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POINCARI INEQUALITIES AND,STEINER
SYMMETRIZATION

PEKKA KOSKELA AND ALEXANDER STANOYEVITCH

1. Introduction

Let be a domain in ]n (n > 2) with finite volume: mn(f2) < cz. Given an
integrable function u on f2, we let ua denote its average value on f2; i.e.,

f u(x) dx.

For each number p, _< p < cx, the domain 2 is said to be a p-Poincar domain
provided that

Mp() :-----sup < c,
u IIXTu I1,<)

where the supremum is taken over all nonconstant functions u in the Sobolev space
W,p (f2). Thus p-Poincar6 domains support the p-Poincar6 inequality

f lu ulP dx <_ M f lulP dx.

By the density of smooth functions in WI’p(2) ([19], [8]), the Poincar6 inequal-
ity need only be checked for locally Lipschitz continuous functions. The Poincar6
inequalities are prototypical examples of Sobolev inequalities which are extensively
used in PDE and related fields; see [18], [1 ], [26], and Chapter 7 of[ 11 ]. The geometry
of Poincar6 domains is quite complicated and a complete geometric characterization
remains an elusive unsolved problem, even for the case of a simply connected planar
domain (see, however, [13]). Notice that there is not much hope for a general ge-
ometric characterization since for example the removal of a closed set of vanishing
(n 1)-dimensional measure from a p-Poincar6 domain results in a new p-Poincar6
domain. We will mostly be dealing with the p-Poincar6 inequalities when p > 1.
The "isoperimetric’! case p is more tractable; see 12], 18] and [25]. For infor-
mation on Poincar6 type inequalities in case p < 1, see [5]. We point out that iteration
arguments can be used to show that certain local inequalities imply a corresponding
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global inequality in smooth domains and even in domains that satisfy a twisted in-
terior cone condition (John domains)--see [3], [6], and [14]. For sufficiently "nice"
domains (smooth or uniform, for example) a Poincar6 inequality can also be shown
by extending the functions to all of Rn; see [7], 13] and the references therein.

In this paper we will give a geometric characterization of p-Poincar6 domains
where we restrict to the class of Steiner symmetric domains f2 C Rn. Our character-
ization will work only when p > n 1, and will depend on the Euclidean distance
function

*(-) dist[-, 0 ].

In order to formulate our results, it will be convenient to split the coordinates of a

point x (Xl, x2,..., Xn) as (Xl, x’) where x’ (x2, x3, ..., x) n-1. For
each and any set A C ]In we define the cross section of A at level as

At {x A" Xl --t}

and the projection of A onto the xl-axis as

Projx (A) {x 6 : Ax # 0}.

The Steiner symmetrization (with respect to the xl-axis) of the domain f2 is the
domain

’* (X, X’) R X ]n-1. ix,in-1 < mn-l(2x)
6On-

where (_On denotes the volume of the unit ball in n. (.On m (Balln (1)). The domain
f2 is said to be a Steiner symmetric domain (with respect to the xl-axis) if Q 2".
We will also make use of the so-called kp metric on 2 which is defined as follows:

a f ds
kp (-,--) infjF -1)/(p-I) x y 2),

where the infimum is taken over all rectifiable curves 9/joining - to y inside
g2 and the integration is with respect to arclength. The kp metrics have been used
by Gehring and Martio [10] and by Smith and Stegenga [23]. Observe that when
g2 g2* is a Steiner symmetric domain then the xl-axis is a geodesic for kp so that
for tl, t2 Proj, (f2) we have

f((tl 0’), (t2, 0’)) ftl
t2 dt

kp 3a(t, Ot)(n-1)/(P-, 1)"

Also, whenever 0 6 Projx () then for each x 6 Projx (f2) we can define T(g2x)
(here T stands for "tail") as a component of f2 \ g2x which does not contain (0, 0’).
Except when x 0 there is only one such component. We are now ready to state the
first of our three main results.
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THEOREM A. (GEOMETRIC CHARACTERIZATION OF STEINER SYMMETRIC POIN-
CAR DOMAINS). Let f2 c_ n be a Steiner symmetric domain offinite volume. We
assume

{(X1, Xt) X ]n-1. Ix’l < (/9(x1)} "*
with Iol _< M < cx. We may assume tp(O) > O. Let n- < p < cx. Then f2 is a
p-Poincar domain ifand only if

(1) sup kp mn (T(g2x)) <
xProjx

Furthermore, if p n and g2 is a p-Poincard domain then (1) remains valid.
Finally,for each p (1, n 1] there is a Steiner symmetric domain f2 C ]1n offinite
volume which is not a p-Poincard domain butfor which (1) is valid.

The operation ofSteiner symmetrization is a natural one formany problems in PDE.
For connections of the Steiner symmetrization as well as of types of symmetrizations
with such problems, three good references are [2], [16] and (the classical) [21 ]. Each
of these contains an extensive bibliography. In particular, when p 2, the p-
Poincar6 constant M2(fl) is the reciprocal of the square root of the smallest positive
eigenvalue for the Laplace operator with Neumann boundary conditions on ft-see
[8], [17], 4.10 of [18] and 4 of [24] for more on this connection. In 1948, P61ya
[20] proved that the smallest positive eigenvalue for Laplace’s operator with Dirichlet
boundary conditions on 2 will never decrease under Steiner symmetrization. The
corresponding result is no longer true if Neumann boundary conditions are to replace
those ofDirichlet. In fact there exists a domain 2 C I2 which is a p-Poincar6 domain
for all p but whose Steiner symmetrization f2* fails to be a p-Poincar6 domain for any
p (see Example 6.10 in [22]). Our next result is a direct extension from two to any
number of dimensions of one of the main results in a recent paper by Smith, Stegenga,
and the second author (see Theorem C of [22]). It gives a class of domains for which
the Poincar6 inequalities are preserved under the operation of Steiner symmetrization.

THEOREM B (STEINER SYMMETRIZATION PRESERVES POINCARI INEQUALITIES).
Let g2 c_ I1n be a domain satisfying

x {x} x Balln-1 y(x),o(x) (x

where--" IR Rn-1 and o" IR [0, M] (M < cx:). If 2 is a p-Poincard
domain with n < p < cx then so is its Steiner symmetrization 2".

Finally, we give a more restricted class of Steiner symmetric domains for which the
characterization of Theorem A remains valid for all p > 1. These domains f2 will be
obtained by revolving the graph of a Lipschitz continuous function : [0, cx)
about the x1-axis. In fact, for such domains, we obtain the following geometric
characterization of a more general Sobolev-Poincar6 inequality.
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THEOREM C. Assume that " [0, ) is Lipschitz continuous and

{(X1, X’) E ]1 X ]n-1. Ix’l < (I)(x1)} "*
is a domain offinite volume. We may assume dp(O) > O. Let p and q be positive
numbers satisfying 1 < p < q. Ifp < n we assume also that q < np Thefollowing
are equivalent:

(ii)

(i) There exists a positive number C such that the inequality

Ilu u2llLq(f) < CIIXTull)

holdsfor all Sobolevfunctions u WI’p(f2).

(fmax{O,} )p-sup I(s)l-n/p- ds mn(T(2x))eq < o.
xProjx (f2) \dmin{0,x}

Note that since $ is Lipschitz, $(s) and 8(s, 0’) are always comparable, so
the quantity in the above supremum is comparable to the corresponding quantity in
Theorem A.

This paper is organized as follows. In Section 2 we formulate some preliminary
lemmas which will be needed in the proofs of the principal results. Section 3 gives
the proofs of Theorems A and B. In the final Section 4 we prove Theorem C and
also construct a simple example to show that Theorem A cannot in general remain
valid if the p-Poincar6 inequality is replaced by the more general one considered in
Theorem C (with q > p).
We invoke the customary conventions regarding constants. The same symbol for a

constant may take on different values at different occurences. If we wish to stress that
a constant C depends only on certain parameters, say p and n, we write C C (n, p).
The notation C < D shall usually indicate that C is dominated by an absolute constant
A times C (C < AD), although in some proofs for convenience we may allow A to
depend on certain parameters if it is well understood that D may depend on these
parameters as well. The notation C D is equivalent to C < D and D < C. For
example, if Itl < zr/2 then sin t.

2. Lemmas

Here we gather an assortment of results needed to prove the main theorems. We
begin with the following Sobolev-type embedding theorem which is a consequence
of inequalities (7.34) and (7.41) in [11 ]. See also Lemma 1.7 of [4].

LEMMA 2.1. If B C_ n is a ball of radius R, p > n, and u W1,p B), then

[U(Xl) U(x2)l < C(n, p)lxl x2ll- (fl lVulPdx)



POINCAR INEQUALITIES AND STEINER SYMMETRIZATION 369

for all X and X2 in B.

Our next two results provide additional formulations of the p-Poincar6 inequality.
In formulating the first result it will be convenient to introduce the following class of
functions.

Notation. For a domain f2

_
n, we let LiPloc(f2) denote the class of functions

on g2 which are locally Lipschitz continuous on 2.

LEMMA 2.2. Let C__ n be a domain offinite volume, Bo Balln (x0, r0) C f2
with ro < -6(xo). Letting

(B0) SUPu f IVulPdx
u (LiPloc f’) () \ {0} and u 0 on Bo

Npp, (B0) sup { mn(U 1)

f IVulpdx
u (LiPloc fq WI’p)(") \ {0},

O < u < 1, u =Oon Bo }

The proof is accomplished by a series of "truncation" arguments of the type often
used in PDE. A good general reference for such material is the treatise by Maz’ja
[18], where the results combined in Lemma 2.2 can be found. For the convenience
of the reader we briefly sketch the ideas involved in the proof.

The first inequality of the lemma follows by decomposing v u u3/2B0 as
v v + (1 v) where is an appropriate cut-off function and then applying the
Sobolev and Poincar6 inequalities for v and finally using Lemma 2.3 below.

For the second inequality, let u Lip/o() N WI,p(2) \ {0} with u 0 in B0.
We must show that Rt(u) := f. lul p dx/ f. IVul p dx < Np,(no).

For j 6 Z, define

(2)

We may write

For j 6 Z, define

Aj {x 6 f2:2j- < lu(x)l < 2J}.

lul p dx , 2JPmn(Aj)
jEZ

vj(x) max {0, min { 1,
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Differentiating yields

IVu(x)12-j+l ifx E Aj(3) IVoj(x)l 0 ifx Aj.

Note that for each j, vj (LiPlocfqWl’P)(2)\{O}, 0 < vj < 1 and vj 0
on B0. Whence mn({l)j 1}) < NpP, f(Bo) ff Iojlp dx, Using this inequality
and then (3) we obtain mn(Aj) < mn({l)j-1 1}) < gpP,2(no) fft IVVj-llpax <

Npp, (Bo)2(-j+2)pa fAj IVuIPdx"
Summing up by using (2) gives

ff ’ulPdx <- c(p)NPP’2(B) fa [VuIP dx

as desired.
The last inequality follows from Lemma 2.3 below.

LEMMA 2.3. Let ’2 .n be a p-Poincard domain, < p < cxz and A C f2 be
any measurable subset ofpositive volume. For u Wl’p (f2), we have

lu uAIPdx < c(p) mn (2)
mn(A) M(f2) IVulPdx

The proof ofLemma 2.3 is accomplished by adding and subtracting ua from u--UA
and then using the triangle inequality and H61der’s inequality. We omit the details.

In order to deal effectively with Steiner symmetric domains f2*, we will need
to "discretize" the function 3 (x, 0’) (x 6 R, 0’ 6 Rn-1) along the central axis. The
following result, whose proof relies on a Whitney type decomposition argument, will
accomplish this for us.

LEMMA 2.4. Let f2 f2* c_ Nn be a Steinersymmetric domain. Write (aa, ba)
Projxl f2. There exists a sequence (ai)isi with I c_ Z an interval, such that

aa < ai < ai+l < ba

for each I A (I 1), andfor each x (aa, ba) we have

min dist [(x, 0’), [0 ala, < 23a (x, 0’).
i6I

Furthermore, ifai-1 <_ x <_ ai we have

min dist[(x, 0’), [02]aj] < 23a(x, 0’)
j{i-l,i}

provided ’ {0, }.
Finally, for any given xo Projx, 2, the construction can be made in such a way

that ;a(xo, 0’) dist [(xo, 0’), [0]ao].
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Proof. Fix x0 6 (an, be). For brevity we write 6e(x) for 6e(x, 0’).
Choose a0 6 [an, be] satisfying

dist[(xo, 0’), [0"]ao] 3e(X0) --: 30

Observe that if 0 < Ax < 3e(x), the triangle inequality implies
Ax, 0’), [O f2]ao < 3o + Ax and 3e (xo + Ax) > 3o Ax. Therefore

dist[(xo +

dist [(xo -+- Ax, 0’), [O 2]ao 3o + Ax
e(xo + Ax) ;o Ax

so if Ax < (g)3e(xo) it follows that

(4) dist [(x0 + Ax, 0’), [a fa]a0] <_ 23e(x0 + Ax).

Let Ao inf{ Ax: (4) is false} and put x xo + Ao. Note by the above comment,
Ao > g3e(xo). If x be we need not construct any more ai’s (i > 0). Otherwise,
we choose a 6 [an, be] satisfying

dist (x 1, 0’), [O f2]a, 3e (X --: 31.

The following claim shows that we must have a > ao.

SUBLEMMA. If aj < ai and (x, if) is closer to [3 f2]aj than to [3 ]a, then so is
(t, 0’)for all < x.

(The proof of the sublemma is an exercise in elementary plane geometry, we omit
the details.) Indeed, if it were to happen that a < ao then by the sublemma and the
properties of ao and al, we would have

dist [(xo, 0’), [O "]a, < dist [(Xl, 0’), [O "]ao] 3e(X0)

which is impossible, so indeed a > ao.
We let

A inf{Ax: dist [(Xl + Ax, 0’), [3 "]a,] > 23e(Xl -}- AX)}

and X2 X q" A 1. If X2 be stop this construction; otherwise we proceed as before
to obtain a2 > a having the same relationship to x2 as a did to X l. We continue this
construction iteratively (and perhaps indefinitely) in the same fashion to construct a
desired sequence (ai)i>_o. The fact that, at each step, Ak > 1/23e(xk) guarantees that
Xk /z be. We can similarly construct a sequence (ai)i<o. By combining these two
sequences, we obtain a sequence (ai)i el which, by virtue of the construction, clearly
satisfies all of the desired properties except for the last inequality.
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We now establish the last inequality ofLemma 2.4. By symmetry we may assume
that > 1. Fix ’ [ai-1, ai], and choose k e I such that

min dist [(’, 0’), [Of2]aj
jel

is attained when j k. We must show that k {i 1, }, and we shall accomplish
this by method of contradiction.

Case 1. ak < ai-1.
Regardless of where xk is located, be it xk < a or x > ag, it follows from the

construction of the sequences (aj)jt and (xj)jt and simple plane geometry that
Xk+ > X.

We now have

(5) ak < ak+l < ai-i < x < Xk+1.

Since (by choice of k) no points (aj, tp(aj)) can lie inside the ball with center (x, y)
(’, 0) and radius dist [(’, 0’), [0 f2]ak ], we must have

(6) )2 )2qg(ak+l >_ (’- ak)2 q- qg(ak)2 ("- ak+l

Also by virtue of the construction, we can write

(7) dist [(xk+l, 0’), (ak, p(ak))]2
4dist [(Xk+l, 0’), (ak+l, P(ak+l))]2

If we estimate the right side of (7) using (6), then use the inequality (’- ak)2 > (’_
)2ak/l -t- (ak/l --a)2, and finally use the triangle inequality we obtain a contradictory

inequality. This shows that Case cannot occur.

Case 2. a > ai.
The treatment here is similar to that in Case 1. We omit the details.

LEMMA 2.5. Let R be the cylinder defined by

R {(xl, x’) e x ]n-1. IXl[ < M and Ix’l < M}.

Ifp > n- then

RSup kp ((0, 0’), (b, O’))p-lmn(R CI {Xl > b}) < C(M, p, n).
0<b<M

Moreover if p < n then this supremum is infinite.
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Remark. The last statement of the lemma shows that a principal result (Theorem
A) in [22], used to prove another main result (Theorem C), which is the two dimen-
sional analogue of our Theorem B here, cannot be generalized to n > 2 dimensions
without assuming (at least) p > n- 1.

RProof Define (b) :-- kp ((0, 0’), (b, O’))p-lmn(R f’) {xl > b}). We have
M Mn_(b) c(n)(fM_ )P-s(n_l>/(p_l) (M b) Now

ds
C(n, p) {I ul--II1 (U b)l--

-b s(n-1)/(P-1) 10g l-b/U

if n# p

ifn=p.

Case l. n p.

( -)I ]
n-1

(b) <_ C(M,p,n) 1- lOgl_b/M
< C(M p,n) max log =C(M,p,n)

O<t<M

Case 2. n # p.
n--1Let , (p 1)(1 7--1) + p + n. We have (b) < C(M, p,n) +

C(M, p, n)(M b) < C(M, p, n) for all b 6 (0, M) if and only if , > 0, i.e.,
p>_n-1. El

3. Proofs of main results

In this section we shall prove Theorems A and B.

Strategy ofproofs. We first show sufficiency of the supremum (1) being finite
for the p-Poincar6 inequality to hold on g2*. Next we show that for any domain f2
satisfying the conditions of Theorem B (in particular, if 2 * is as in Theorem
A), the supremum in (1) (for f*) being infinite will cause the p-Poincar6 inequality
on 2 to fail (n < p < o). This will establish the necessity part of Theorem A,
and also (in light of the previously established sufficiency for Theorem A) at the
same time prove Theorem B. We finish the proofs by giving counterexamples which
demonstrate that the range of exponents coverered in Theorem A is sharp.

PART A. Condition (1) implies * is a p-Poincard domain (n < p < oo).

By Lemma 2.2 we need only check that if u (LiPloc N WI.p)(g2), satisfies

(’-0 --0- ) then ({u 1})<0<u < landu IB0=0whereB0=Balln ,( mn
N fn Vulpdx for some finite positive constant N.
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For convenience we introduce some more notation. We write g2 for * in the
remainder of this proof. Fors > 0, f2+ {(x,x’) 6 : x > s}; fors < 0,
f2j- {(x, x’) 6 f2" x < s}. We write A {u 1}, and define

A1 A A "t where T1 t: u(t,x’) < -g for some
T1

A2 AA 2twhereT2= t: u(t,x’)> gforallx
T2

Now, let 6 T1 and assume that "t (’] A - 0. Therefore osc, u > 1/2 so we can
apply Lemma 2.1 to the restriction u I, for a.e. such to conclude

< C(M, p) diam (t) 1-n’ iVulPdn_l
2

Whence for such we have

lVulPdT-n-1 C(M, p)

and we conclude

mn(al) < ft (t)n-ldt <- ft Mn-ldt
TI: Afqtl} .TI"

<_ C(M,p) ft fa lVulPdT-tn-ldt
-TI" Afqt=fil}

C(M, p) ] IVulPdx.

We still have to obtain a similar bound for mn (A2). We put

s- inf{s" 0<sT2ors=x}
so sup{s" 0>s

Certainly we have (letting f2+ g2- 0)

mn(A2) <_ mn(+So+) + mn(2_).
We will prove that rnn(2) <_ N f IVu]Pdx. The corresponding inequality for

mn (f2-fo-) is proved in the same fashion. Let >_ s-, 6 T2. We must show that

(8) mn(t+) < N fn IVulPdx"
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Case 1. ’t N Bo 0.
Let x’ BalP- (0’, 1/28a (0)). Then for a.e. such x’,

f0t < u(s,x’) ds
2-

<_ IVu(s, x’)lPds

Thus

so that

IVu(s, x’)lPds >_ C(p)(O) 1-p

IVulPdx >_ IVu(s, x IPds dT-[n (x’)
alP- (0’, 8 (0))

>_ C(n, p)f2(O)n-p

and thus

mn(2t+) _< mn(2) _< C(n, p) mn(Bo)mn() ft(O)p f2 IVulPdx

< C(n, p,M)mn() fft IulPdxmn(Bo)

Case 2. f2t f3 Bo .
It certainly would suffice to prove (8) with u being replaced by

u(x)’(x) ’(x, x’)
max{ 1/2, u (x)

ifxl <t
ifxl >t.

Because of this we may assume that u > 1/2 throughout f2t+. Let Q0 be a largest
possible cube of sidelength e(Qo) S :- {2-n: n Z} which is centered on the
x-axis and lies in B0. Adjacent to the right face of Q0 we construct another cube Q
which is also centered on the x-axis and whose side length (Q1) S is as large as
possible so that 2Q c f2. Next construct a cube Q2 adjacent to the right face of Q1
in the same fashion as Q was constructed from Q0. Continue in this way to construct
a chain of cubes (Qi N)i=0 wheree(Q/) 6(x) forallx 6 Qi suchthat Qv c f2t+ but
QN- gZ f2t+. Now for each < N, since (Qi) " (Qi+), Qi to Qi+ is a dilation
of one of a finite collection of p-Poincar6 domains consisting of a unit cube with
a smaller cube attached to and centered on one face (any domain G with boundary
OG of class C is a p-Poincar6 domain for each p 6 [1, o)msee for example [9],
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Theorem V.4.19). Therefore Mp(Qi Id Qi+I) e(Qi) and by invoking Lemma 2.3
we obtain

1 N-1

< luoo uo < luo uo,/,2 0

(9)

N-1 1 /<-- E Ill U Qi+ dx
0 mn(ai)

N-1

0 mn(Qi) iUQi+,
Ill llQi+l dx

N-1 mn(Qi I,.J Qi+I)
< C(n, p) E mn(ai) mn(ai)0

C(n,p) fN IVu---I dx
Qi f2 (x)n-1

e(Qi) I IVul dx
aaiuai+l

<_ C(n, p) IVulPdx ._,
Qi f2 (X p

Now

f aX_c<np, f us fn-, n-, C(n, p)

UQi
tg2(X)’’-f-l P ta(S 0’)[’-IP-(n-l)]

0 0

ds

8a(s, 0’)

Letting L < cxz denote the supremum in (1), from (9) we obtain from

This establishes (8) and completes the sufficiency proof of Part A. We point out that
this type of "chaining argument" which we used in Case 2 is by now standard, cf.,
[141, [151, [231. [21

Remark. The proof shows that

N;,a(B0) < C(n p,M)
mn()
mn(Bo)

+ LC(n, p)
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SO by Lemma 2.2,

MPp (f2) < C(n, M,p)rnn (f2)
ran(no)

4- LC(n, p)

where L denotes the supremum in (1).

PART B. If the supremum in (1) is infinite or f2*) then 2 is not a p-Poincar
domain (n- 1 < p < cx).

Without loss of generality, we may assume that the supremum in (1) is assumed
for x > 0, i.e., that

(10) supkp* ((0, 0’), (b, O’))P-lmn(-) 0.
b>O

We invoke Lemma 2.4 to obtain a sequence (ai)il with the properties listed therein,
and with x0 0. In particular

dist [(0, 0’), [O"*]ao] tf2, (0 Or).

For 6 I, > 0, define the set

Ai {x (Xl, x’) ]n-1. X1 (ai-1, ai)or x ---aj and x’ f2x,
with j or/}.

We also write tC(Xl, x2) for kp* ((Xl, 0t), (x2, 0t)).

LEMMA. For each I, > there exists a Lipschitz continuous function
f Ai ] having the following properties:

(i) j(ai-1, X’) Ofor all (ai-1, X’) ’ai-,,
(ii) 3(ai x’) ci for all (ai x’) ’ai where Cl(n, p) < ci < C2(n p)x(ai-l,ai)

and
(iii) fai IV3lPdx < C(n, p)tc(ai_l, ai).

Proofofthe lemma. Let Aai ai ai-1.

Case 1. Aai < 5min{qg(ai_l), qg(ai)}.
We perform the construction of j in case go(ai-1) < tP(ai). The construction

in case 99(ai_1) > qg(ai) can simply be obtained by the present construction by a
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y-axis

tP(ai.l) + Aai

tP(ai.l)

.:.::...:.:.:.:.:.:.:.:.:.:.:.::: ::: ::::::::::::::::::::::::
".:.:.:.:.:.:.:.:.:.:.:.:.:.:.:

::::::::::::::::::::::::::::::::
:":’:":’:’:’:’:’:’:’:’:’:’N
,::.:.’:.:.:.:.:.:.:.:.:.:.:.:
"’:’::’:’:’:’:’:’:’:’:’:’:’N

.:.:.:.:.:.:.:.:.’.’.’.:.:.:
,.’.’.’.’.’. Ri......

..:.:.:.:.:.:.,

7//, "’:’:,
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Figure 1. Defining the function f/.

reflection. In this case, by Lemma 2.4 we have

82" (X, 0’) 99 (ai- l) for ai-1 < x < ai

so that

ai ds <,-i>

(11) tc(ai-1, ai) ,-..._L " Aai tP(ai_l) (p-t

p-Ii- Z*
The definition of 3 will be symmetric about the axis Xl,i which is parallel to the X

axis and passes through the center of a,_ meaning that on each 2-plane containing
the Xl,i-axis, the definition of f/will be the same. Fixing such a 2-plane we may now
think of fi as a function of two variables Xl,i and y: fi(xl,i, y). We need an auxiliary
linear function ): ] which is specified by X’(t) -1 and ,(ai) O.

Referring to the regions defined in Figure 1, we define f/as follows:

F(Xl,i) := f/(xl,i,0) (Xl,i ai-1)(ai-l) -(n-1)/(p-1)

on Gi" fi(xl,i, y) F(Xl,i)

onOi" fi(xl,i,Y)-- f(xl,i) I1-Y-qg(ai-1)l-F-f(ai)IY-qg(ai-1)l,(xl,i)(Xl,i)
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on Ri" f/(XI,i, y) F(ai),

and for y < 0: J(XI,i, y) j(Xl,i, lYl).

Only property (iii) needs checking. To facilitate the computation we drop the subscript
from f/, X l,i and further let G, O and R denote the partition of Ai obtained by

revolving Gi, Oi and Ri respectively about the Xl,i-axis.
On G, IVf(Xl, x’)l F’(xi) tP(ai) -(n-1)/(p-1) SO that (using (11))

lVflPdx (ai)n-l-p(-) Aai

Aai qg(a/_l)-(-)
,- /(ai-1, ai).

On O, letting r Ix’l we have,

fx(Xl’X’)- Ft(Xl)I1-Ix’l-g(Xl)l+)(x)
(12) fr(Xl,X’) [F(ai)- F(Xl)]

Z,(x)

F(Xl)- F(ai)
[Ix’l- tp(ai_)]

Hence

fo fa
ai F(ai)- F(Xl) p

[(,.(xi) -- (ai))n-1 (ai)n-l] dxl

But since F’(t) tp(ai_l) -(n-1)/p-1 (ai-1 <_ <_ ai) and since

((Xi) -I- qg(ai))n-1

we may conclude just as above that

lfrlPdx tc(ai_l, ai).

We still must estimate fo Ifx, p" Since [Ixtl- (ai-l)[ < )(Xl) for (Xl, x’) O,
by (12) we can write

ILl (Xl, x’)l F’(x) + IF(x)- F(ai)l

The LPfO)-norm of the first term is comparable (since Aai < tp(ai_l)) to
IIF’(x)IIL,(6) which was already shown to have the desired bound. The second
term is just fr (x l, x’) whose LP (O)-norm was already estimated.
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Case 2. Aai > 5 min{0(ai_l), o(ai)}.
As in Case 1, we assume tp(ai_l) _< tp(ai), and we let the Xl,i-axis be the axis

pointing in the same direction as the xl-axis and passing through the center of f2ai_.
Let //be the ordinate on the Xl,i axis which is equidistant to [0 f2]a,_ and to the
(n 1)-plane xi ai. Let Aai ii ai-1. For the remainder of Case 2, we
shall express arguments of 3 by using the special coordinates in n: (x l, x’)i, where
xi is the position on the x1, axis and x’ n-1 denotes the coordinates on the

other n 1 axes which all pass through the Xl,i axis at (0, 0’)i 0 We now define
f/as follows:

on Ai f"l Balln ((ai-1, Or)i, o(ai_l)) fi 0,

on Mi := Ai N Balln ((ai-1,0’)i, ai) \ Balln ((ai-1, 0’)i, tp(ai))"

fi(’--i) I(ai-1 @ (ai-1), r) where r Ii (ai-1, O’)il,

and

on Ai \ Balln ((ai-1, 0’), ai) fi("i) f/(/, O’)i.

With this definition (i) certainly holds and since Aai > 599(ai_l) we have tc(ai_l
(ai-l),/) tc(ai_l,/) Ic(ai_l, ai) (recall o(ai_l) _< qg(ai))whence (ii)holds.
To verify (iii) we compute using polar coordinates.

Observe that on Mi (using Lemma 2.4),

[Vf/("i)[ tf.(ai-1 q-r, 0’) -(n-1)/(p-l,

(the arguments of 8a. here and below are with respect to the standard coordinate
system, as opposed to those of 3).

Whence, noting that for r [qg(ai_l), a’ ai-1], r tf. (ai_l + r, 0’), we have

fA IVlPdx f ’Vlpdx

ai --ai- rn dr
c(n)

/tp(a/-i) a,(a/-i + r, Or) "’-Ip

ai -ai- (n-

" c(n) t.(ai_l + r, O’)-zTz--dr
/(ai-i)

< c(n)lc(ai-1, ai).

This completes the proof of the lemma.

Consider the following restricted supremum of (10):

(13) L0 sup tc(0, ai)P-lmn(+ai
i>0
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In order to show that f2 is not a p-Poincar6 domain, by Lemma 2.2, it suffices to
construct functions F (LiPloc A WI’p)(f2) \ {0} satisfying F(xl, x’) 0 whenever
X < 0 and which have arbitrarily large Rayleigh-Ritz quotients"

mn({F- 1})
RN(F)

f iXTFlP dx

Case 1. Lo
Fix > large enough so that x (0, ai) < 1/2 x (a l, ai). Note that by (10) it follows

fromLemma 2.5 that the set {ai: > 0} ofLemma2.4 is necessarily infinite. Although
this fact is an immediate consequence of (13) it is important to realize (since we will
also need it in Case 2) that it does indeed follow from (10). Define Gi: I by

j-1

j (xl, x’) + Y max ft if aj-1 <_ X <_ aj and < j _<
k=2Gi(x,x’)=

0 ifx <a
Gi(ai, 0’) if x > ai.

Then G is globally Lipschitz continuous on f2 and by the lemma,

max G Ymax 3 to(0, ai) while
2

flvailPdx=L [VfjlPdxtc(O, ai)
2

Thus letting Fi G / max Gi, we have

mn({Fi 1}) > mn(Q)
RN(Fi)

fn IVVilPdx to(O, ai) -p+I

so, by (13), sup RN(Fi) cxz.

Case 2. Lo <
Let K > 0 be a large number. We assume in particular that K > rL0 where r > 0

is a large positive number. Lower bounds on r shall be specified later, as needs arise.
By (10) we obtain b > ai such that

to(O, b)p-lmn(f2-) > K

Choose such that

ai-1 < b < ai.

We also assume that is large enough (which can be converted into a requirement on
the size of r) to insure that

(14) Aai <_ ai-1
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Since, by construction, Aai < 2M for each i, if sup ai : certainly (14) will
eventually hold. If supai < o then since (ai)i>O is an infinite set, we must have
Aai 0 and once again it is obvious that (14) will eventually hold.

Next, since, for b > 0,

K < to(O, b)p-lmn(-) <_ c(p)[x(0, ai_l)p-1 -- tf(ai-1, b)p-1]mn(-)
< c(p)[Lo -k- tc(ai_l, b)p-lmn(f2)]

we have

(15) K(1 c(p)r -1) < c(p)x(ai_l, b)p-lmn(f2-).
It will now be convenient to split the remainder of the proof into two subcases as in
the proof of the lemma.

Subcase 2a. Aai < 5min{tp(ai_l), (ai)}. In this case, by (14) (and using
Lemma 2.4 to estimate x) we have

tc(ai_l, b)p-lmn(-) to(O, ai_l)P-lmn(-)
< t(O, ai_l)P-lmn(a+i_,)
<_ Lo

so (15) would yield

K(1 c(p)r-) < c(p)Lo < c(p)’c-lK.

This inequality will be contradictory as soon as r is sufficiently large. Subcase 2a is
thus dealt with.

Subcase 2b. Aai > 5 min{qg(ai_l), tp(ai)}.
Let i " (ai- + ai ).
As a first reduction, we show that we may assume b > i and

(16) (i) tp(ai) <_ tp(ai_l) and (ii) I(ai-1, b) K(’i, b).

Indeed, first of all, from (14) we can conclude

(17) tc(ai_l, i) c(n, p)tc(O, ai-1)

Now, if (16) were false then we would have

(18) c (ai- 1, b) < 2tc (ai- l, ’i ).

But we could then conclude from (15) using (17) and (18) that

K(1- c(p)r -1) < tc(O, ai_l)mn(ff2a+i_) < r-IK
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SO once again, if r is sufficiently large, we would have a contradiction so (16) is
established.

Since

mn(2-) < c(n)(ai b)Mn-1 q- mn(a+i
we can use (15) and (16) (i) to deduce that

K(1 c(p)r -1) < x(ai-1, b)p-lmn(f2-)
(19) < I(i, b)p-lmn(-)

K(O, ai)P-lmn(’2a+i -1-- K(-i, b)p-l(ai b)Mn-1

We introduce the cylinder Ri about the x1-axis having radius M and projection [ai
2M, ai on the xl-axis. Note that "i > ai M (since Aai < 2M) and consequently
(by Lemma 2.4 and (16 (ii)))

b ds
x(i, b) < dist[(s, 0’), [O"*]ai](n-1)/(P-1)

< kpRi (i 0’), (b, 0’))
Combining this inequality with (19) and then applying Lemma 2.5, we obtain

R, ((ai M, 0’), (b, 0’)) p-IK(1 c(p)r 1) < Lo + kp mn((Ri)-)
< r-IK + C(M, p, n)

which is clearly impossible as long as K > C(M, p, n) and r is sufficiently large.

PART C. This example will show that the range ofexponents in Theorem A is best
possible. We show thatfor each p, < p < n 1, there exists a domain 2 in ]n for
which the condition (1) holds but the p-Poincarg inequalityfails.

Since we may assume n > 3, we have

-n <
i+1

for each > 2. The Steiner symmetric domain f2 will be defined as in Theorem A
by the following function tp" [-1, 1] [0, 1] where

< 1-t < +i-nfori >2p(t)
if 7 7

-Itl otherwise.

To see that (1) holds for this domain f2 and any p 6 (1, n we first observe
that n(t, 0’) - -Itl (Itl < 1) so that

kp ((0, 0’), (t, 0’)) (1 -Itl)
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On the other hand,

mn (tl) mn (-Itl) (1 -It[)n

and hence we may conclude that the supremum in (1) is dominated by C max (1
0<t<l

t)p < 1.
In showing that f2 is not a p-Poincar6 domain for any p (1, n 1] we use the

explicit formulas for the p-capacity of a condensor determined by a pair of concentric
balls (see [18], 2.2.4). If we take the smaller (n 1)-dimensional ball to have radius
r < and the larger one to have radius

R [2fTr ifp<n-1
ifp=n-1,

these formulas give

Crn-l-p if p < n
Capp (Balln-l(r)’ Balln-l(R)) C(log aZ-n if n, P-

This means that for each r 6 (0, ), there exists a function Ur W’P(Balln-I(1)) tq

LiPloc (Balln- (1)) satisfying Ur (x’) for Ix’l > R, Ur (x’) 0 for Ix’l < r and

alln-I(1)
IVgr(x’)lPdT-[n-(x’) C(log if p n 2

Aside. In fact, such a function can be explicitly written down.
and define a function ui W 1, p (,) O LiPloc (f2) asNow fix > 2, let ri

follows:

< 1-x < +i -n

U (X X t) Uri (xt), if 7 7
0, otherwise.

Observe mn({ui 1}) but f IVuilPdx o(i-n). Therefore by Lemma 2.2
we conclude that 2 cannot be a p-Poincar6 domain.

This completes the proofs of the main results. [:]

4. An extension to a more general Sobolev-Poincar6 inequality

A useful generalization of the p-Poincar6 inequality is btained by using two
possibly different exponents on either side of the inequality.

DEFINITION. A domain f2 c_ n offinite volume is said to support the (q, p)-
Poincar inequality (1 < p, q < cxz) (or f2 is called a (q, p)-Poincar domain) if
there exists a positive number C such that

(20) Ilu ulltq() < CIIVull,<)

holdsfor allfunctions u W’p (g2).
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When p < q, (q, p)-Poincar6 domains have a concrete characterization which is
analogous to the one given in Lemma 2.2 for p-Poincar6 domains.

LEMMA 4.1. Assume that f2 n is a domain offinite volume, let < p < q <
cx and let Bo c_ f2 be a ball. Then f2 is a (q, p)-Poincar domain if and only iffor
eachfunction u LiPloc(2) fq Wl’P(f2) which vanishes on Bo we have

(21) mn({U 1})p/q < D l IulPdx,

where D is afixed positive constant.

The proof is similar to that of Lemma 2.2 (see 18] and 12]); we omit the details.
In light of this lemma and Theorem A, it seems quite plausible that for a Steiner
symmetric domain as considered in Theorem A and p > n 1, the (q, p)-Poincar6
inequality might be equivalent to the inequality

(22) sup kp ((0, 0’), (x, O’))p-lmn(T(x))p/q <
x6Projx ()

The following example shows that such a result is not possible. (One could also
use a domain with an outward directed cusp of exponential order.)

EXAMPLE 4.2. Fix p, < p <
We construct a domain 2 c__ n for which (22) holds for all q, p < q < q0,

qo > P, but on which the (q, p)-Poincar inequalityfailsfor any q > p. Infact, one
can take qo np/(n p) when p < n and q can be taken to be any finite number
when p > n.

Since the domain to be constructed is Steiner symmetric, it is enough to specify
a nonnegative function tp(Xl) which gives the radius of the (ball) cross-sections g2x,.
To define tp" [-1, 1] [0, 2] we begin by noting that for each > 2 we have

(i- 1)

Next we define

<t < l_k_2-i i>2
0(t)=

2 if7 7
-Itl otherwise.

To show that g2 is not a (q, p)-Poincar6 domain for any q > p, we will use Lemma 4.1.
For this we construct, for each > 2, a function ui WI’p (f2) NLiPloc (f2) as follows’

4Ui(X1, X’) 3(Ix’l g)
0

if x (1
if xl (!’ 71 + 2-i)’ i>_ 2 and Ix’14 > 5_3

,7d-2-i),i >_2ands_< Ix’l_<
otherwise.
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Note that Vuil co, where co < o is independent of i. Whence we have

lVui lPdx , 2-i

and

mn({ui 1}) 2-i

From these two relations we immediately conclude that (21) cannot hold on f2 and
hence that f2 cannot be a (q, p)-Poincar6 domain for any q > p. On the other hand,
using the fact that 3(xl, 0’) 6(Xl, 0’) (Ixl < 1) where f2 is defined by the graph
’(Xl) -IXl l, a simple computation shows that (22) holds for the indicated values
ofq.

Despite the above example, there is a more restrictive class of Steiner symmetric
domains in ]1n for which (22) is indeed equivalent to the (q, p)-Poincar6 inequality.
This is the content of our next result which is a restatement of Theorem C.

THEOREM 4.3. Assume that " , [0, cx) is Lipschitz continuous and

is a domain offinite volume. We may assume (0) > O. Then for p > 1 and

P < q < qo, f2 is a (q, p)-Poincard domain ifand only if

(22) sup
xProjx

kp ((0, 0’), (x, O’))p-lmn(T(x))p/q <

Here qo can be taken to be n-e- when p < n and q can be any positive number (> p)n-p
when p > n.

Before going to the proof we record the special case of Theorem 4.3 when q p.

COROLLARY 4.4. If in Theorem A, the function tp is assumed to be Lipschitz
continuous, then the conclusion will holdfor all p > 1.

ProofofTheorem 4.3.

Part I. Necessity of(22)for the (q, p)-Poincar inequality.
In uniformly bounding the quantity inside the supremum of (22), we may assume

x > 0. Define

fi:’ di)(s)(1-n)/(P-1)ds
G(xt, x’) fo (s)(1-n)/(P-1)ds

0

ifO_< x _<t

ifx >t

ifxl <0
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and let F G/max G. Since

{F 1} f2+

and

IVFIPdx (s)(1-n)/(P-l)ds,

from Lemma 4.1 we get the inequality

mn(’t+)p/q D di)(s)(1-n)/(P-1)ds

which is tantamount to (22).

Part H. Sufficiency of (22) for the (q, p)-Poincar inequality.
We consider a function u as in Lemma 2.1. Let M max . Fix x > 0 and put

1Bx Ball ((Xl, 0’), (x1,0’))

Letting (x {(x,x’) f2: Ixu(x)dx <_ .Case 1. Ux mn(nxl f,
xl < 1/2(Xl, 0’)}, we have f(x,)lu Ux, lqdx > mn({U 1} f’) (Xl)). m simple
calculation shows that the formula q(x x’) (x x’) defines a bilipschitz(x)
mapping on 2 (x) with a fixed bilipschitz constant (independent of x) C, which
can be taken < L2 + 1, where L is the Lipschitz constant of . This means that, for
each pair (x, x’), (y, y’) f2 (x l) we have

Cl(x,x’) (Y, Y’)I _< Iq(x, x’) q(y, Y’)I _< C,l(x,x’) (y, y’)l.

It is an elementary fact that bilipschitz mappings convert (q, p)-Poincar6 domains
to (q, p)-Poincar6 domains with comparable constants (for a slightly more general
result when p q, we refer to [22] Lemma 7.1 (d)).

Now, q(2 (x)) is a cylinder with radius (x) and length (x, 0’) < (Xl) <
M. Since all such cylinders have Poincar6 constants which are uniformly bounded
(they are bilipschitz equivalent to a ball), we may conclude that each g2 (x) will be a
(q, p)-Poincar6 domain with a constant C independent of Xl. Hence

(f )P/qlu Ux, Iqdx < IVulPdx
(x) (x)

and so

(23) mn({U 1} O ff2(Xl))p/q f2 IVulPdx"
(x)
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Case 2. Ux, > . Let be the first such xl. In this case we can use a "chaining
argument" very similar to the one used in Case 2 of Part A in Section 3 to show that

(24) mn("2t+)P/q ’ fg2 IVulPdx"

Since p/q < we can take a sequence {ti }i’-1 Proj, (f2) such that 2 2(ti)
and E Xg2(ti) K < cxz on and sum up the corresponding inequalities (23) and (24)
to obtain

mn({U 1})p/q < fo IVulPdx

and the result is established. 13
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