u \in A_p(H); \text{ supp } u \subset K\}$. Now by a joint result of Cowling and ours [Gr5], p. 131, $A_K^p(H)$ is weak sequentially complete. Hence $r\ell_a r_b(v_0 u_k) \to w_0$ weakly in $A_K^p(H)$ (hence in $A_p(H)$) for some $w_0 \in A_p(H)$. (If p = 2, then A(G) as a predual of a W^* algebra is weak sequentially complete, hence this result in [Gr5] is not needed.) Since $\lambda \delta_h \in A_p(H)^*$, $v_0(ahb)u_k(ahb) \to w_0(h)$, for all $h \in H$.

If $h_0 = a^{-1}x_0b^{-1} \in a^{-1}V_0b^{-1} \cap H$ then $v_0(ah_0b)u_k(ah_0b) = 1$; thus $w_0(a^{-1}x_0b^{-1}) = 1$. If $a^{-1}x_0b^{-1} \neq h_1 \in a^{-1}V_0b^{-1} \cap H$, then $x_0 \neq ah_1b \in V_0 \cap aHb \subset F$.

But $V_n \cap F$ is a base of neighborhoods in F at x_0 . Thus for some $k_0, u_k(ah_1b) = 0$ if $k \ge k_0$. Hence $v_0(ah_1b)u_k(ah_1b) = 0 = w_0(h_1)$ if $k \ge k_0$. But $x_0 \in V_0 \cap aHb \subset F$ and x_0 is not an isolated point of F since H is not discrete. It follows that $w_0 \in A_p(H)$ is not a continuous function, a contradiction. \Box

Remark. We prove in Theorem 2[3] more than stated. Namely we show that if $x \in aSb$ [$x \in int_{aHb} F$] and $v_n \in A \cap C_C(G)$ is any sequence satisfying (i) $v_n(x) = 1 = ||v_n||$, and (ii) $F \cap \text{supp } v_n = K_n$ is such that for any nbhd V of x there is some k such that $K_j \subset V$ if $j \ge k$, then v_n has a subsequence which is Sidon in A/J.

2. Extreme nonergodicity of $P = (A/J)^*$ at any $a \in D_1(J)$

If $J \subset A(G)$ (or $A_p(G)$) a closed ideal with F = Z(J) then A/I_F , [J] are regular Banach algebras on $F[G \sim F]$ respectively, hence so are $A_p(G)$, A(G). This is the reason for stating Theorem 4 in terms of regular Banach algebras.

THEOREM 4. Let A = A(G) be a regular Banach algebra on the locally compact space G. Let $J \subset A$ be a closed ideal and $Q \subset A^*$ be a norm closed A module such that $P_c \subset Q \subset P = (A/J)^*$.

If $a \in D_b(J)$ $[a \in D_1(J)]$ then $Q/W_Q(a)$ has ℓ^{∞} as a quotient and $TI_Q(a)$ contains c_0^{\perp} [and $TIM_Q(a)$ contains \mathcal{F}].

Remarks. Specifically we show that there is an onto operator $t: \mathbf{P} \to \ell^{\infty}$ such that the into norm (and $w^* \cdot w^*$) isomorphism $t^*: \ell^{\infty} \to \mathbf{P}^*$ satisfies $t^*c_0^{\perp} \subset TI_{\mathbf{P}}(a)$

 $[t^* \mathcal{F} \subset TIM_{\mathcal{P}}(a)]$. Furthermore $\mathcal{Q}/W_{\mathcal{Q}}(a)$ also has ℓ^{∞} as a quotient and if $i: \mathcal{Q} \to \mathcal{P}$ is the imbedding then i^* restricted to $TI_{\mathcal{P}}(a)$ is a norm (and w^* - w^*) isomorphism such that $i^*TI_{\mathcal{P}}(a) = TI_{\mathcal{Q}}(a)$ and $i^*TIM_{\mathcal{P}}(a) \subset TIM_{\mathcal{Q}}(a)$.

Proof. Let F = Z(J) and $v_n \in A$ be the required sequence for $a \in D_b(J)$ $[a \in D_1(J)]$ (see definition). Denote for $v \in A$, v' = v + J and $||v'|| = ||v||_{A/J}$. Let $V_n = \{x \in G; v_n(x) \neq 0\}$.

By possibly taking a subsequence again denoted by v_n we can assume that $F \cap$ cl $V_{n+1} \subset F \cap V_n$, $V_n \cap F$ is a nbhd base in F at a, and cl V_n is compact.

If $v \in A$, $u \in J$, and $\Phi \in P$, $(v + u) \cdot \Phi = v \cdot \Phi$, hence $(v' \cdot \Phi, w') = (\Phi, v'w')$ if $w' \in A/J$ is well defined and $||v' \cdot \Phi|| \le ||v'|| ||\Phi||$. Thus P is an A/J module and $P \subset A^*$.

Define $t: \mathbf{P} \to \ell^{\infty}$ by $(t\Phi)(n) = (\Phi, v'_n) = (\Phi, v_n)$. Since $||v'_n||$ is bounded, $t(\mathbf{P}) \subset \ell^{\infty}$ and $||t\Phi|| = \sup |(\Phi, v_n)| \leq ||\Phi||B$, where $B = \sup ||v_n||$. [Hence $||t|| \leq 1$ if $a \in D_1(J)$]. But $t\mathbf{P} = \ell^{\infty}$. Since if $b = (b_n) \in \ell^{\infty}$ with norm ||b|| define the linear functional F_0 on $\lim \{v'_n; n \geq 1\} \subset A/J$ by $(F_0, \sum_1^n \alpha_i v'_i) = \sum_1^n \alpha_i b_i$. then $|(F_0, \sum_1^n \alpha_i v'_i)| \leq \sum_1^n |\alpha_i b_i| \leq ||b|| \sum_1^n |\alpha_i| \leq ||b|| (1/d)|| \sum_1^n \alpha_i v'_i||$, where dis the constant for the Sidon sequence $\{v'_n\}$ in A/J. By the Hahn Banach theorem there is an extension $\Phi_0 \in \mathbf{P} = (A/J)^*$ of F_0 . Then $(t\Phi_0)(n) = (F_0, v'_n) = b_n$, thus $t\Phi_0 = b$.

We show now that $t E \mathbf{p}(a) \subset c_0$ and $t W \mathbf{p}(a) \subset c$.

Let $\Phi \in P$ be such that $a \notin \operatorname{supp} \Phi$ and let U_0 be a nbhd of a, with cl U_0 compact and such that $(\Phi, u) = 0$ if $u \in A$ and $\operatorname{supp} u \subset U_0$. Let $v_o \in A$ be such that $v_0 = 1$ on U_0 and $\operatorname{supp} v_0$ is compact (A is regular). There exists k_0 such that $V_n \cap F \subset U_0 \cap F \subset U_0$ if $n \ge k_0$. Now $K_n = \operatorname{supp}(v_0v_n - v_n) \subset V_{n-1} \sim U_0$, since U_0 is open.

But $K_n \cap F \subset (V_{n-1} \sim U_0) \cap F = V_{n-1} \cap F \sim U_0 \cap F = \emptyset$ if $n \ge k_0 + 1$ and K_n is compact, since supp v_n is compact. It follows that $v_0v_n - v_n$ is in the smallest closed ideal J_F whose zero set is F and $J_F \subset J$ (see [HR], (39.18)). Thus $v_0v_n - v_n \in J$ and $(\Phi, v_n) = (\Phi, v_0v_n) = 0$ if $n \ge k_0 + 1$, since supp $v_0v_n \subset U_0$. Hence $(\Phi, v_n) \to 0$. Now $\{\Phi \in P; a \notin \text{supp } \Phi\}$ is norm dense in $E_P(a)$ and $\sup ||v_n|| < \infty$. Thus $(\Phi, v_n) \to 0$ for all $\Phi \in E_P(a)$ and $tE_P(a) \subset c_0$. But $(t\lambda\delta_a)(n) = v_n(a) = 1$. Thus $tW_P(a) \subset c$, and $W_P(a) \subset t^{-1}(c)$.

Hence $P/W_P(a)$ has $P/t^{-1}(c) \approx \ell^{\infty}/c$ as a quotient.

If $\phi \in \ell^{\infty *}$ is such that $\phi = 0$ on $c_0 \subset \ell^{\infty}$ then $t^*\phi = 0$ on $E_{\mathbf{p}}(a)$ since $t(E_{\mathbf{p}}(a)) \subset c_0$. Thus $t^*c_0^{\perp} \subset TI_{\mathbf{p}}(a)$. [If $a \in D_1(J)$ and $\phi \in \mathcal{F}$, thus $1 = \|\phi\| = \phi(1)$ and $\phi = 0$ on c_0 , then $1 = (t^*\phi, \lambda\delta_{\alpha}) \leq \|t^*\phi\| \leq \|\phi\| = 1$. Since $t^*\phi \in TI_{\mathbf{p}}(a), t^*(\mathcal{F}) \subset TIM_{\mathbf{p}}(a)$]. Now $t: \mathbf{P} \to \ell^{\infty}$ is open since t is onto, hence $t\{\Phi \in \mathbf{P}; \|\Phi\| \leq 1\}$ contains a ball B_{δ} of radius $\delta > 0$ around 0. Thus $\|t^*\phi\| \leq B\|\phi\|$ for all $\phi \in \ell^{\infty *}$ and $t^*: \ell^{\infty *} \to \mathbf{P}^*$ is a $w^* \cdot w^*$ continuous norm isomorphism into such that $t^*(c_0^{\perp}) \subset TI_{\mathbf{p}}(a) [t^*\mathcal{F} \subset TIM_{\mathbf{p}}(a)]$.

Consider the $Q/W_Q(a)$ case where $P_c \subset Q \subset P$. Let $q: \ell^{\infty} \to \ell^{\infty}/c$ be the canonical map. Let $u \in A \cap C_c(G)$ be such that u = 1 on some nbhd U of a and $\Phi \in P$. Let $v \in A(G)$ be such that $\sup v \subset U$. Then $(\Phi - u \cdot \Phi, v) = (\Phi, v - vu) = (\Phi, 0) = 0$; thus $a \notin \operatorname{supp}(\Phi - u \cdot \Phi)$ and $\Phi - u \cdot \Phi \in E_P(a)$.

Hence $t(u \cdot \Phi - \Phi) \in c_0$ and $qt(u \cdot \Phi) = qt(\Phi)$. But $u \cdot \Phi \in P_c \subset Q$ since supp $u \cdot \Phi \subset$ supp u. Thus $qt(P_c) = qt(Q) = qt(P) = \ell^{\infty}/c$.

Let now r be qt restricted to Q; thus $r\Phi = qt\Phi$ for $\Phi \in Q$. Since $E_Q(a) \subset E_P(a)$ we have $rE_Q(a) \subset qtE_P(a) = \{0\}$. Now $\lambda\delta_a \in P_c \subset Q$ and $r\lambda\delta_a = qt(\lambda\delta_a) = 0$ since $t\lambda\delta_a = 1 \in c$. Thus $rW_Q(a) = \{0\}$ and $W_Q(a) \subset r^{-1}(0)$. But $rQ = qtQ = \ell^{\infty}/c$; thus $Q/r^{-1}(0) \approx \ell^{\infty}/c$ (isomorphism). But ℓ^{∞}/c [hence $Q/r^{-1}(0)$] contains an isometric copy Y [Y_0] of ℓ^{∞} (see [Sa] for ℓ/c_0 or [Gr2], p. 161 for ℓ/c). And since ℓ^{∞} is injective [LT] there exists a bounded projection P_0 of $Q/r^{-1}(0)$ onto Y_0 . If $P: Q/W_Q(a) \rightarrow Q/r^{-1}(0)$ is the canonical quotient map then P_0P maps $Q/W_Q(a)$ onto $Y_0 \approx \ell^{\infty}$.

Let $i: \mathbf{Q} \to \mathbf{P}$ be the inclusion map $i\Phi = \Phi$ for all $\Phi \in \mathbf{Q}$; thus $qti\Phi = r\Phi$ if $\Phi \in \mathbf{Q}$. We claim that i^* restricted to $TI_{\mathbf{P}}(a)$ is a $w^* \cdot w^*$ continuous norm isomorphism such that $i^*(TI_{\mathbf{P}}(a) = TI_{\mathbf{Q}}(a)$ and $i^*(TIM_{\mathbf{P}}(a)) \subset TIM_{\mathbf{Q}}(a)$. In fact let $u_0 \in A \cap C_c(G)$ be fixed such that $u_0 = 1$ on some open U_0 with $a \in U_0$ and $||u_0|| = d > 0$. Let $\psi \in TI_{\mathbf{P}}(a)$ and $\Phi_0 \in \mathbf{P}$ be such that $||\Phi_0|| = 1$ and $(\psi, \Phi_0) \geq ||\psi|| - \varepsilon$. Then $u_0 \cdot \Phi_0 \in \mathbf{P}_c \subset \mathbf{Q}$ and $||u_0 \cdot \Phi_0|| \leq d$. Hence $(i^*\psi, u_0 \cdot \Phi_0) = (\psi, u_0 \cdot \Phi_0) = (\psi, \Phi_0)$ since $u_0 \cdot \Phi_0 - \Phi_0 \in E_{\mathbf{P}}(a)$. Thus $(i^*\psi, d^{-1}u_0 \cdot \Phi_0) \geq d^{-1}(||\psi|| - \varepsilon)$ and $||\psi|| \geq ||i^*\psi|| \geq d^{-1}||\psi||$, if $\psi \in TI_{\mathbf{P}}(a)$.

If now $\Phi \in E_{\mathbf{Q}}(a) \subset E_{\mathbf{P}}(a)$ and $\psi \in TI_{\mathbf{P}}(a)$ then $(i^*\psi, \Phi) = (\psi, \Phi) = 0$ since $\psi = 0$ on $E_{\mathbf{P}}(a)$. Thus $i^*TI_{\mathbf{P}}(a) \subset TI_{\mathbf{Q}}(a)$.

But $i^*TI_{\mathbf{P}}(a) = TI_{\mathbf{Q}}(a)$ since if $\psi \in TI_{\mathbf{Q}}(a)$ then $\psi_1 \in TI_{\mathbf{P}}(a)$ defined by $(\psi_1, \Phi) = (\psi, u_0 \Phi)$ for Φ in \mathbf{P} satisfies $i^*\psi_1 = \psi$. This holds since if $\Phi \in \mathbf{Q}$ then $(i^*\psi_1, \Phi) = (\psi, u_0 \cdot \Phi) = (\psi, \Phi)$, since $u_0 \cdot \Phi - \Phi \in E_{\mathbf{Q}}(a)$. If $\Phi \in \mathbf{P}$ and $a \notin$ supp Φ then $a \notin$ supp $u_0 \cdot \Phi$ and $u_0 \cdot \Phi \in E_{\mathbf{Q}}(a)$. Thus $(\psi_1, \Phi) = (\psi, u_0 \cdot \Phi) = 0$. Since $\psi_1 \in \mathbf{P}^*, \psi_1 = 0$ on $E_{\mathbf{P}}(a)$, hence $\psi_1 \in TI_{\mathbf{P}}(a)$.

If, in addition, $\psi \in TIM_{\mathbf{P}}(a)$ then $(i^*\psi, \lambda\delta_a) = (\psi, \lambda\delta_a) = 1 = ||\psi|| \ge ||i^*\psi|| \ge (i^*\psi, \lambda\delta_a) = 1.$

But $t^*: \ell^{\infty *} \to \mathbf{P}^*$ is a $w^* \cdot w^*$ continuous norm isomorphism into such that $t^*(c_0^{\perp}) \subset TI_{\mathbf{P}}(a)$ [$t^* \mathcal{F} \subset TIM_{\mathbf{P}}(a)$]. Thus i^*t^* restricted to c_0^{\perp} is a $w^* \cdot w^*$ continuous isomorphism into $TI_{\mathbf{Q}}(a)$ [such that $i^*t^*(\mathcal{F}) \subset i^*TIM_{\mathbf{P}}(a) \subset TIM_{\mathbf{Q}}(a)$].

PROPOSITION 5. Let G be a locally compact group and A = A(G) the Fourier algebra of G or $A = A_p(G)$. Let $\mathbf{P} \subset A^*$ be a norm closed A module and $F = \sigma(\mathbf{P})$. Then WAP $\mathbf{p} \subset C\lambda\delta_a + E\mathbf{p}(a) = W\mathbf{p}(a)$ for all $a \in G$.

Proof. The proof involves routine arguments such as Prop. 9 and Prop. 4 of [Gr4] and is left to the reader. \Box

In the following, G is an arbitrary locally compact group, $J \subset A = A(G)$ is a closed ideal with Z(J) = F, and Q is a norm closed A submodule of PM(G) such that $P_c \subset Q \subset P = (A/J)^*$.

COROLLARY 6. Assume that R (or T) is a closed subgroup of $G, S \subset R$ (or T) a symmetric set such that $aSb \subset F$ for some $a, b \in G$ and F is metrisable. Then

(*) $Q/W_Q(x)$ (a fortiori Q/WAP_Q and Q/M(F)) has ℓ^{∞} as a quotient and $TIM_Q(x)$ contains \mathcal{F} for all $x \in aSb$.

Consequently A/J is ENAR if G is second countable nondiscrete.

In the next corollary, A = A(G) can be replaced by $A_p(G)$. It improves part of Theorem 6 in [Gr5], with a much simpler proof.

COROLLARY 7. Assume that H is a closed nondiscrete subgroup of G and $int_{aHb}F \neq \emptyset$ for some $a, b \in G$, where F is metrisable.

Then (*) holds true for all $x \in int_{aHb}F$.

Consequently A/J is ENAR if G is second countable nondiscrete.

Proof of Corollaries 6 and 7. If $x \in aSb$ [$x \in int_{aHb}F$] then $x \in D_1(J)$ by Corollary 2' [Theorem 3]. Hence by Theorem 4, (*) holds for such x.

But by Prop. 5, $WAP_Q \subset W_Q(x)$ holds true. Taking Q = P we get that P/WAP_P has ℓ^{∞} as a quotient.

If, in addition, G is second countable then A is norm separable and since $P = (A/J)^*$, A/J is ENAR. \Box

Remark. (i) In Corollary 6 it is enough that the relative topology of F is first countable at each $x \in F$.

(ii) If $F \subset T$ is any perfect compact Helson set [He] then $A(F) = A(T)/I_F = C(F)$ is Arens regular as is well known (see more such F in Section 3).

(iii) If $P \subset A^*$ is a w^* closed A module and $\sigma(P)$ contains a metrisable compact perfect set then P_c and P have ℓ^{∞} as a quotient if G is amenable as discrete, even if $A = A_p(G)$ by our Theorem 2 in [Gr5].

COROLLARY 7'. Let $A = A_p(G)$, $J \subset A$ a closed ideal such that $D_b(J) \neq \emptyset$. Then A/J is ENAR provided G is second countable.

Question. Let $J \subset A(R)$ be a closed ideal such that $D_b(J) = \emptyset$. Is then A/J Arens regular?

3. The abelian case

Let $\mathcal{F}_{S}: M(\widehat{G}) \to B(G)$ [$\mathcal{F}: L^{1}(\widehat{G}) \to A(G)$] denote Fourier Stiltjies [Fourier] transform. Thus $\mathcal{F}_{S}\mu(x) = \int \chi(x)d\mu(\chi)$ for $x \in G$, see [Ru] or [HR]. For $\mu \in M(\widehat{G}), g \in L^{\infty}(\widehat{G}), f \in L^{1}(\widehat{G})$ let $\mu^{\vee}(E) = \mu(E^{-1}), f^{\vee}(\chi) = f(\chi^{-1}), \int f d(g\mu) = \int fg d\mu$, where $E \subset \widehat{G}$ is a Borel set. PM(G) is a B(G) module by $(u \cdot \Phi, v) = (\Phi, uv)$. It is known that

(*)
$$\mathcal{F}^*[(\mathcal{F}_{\mathcal{S}}\mu)\cdot\Phi] = \mu^{\vee} * \mathcal{F}^*\Phi \text{ if } \mu \in M(\widehat{G}), \ \Phi \in PM(G).$$

To prove (*) note that $(h, \mu * f) = (\mu^{\vee} * h, f)$ if $f \in L^1(\widehat{G}), h \in L^{\infty}(\widehat{G}), \mu \in M(\widehat{G})$, by Fubini's theorem (or [Pi], p. 83). Hence $(\mathcal{F}^*[(\mathcal{F}_S\mu) \cdot \Phi], f) = (\Phi, \mathcal{F}(\mu * f)) = (\mu^{\vee} * \mathcal{F}\Phi, f)$.

If $P \subset PM(G)$ and $\mathcal{F}^*P = P$ then $B(G) \cdot P \subset P$ iff $M(\widehat{G}) * P \subset P$ as readily follows from (*). Thus P is a norm $[w^*]$ closed B(G) module iff P is a norm $[w^*]$ closed $M(\widehat{G})$ module, respectively since \mathcal{F}^* is an onto isometry and w^*-w homeomorphism.

DEFINITION. Let $P \subset L^{\infty}(\widehat{G})$ be a norm closed $M(\widehat{G})$ module, $P = \mathcal{F}^{*-1}P$, and $a \in G$. We defined the spaces $D_P(a)$, $V_P(a)$, $D_P(a)$ $V_P(a)$ in the introduction.

Let $IM_P(a) = \{ \psi \in P^*; 1 = (\psi, \overline{a}) = \|\psi\|, \psi = 0 \text{ on } D_P(a) \}$. Note that $\psi = 0$ on $D_P(a)$ iff $\psi(h_\chi) = \overline{a(\chi)}\psi(h)$ for all $\chi \in \widehat{G}$ and $h \in P$. Let $\sigma(P) = G \cap \overline{P}$.

PROPOSITION 8. Let $\mathbf{P} \subset PM(G)$ be a norm closed B(G) module, $a \in G$ and $\mathcal{F}^*\mathbf{P} = P$. Then $\mathcal{F}^*E\mathbf{p}(a) = E_P(a)$, $\mathcal{F}^*D\mathbf{p}(a) = D_P(a)$, hence $\mathcal{F}^*V\mathbf{p}(a) = V_P(a)$ and $\mathcal{F}^*W\mathbf{p}(a) = W_P(a)$.

Proof. If $\Phi \in \mathbf{P}$, $\mu \in M(\widehat{G})$, one gets from (*) that

$$(**) \quad \mathcal{F}^*[(\mathcal{F}_{\mathcal{S}}\mu)_{a^{-1}} \cdot \Phi] = \mathcal{F}^*[\mathcal{F}_{\mathcal{S}}(a\mu) \cdot \Phi] = (a\mu)^{\vee} * \mathcal{F}^*\Phi = (\bar{a}\mu^{\vee}) * \mathcal{F}\Phi.$$

Take $\mu \in \delta_{\chi}$, so that $\mathcal{F}_{S}\delta_{\chi} = \overline{\chi}$, and let $h = \mathcal{F}^*\Phi$. Then, since $\delta_{\chi}^{\vee} = \delta_{\chi^{-1}}$, we get

$$\mathcal{F}[(\mathcal{F}_{\mathcal{S}}\delta_{\chi})_{a^{-1}}\cdot\Phi]=\mathcal{F}^*[(\bar{\chi})_{a^{-1}}\cdot\Phi]=(a\delta_{\chi})^{\vee}*h=(a(\chi)\delta_{\chi})^{\vee}*h=a(\chi)h_{\chi}.$$

Hence $\mathcal{F}^* \{ \Phi - \chi_{a^{-1}} \cdot \Phi; \Phi \in \mathbf{P}, \chi \in \widehat{G} \} = \mathcal{F}^* \{ \Phi - (\overline{\chi})_{a^{-1}} \cdot \Phi; \Phi \in \mathbf{P}, \chi \in \widehat{G} \} = \{h - a(\chi)h_{\chi}; h \in P, \chi \in \widehat{G} \}$. Thus $\mathcal{F}^* D \mathbf{p}(a) = D_P(a)$; hence $\mathcal{F}^* V \mathbf{p}(a) = V_P(a)$. Let $F_M = \{\mu \in M(\widehat{G}); \mu \ge 0, \mu(\widehat{G}) = 1\}, F_1 = F_M \cap L^1(\widehat{G}) = \{0 \le f \in L^1(\widehat{G}); \int f d\chi = 1\}$. Then $F_1^{\vee} = F_1$. By Prop. 1 of [Gr5],

$$(***) \qquad E_{\boldsymbol{P}}(a) = \operatorname{ncl} \lim \left\{ \Phi - v_{a^{-1}} \cdot \Phi; \Phi \in \boldsymbol{P}, v \in S_A(e) \right\}$$

where $S(x) = \{u \in B(G); 1 = u(x) = ||u||\}$ and $S_A(x) = S(x) \cap A(G)$, since $(S_A(e))_a = S_A(a)$ (by [Ru], (1.2.4)), or see the following lemma.

Clearly $\mathcal{F}^*F_1 = S_A(e)$ and $\mathcal{F}^*\{\Phi - v_{a^{-1}} \cdot \Phi; \Phi \in \mathbf{P}, v \in S_A(e)\} = \mathcal{F}^*\{\Phi - (\mathcal{F}f)_{a^{-1}} \cdot \Phi; \Phi \in \mathbf{P}, f \in F_1\} = (by (**)) \{h - (\bar{a}f^{\vee}) * h; h \in P, f \in F_1\} = \{h - (\bar{a}f) * h; f \in F_1, h \in P\}.$ Hence $\mathcal{F}^*E_{\mathbf{P}}(a) = E_P(a)$ and $\mathcal{F}^*W_{\mathbf{P}}(a) = W_P(a)$ since \mathcal{F}^* is an isometry of PM(G) onto $L^{\infty}(\widehat{G})$. \Box

We prove (* * *) and more in the next result.

LEMMA 8'. Let $P \subset PM(G)$ be a norm closed B(G) module. Then $E_P(a) = ncl \{ \Phi - v \cdot \Phi; \Phi \in P, v \in S_i(a) \}$ for i = 1, 2, 3 where $S_1(a) = S_A(a), S_2(a) = S(a), S_3(a) = \{ v \in B(G); v(a) = 1 \}$. In addition ncl can be replaced by ncl lin.

Proof. Note that $S_1(a) \subset S_2(a) \subset S_3(a)$. Let $\Phi \in P$ with $a \notin \text{supp } \Phi$. Let $v \in S_1(a)$ be such that supp $v \cap \text{supp } \Phi = \emptyset$, thus supp $v \cdot \Phi = \emptyset$. Hence $v \cdot \Phi = 0$ and $\Phi = \Phi - v \cdot \Phi$, which proves $E_{\mathbf{P}}(a) \subset \text{ncl } \{\Phi - v \cdot \Phi; \Phi \in \mathbf{P}, v \in S_1(a)\}$.

Let $\Phi \in P$ and $v_0 \in A \cap C_c(G)$ be such that $v_0 = 1$ on a nbhd V of a. Then $a \notin \Phi - v_0 \cdot \Phi$ and $\Phi - v_0 \cdot \Phi \in E_P(a)$ (see Prop. 5). Thus if $u \in S_3(a)$ then $(\Phi - u \cdot \Phi) - v_0(\Phi - u \cdot \Phi) \in E_P(a)$. But $v_0 \cdot (\Phi - u \cdot \Phi) = (v_0 - v_0 u) \cdot \Phi \in E_P(a)$. In fact $(v_0 - uv_0)(a) = 0$ and since $\{a\}$ is a synthesis set [Hz] let $v_n \in A \cap C_c(G), n \ge 1$ be such that $v_n = 0$ on a nbhd V_n of a and $||v_n - (v_0 - uv_0)|| \to 0$. But then $a \notin \text{supp } v_n \cdot \Phi$ and $v_n \cdot \Phi \in E_P(a)$. Thus $||v_n \cdot \Phi - (v_0 - uv_0) \cdot \Phi|| \to 0$, hence $(v_0 - v_0 u) \cdot \Phi \in E_P(a)$ and $\Phi - u \cdot \Phi \in E_P(a)$. Hence $E_P(a) \supset \text{ncl} \{\Phi - v \cdot \Phi; \Phi \in P, v \in S_3(a)\}$.

Now { $\Phi \in P$; $a \notin \sup \Phi$ } (hence $E_P(a)$) is a linear space, from the definiton of support. \Box

PROPOSITION 9. Let $P \subset L^{\infty}(\widehat{G})$ be a norm closed $M(\widehat{G})$ module, $a \in \sigma(P)$. Then $D_P(a) \subset E_P(a), V_P(a) \subset W_P(a)$ and $TIM_P(a) \subset IM_P(a)$. If $P \subset UC(\widehat{G})$ then $D_P(a) = E_P(a), V_P(a) = W_P(a)$, and $IM_P(a) = TIM_P(a)$.

Proof. If $x \in G$ then $u \to u_x$ is an isometric homomorphism of B(G) onto B(G)which maps A(G) onto A(G), see [Ru], (1.2.4) and (1.3.3). Also $S(x)S_A(x) \subset S_A(x)$. If $u \in S(e)$, $v \in S_A(e)$, $\Phi \in P$, then $\Phi - u_{a^{-1}} \cdot \Phi = \Phi - (uv)_{a^{-1}} \cdot \Phi + v_{a^{-1}} \cdot (u_{a^{-1}} \cdot \Phi) - (u_{a^{-1}} \cdot \Phi) \in E_{\mathbf{P}}(a)$ by Lemma 8' and since \mathbf{P} is a B(G) module. It follows that $E_{\mathbf{P}}(a) = \text{ncl} \lim \{\Phi - v_{a^{-1}} \cdot \Phi; v \in S_A(e), \Phi \in \mathbf{P}\} = \text{ncl} \lim \{\Phi - u_{a^{-1}} \cdot \Phi; u \in S(e), \Phi \in \mathbf{P}\} \supset \text{ncl} \lim \{\Phi - \chi_{a^{-1}} \cdot \Phi; \chi \in \widehat{G}, \Phi \in \mathbf{P}\} = D_{\mathbf{P}}(a)$. And by Proposition 8, $D_P(a) \subset E_P(a)$. If $a \in \sigma(P)$, thus $\overline{a} \in P$ then, $TIM_P(a) = \{\psi \in P^*; 1 = (\psi, \overline{a}) = \|\psi\|, \psi = 0 \text{ on } E_P(a)\} \subset IM_P(a) = \{\psi \in P^*; 1 = (\psi, \overline{a}) = \|\psi\|, \psi = 0 \text{ on } D_P(a)\}.$

Assume in addition that $P \subset UC(\widehat{G})$. Clearly $P = \mathcal{F}^{*-1}P \subset \mathcal{F}^{*-1}UC(\widehat{G}) = (PM(G))_c$. Let $\Phi \in P$. Then $\Phi = v_0 \cdot \Phi_0$ for some $v_0 \in A(G)$, and $\Phi_0 \in PM(G)$. Let $u_0 \in S_A(e)$. We show that $\Phi - (u_0)_{a^{-1}} \cdot \Phi \in D_P(a)$; hence by (***), $E_P(a) = D_P(a)$. Let u_α be a net in $Co\{\chi; \chi \in \widehat{G}\} \subset S(e)$ (where *Co* denotes convex hull) such that $u_\alpha \to u_0$ in the w^* topology of $B(G)(u_0$ is continuous and positive definite). Then, by a theorem of Leinert and ours [GrL], $||(u_\alpha - u_0)v|| \to 0$ for all $v \in A(G)$.

But $\Phi - \chi_{a^{-1}} \cdot \Phi \in D\mathbf{p}(a)$, hence $\Phi - (u_{\alpha})_{a^{-1}} \cdot \Phi \in D\mathbf{p}(a)$. Thus $\|(\Phi - u_{\alpha})_{a^{-1}} \cdot \Phi \in D\mathbf{p}(a)$. $(u_{\alpha})_{a^{-1}} \cdot \Phi) - (\Phi - (u_0)_{a^{-1}} \cdot \Phi) \| \le \|((u_{\alpha})_{a^{-1}} - (u_0)_{a^{-1}})v_0\| \|\Phi_0\| \to 0$, since $\|((u_{\alpha})_{a^{-1}} - (u_0)_{a^{-1}})v_0\| = \|(u_{\alpha} - u_0)(v_0)_{a^{-1}}\| \to 0$. Hence $\Phi - (u_0)_{a^{-1}} \cdot \Phi \in D\mathbf{p}(a)$ since $D_{\mathbf{P}}(a)$ is norm closed. Thus $TIM_P(a) = IM_P(a)$ if $\bar{a} \in P$. \Box

COROLLARY 10. Let G be a locally compact abelian group, P[Q] a w^* [norm] closed $M(\widehat{G})$ submodule of $L^{\infty}(\widehat{G})$ such that $UC_P(\widehat{G}) \subset Q \subset P$ and $F = \sigma(P) =$ $G \cap \overline{P}, a \in G.$

Assume that R (or T) is a closed subgroup of G, $S \subset R$ (or T) a symetric set such that $aS \subset F$ and F be metrisable.

(i) Then $Q/W_Q(x)$ (a fortiori $Q/V_Q(x)$, Q/WAP_Q and $Q/ncl B(\widehat{G}, F)$) has ℓ^{∞} as a quotient and both $TIM_O(x)$ and $IM_O(x)$ contain \mathcal{F} , for all $x \in aS$. (ii) If G is second countable nondiscrete then $L^1(\widehat{G})/(P)_0$ is ENAR.

Remark. $B(\widehat{G}, F) = \{\mathcal{F}_{\mathcal{S}}\mu; \mu \in M(F)\}$ and $(P)_0 = \{f \in L^1(\widehat{G}); (g, f) =$ 0 if $g \in P$.

COROLLARY 11. Let G, P, Q be as above and assume that $H \subset G$ is a closed nondiscrete subgroup such that $int_{aH}F \neq \emptyset$ and F is metrisable. Then [(i)] and (ii) of Corollary 10 hold [for each $x \in int_{aH}F$].

Proof of Corollaries 10 and 11. Let $Q = \mathcal{F}^{*-1}Q$. By Proposition 8, $W_P(x) =$ $\mathcal{F}^{*-1}W_P(x)$. Let $x \in aS$ [$x \in int_{aH}F$] respectively. By Corollaries 6 and 7, $Q/W_{O}(x)$ has ℓ^{∞} as a quotient and $TIM_{O}(x)$ contains \mathcal{F} . Since $\mathcal{F}^{*}: Q \to Q$ is an isometry onto and $\mathcal{F}^*W_{\mathcal{O}}(x) = W_{\mathcal{Q}}(x)$ we get that $Q/W_{\mathcal{Q}}(x)$ (and, since $V_Q(x) \subset W_Q(x)$ by Prop. 9, $\tilde{Q}/V_Q(x)$) has ℓ^{∞} as a quotient and $TIM_Q(x)$ (and, since $IM_P(x) \supset TIM_Q(x)$ by Prop. 9, $IM_Q(x)$) contains $\boldsymbol{\mathcal{F}}$.

If $\mu \in M(G)$, $f \in L^1(\widehat{G})$, then $(\mathcal{F}^*\lambda\mu, f) = \iint f(\chi)\overline{\chi(y)} d\chi d\mu(y) = (\mathcal{F}_S\mu,$ f); hence $\mathcal{F}^*\lambda\mu = \mathcal{F}_S\mu$ in $L^{\infty}(\widehat{G})$. Thus $\mathcal{F}^*\lambda M(F) = B(\widehat{G}, F)$. But by [Gr5], Prop. 3, $\mathbf{M}(F) = \operatorname{ncl} \lambda M(F) \subset W_{\mathbf{O}}(x)$. Thus $\mathcal{F}^*\mathbf{M}(F) = \operatorname{ncl} B(\widehat{G}, F) \subset W_{\mathcal{O}}(x)$. Thus $Q/\operatorname{ncl} B(\widehat{G}, F)$ has ℓ^{∞} as a quotient. Furthermore by Prop. 5, $WAP_{Q} \subset W_{Q}(x)$ and since it is known that $\mathcal{F}^*WAP_Q = WAP_Q$ we get that Q/WAP_Q has ℓ^{∞} as a quotient. This proves (i). Part (ii) is proved as in Corollary 6 or 7.

DEFINITION. Let G be a separable metric l.c.a. group. The closed $F \subset G$ is an ENE set if for each w^* [norm] closed $M(\widehat{G})$ module P[Q] of $L^{\infty}(\widehat{G})$ with $\sigma(P) = G \cap \overline{P} = F$ and $UC_P \subset Q \subset P$, Q is ENE at each $x \in F$ (i.e., $Q/W_Q(x)$) has ℓ^{∞} as a quotient) and $TIM_{O}(x)$ contains $\boldsymbol{\mathcal{F}}$.

Let $\bar{\alpha} = (\alpha_1, \ldots, \alpha_n), \ \bar{\beta} = (\beta_1, \ldots, \beta_n)$ be in \mathbb{R}^n . If $S = \{t\bar{\alpha}; t \in S'\}$ where $S' \subset R$ is ultrathin symmetric then S is called an ultrathin symmetric set in \mathbb{R}^n . Since $R \approx \{t\bar{\alpha}; t \in R\}, S + \overline{\beta}$ is ENE in \mathbb{R}^n (Corollary 10). Any closed F which is a union of translates of sets S_{α} where S_{α} or $-S_{\alpha}$ are ultrathin symmetric in \mathbb{R}^{n} , is ENE (Corollaries 2' and 10). A fortiori any closed $F \subset \mathbb{R}^n$ which is a union of nontrivial convex subsets of \mathbb{R}^n is ENE.

And yet any Kahane curve in \mathbb{R}^n $n \ge 2$ is not ENE (at any point on it). If n > 2kthere exists a k dimensional manifold $F \subset \mathbb{R}^n = G$ which is a Helson set. Thus if $P = w^*$ cl lin $F \subset L^{\infty}(\widehat{G})$ then $P = W_P(x) = V_P(x) = B(\widehat{G}, F)$ for all $x \in F$ (see [Mc], [Mu]).

Problem. Characterize closed ENE subsets of \mathbb{R}^n (of any l.c.a. group G).

REFERENCES

- [BL] Y. Benyamini and P. K. Lin, Norm one multipliers on $L^p(G)$, Ark. Mat. 24 (1986), 159–173.
- [Ch1] Ching Chou, Weakly almost periodic functions and Fourier Stiltjes algebras of locally compact groups, Trans. Amer. Math. Soc. 274 (1982), 141–157.
- [Ch2] _____, Topological invariant means on the Von Neumann algebra VN(G), Trans. Amer. Math. Soc. 273 (1982), 207–229.
- [Co] H. S. Collins, Strict, weighted and mixed topologies and applications, Adv. in Math. 19 (1976), 207–237.
- [CF] M. E. Cowling and J. J. F. Fournier, Inclusions and noninclusions of spaces of convolution operators, Trans. Amer. Math. Soc. 221 (1976), 56–95.
- [Da] Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
- [DU] J. Diestel and J. J. Uhl Jr., Vector measures, Math Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977.
- [Ey] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236.
- [G,Mc] C. C. Graham and O. Caruth McGehee, Essays in commutative harmonic analysis, Springer-Verlag, New York, 1979.
- [GrL] E. E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stiltjes algebra B(G), Rocky Mountain J. Math. 11 (1981), 459–472.
- [Gr1] E. E. Granirer, On some spaces of linear functionals on the algebras $A_p(G)$ for locally compact groups, Colloq. Math. LII (1987), 119–132.
- [Gr2] _____, Geometric and topological properties of certain w* compact convex subsets of double duals of Banach spaces which arise from the study of invariant means, Illinois J. Math. 30 (1986), 148–174.
- [Gr3] _____, On some properties of the Banach algebras $A_p(G)$ for locally compact groups, Proc. Amer. Math. Soc. **95** (1985), 375–381.
- [Gr4] _____, On convolutions operators which are far from being convolution by a bounded measure, Expository memoir, C. R. Math. Rep. Acad. Sci. Canada XIII, No. 5 (Oct. 1991), 187–204.
- [Gr5] _____, On convolution operators with small support which are far from being convolution by a bounded measure, Colloq. Math. 67 (1994), 33–60.
- [Gr6] _____, On the set of topologically invariant means on an algebra of convolution operators on $L^{p}(G)$, Proc. Amer. Math. Soc., to appear.
- [He] H. Helson, Fourier transforms on perfect sets, Studia Math. 14 (1954), 209-213.
- [Hz] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 37 (1973), 91–123.
- [HR] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vols. I, II. Springer-Verlag, New York, 1970.
- [Hu] Zhiguo Hu, On the set of topologically invariant means on the Von Neumann algebra VN(G), Illinois J. Math. **39** (1995), 463–490.
- [Ka1] J. P. Kahane and R. Salem, Sur les ensembles linéaires ne portant pas de pseudomeasures, C. R. Acad. Sci. Paris 243 (1956), 1185–1187.
- [Ka2] J. P. Kahane, Sur les rearrangement de fonctions de la classe A, Studia Math. 31 (1968), 287–293.

DAY POINTS FOR QUOTIENTS OF A FOURIER ALGEBRA

[Ka3] _____, Séries de Fourier Absolument Convergentes, Springer-Verlag, New York, 1970.

[Ko] T. W. Körner, A pseudofunction on a Helson set, Astérisque Math. France 5 (1973), 3-224.

- [LP] Anthony To-Ming Lau and Alan L. T. Paterson, *The exact cardinality of topologically invariant means on amenable locally compact groups*, Proc. Amer. Math. Soc. **98** (1986), 75–80.
- [LT] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*, vol I, Springer-Verlag, New York.
- [Lo] L. H. Loomis, The spectral characterisation of a class of almost periodic functions, Ann. of Math. 72 (1960), 362–368.
- [Mc] O. Carruth McGehee, *Helson sets in Tⁿ*, Conference on Harmonic Analysis, College Park, Maryland, 1971, Springer Lecture Notes, no. 266, Springer-Verlag, New York, pp. 229–237.
- [Me] Y. Meyer, *Recent advances in spectral synthesis*, Conference on Harmonic Analysis, College Park, Maryland, 1971, Springer Lecture Notes in Math., no. 266, Springer-Verlag, New York, pp. 239–253.
- [Mu] D. Müller, A continuous Helson surface in \mathbb{R}^3 , Ann. Inst. Fourier (Grenoble) **34** (1984), 135–140.
- [Pa] A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, no. 29, Amer. Math. Soc., Providence, R.I., 1988.
- [Pi] J. P. Pier, Amenable locally compact groups, Wiley, New York, 1984.
- [P1] F. Piquard-Lust, *Means on CV_p(G)—Subspaces of CV_p(G) with RNP and Schur property*, Ann. Inst. Fourier (Grenoble) **39** (1989), 969–1006.
- [P2] _____, Elements ergoidiques et totalement ergodiques dans $L^{\infty}(\Gamma)$, Studia Math. LXIX (1981), 191–225.
- [Ro] H. P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803–831.
- [Ru1] W. Rudin, Fourier analysis on groups, Wiley, New York, 1960.
- [Ru2] _____, Functional analysis, McGraw-Hill, New York, 1973.
- [Sa] E. Saab and P. Saab, The Banach space X**/X, Bull. Sci. Math. (2)107 (1983), 139–144.
- [S] Sadahiro Saeki, Helson sets which disobey spectral synthesis, Proc. Amer. Math. Soc. 47 (1975), 371–377.
- [Wo1] G. S. Woodward, Une classe d'ensembles épars, C. R. Acad. Sci. Paris 274 (1972), 221-223.
- [Wo2] _____, Invariant means and ergodic sets in Fourier analysis, Pacific J. Math. 54 (1974), 281-299.

UNIVERSITY OF BRITISH COLUMBIA

VANCOUVER, BRITISH COLUMBIA, CANADA