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COMPOSITION OPERATORS ON SMALL WEIGHTED
HARDY SPACES

BARBARA D. MACCLUER XIANGFEI ZENG AND NINA ZORBOSKA2

1. Introduction

Let 99 be an analytic map of the unit disk D into itself and define Co (f) f o 99
whenever f is analytic on D. We are interested here in studying basic properties
(e.g., boundedness, compactness) of the composition operator C0 acting on weighted
Hardy spaces He(/3), defined from a weight sequence {/3(n)} satisfying/3(0)

-n=oan is1, fl(n) > 0 and limn__,/3(n); 1. Given such a sequence, f(z) o zn

in He(fl) if and only if

IIII1 la,,l:/7(n): < .
n--O

Note that He(/) will be a Hilbert space of analytic functions on D with inner product

(Z anzn Z Cnzn) Z an-nfl(n)2
n=O n=O n=O

for which the monomials {z } form a complete set of non-zero orthogonal vectors.
The terminology "weighted Hardy space" comes of course from the observation

that if/3(n) 1, then H2(/3) is the usual Hardy Hilbert space H2(D). For other
particular choices of {/3(n)}, the corresponding space H2(/3) may turn out to be a
familiar space; we will note these as the occasion arises. If {/31(n)} and {/32(n)} are
two weight sequences with

fl2(n) _< fll (n) _< c fl2(n) for some c 6 (0, +cx),
C

then H2(fll) H2(f12), with equivalent norms.
Our principal interest in this paper will be with "small" weighted Hardy spaces.

The precise meaning of small will vary somewhat from theorem to theorem. At the
very least we will require that

fl(n)2n--0
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SO that functionsin H2(fl) extend continuously to . Usually we will in fact want to
move beyond the realm of spaces which come from the choices/ (n) (n + 1)a for
some real a, so a typical hypothesis will be that

nA

(n)
--+ 0 as n -- o for all A > 0.

Note that this is equivalent to the requirement that

n2k
fl(n)2n--0

<o for all k>0.

Much of our work on small spaces is motivated by some known results for certain
"large" weighted Hardy spaces. For example, the following theorem due to T. Kriete
and B. MacCluer [7] gives a necessary condition for Co to be bounded on H2(/3)
when/3(n) tends to 0 sufficiently rapidly so that limn_, nail(n) 0 for all A > 0.
In the statement of the theorem, the notation 199’(’)1 refers to the angular derivative
of p at " 6 O D, defined by

-I(z)lqg’ (’)1 lim inf
z--, -Izl

where z " unrestrictedly in D. This can be finite only if 99 has non-tangential
limit of modulus at " and in this case I0’(’)1 limrl (r’)l. The basic facts
concerning angular derivative can be found in Section 2.3 of [2].

THEOREM A (KREITE AND MACCLUER). Suppose H2(fl) is a weighted Hardy
space such that limn_na(n) Ofor every A > O. If qg" D --+ D is analytic and

satisfies Iqg’(’)l < at some in the circle then C does not map HZ(fl) into itself

In Section 2 we will obtain a dual result to this, for certain appropriately defined
small spaces, in which the condition "1o’(’)1 < 1" will be replaced by "1o’(’)1 > 1".

It is well known that the angular derivative plays an important role in.the study
of compactness of composition operators on the Hardy space H2(D) and closely
related weighted Hardy spaces (e.g., the Bergman space which corresponds to/3 (n)
!/n + 1). At issue in these standard spaces is finiteness of Iq9’ (’)l. In moving from

standard spaces to large spaces actual values of the angular derivative play a role in
question of both compactness and boundedness. Beyond Theorem A, most of the
work which has been done on composition operators on large spaces has been in
the more restrictive (and more structured) setting of large weighted Bergman spaces
A2(D), defined where G(r) is positive, continuous and non-increasing on (0, 1) with

G(r)
G(r)r dr < cx and lim

r--,1 (1 r)A
=0 for allA>0,
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with G(r)/(1 r)A decreasing for r near 1. Such a function G(r) is called a fast
regular weight. Then

A2a(D) { f analytic in D llfll2a fo lf (z)12G(lzl)
dA(z)

where dA denotes Lebesgue area measure on D. Clearly, A2(D) H2(/3) where
/3(0) 1,/(n)2 2pn/c with

f01 f01Pn r2n+lG(r) dr and c 2 G(r)r dr.

The hypothesis that G(r) is a fast regular weight guarantees that na(n) O, for all
A > 0, as n -- cx. Compact composition operators on A(D) where G is fast and
regular are characterized precisely in [7]:

THEOREM B (KRIETE AND MACCLUER). Let G be a fast regular weight and let
q): D --+ D be analytic. Then C is compact on A2a(D) ifand only ifl0’(()l > for
all ( O D.

We will discuss a partial dual result for small spaces in Section 2.
This duality between certain large and small weighted Hardy spaces is most com-

plete in the case that q9 is a linear fractional map of D into D, where we are able to use
techniques of P. Hurst [5] to make the desired comparisons. In particular we are able
to resolve completely the issue of which automorphisms give bounded composition
operators on any space for which

nA fl(n -1- 1)- 0 as n -- o for all A > O, and
/(n) /3(n)

Our results are less complete when we consider symbols which are not linear fractional
and in general here we are only able to give necessary conditions, in terms ofthe values
ofthe angular derivative, for C0 to be bounded or compact on the appropriately defined
small space. The very strong parallels with results for large spaces, however, suggest
niatural conjectures for sufficient conditions.
We close this section with a brief discussion of various measures of smallness of

the spaces H2(/) as expressed by properties of the weight sequence {/3(n)}. To avoid
certain pathologies we will often assume that {/3(n)} is monotone increasing (or at
least eventually increasing, since changing a finite number of the weights produces
the same space with an equivalent norm). Additional conditions which have been
used to define small weighted Hardy spaces include

(1) --+ 0 as n cx:) for all A > O,

(2) n2kYn--0 fl(n) < OO for all k > 0,
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(3) oo /([otnl)-n=0 /(n) < oo for some (or all) 0 < ot < 1,

(4) fl(n) eh("), where {h(n)} is concave and satisfies Zn--0
Our principal interest here will be with conditions (1)-(3). As previously noted,

it is easy to see that (1) and (2) are equivalent. Assuming (2), an application of the
Cauchy-Schwarz inequality shows that if f 6 HZ(fl) then f 6 C(). In general
(1) implies neither (3) nor (4); for example, consider (n) e(lgn)b, < b < 2.
Then (1) holds but the sum in (3) is infinite for all 0 < ot < 1. When b 2, (3)
holds only for0 < ot < l/v/7. If {(n)} is increasing and (3) holds for some or, then
(1) holds as well (see, for example, the proof of Corollary 7.15 in [2]). The choice
fl(n) e(lgn)3shows that (3) does not imply (4). Condition (4) appears in the work
of Carleson ], where it is shown that when (4) holds H2() is a quasi-analytic class
on D. An important class of examples to which conditions (1)-(4) all apply are the
weight sequences

13(n) ena, < a < 1.
2-

The dual condition to (1), namely na fl(n) -+ 0 as n --+ oo for all A > 0, is used in
[7] as a defining condition for "large" weighted Hardy spaces. Condition (3) appears
in [8] to study maps of the form rz + (1 r) (0 < r < 1) on small spaces. It is
not difficult to show that condition (3) holds for some ot 6 (0, 1) if and only if there
exists an integer k > 2 so that

oo /(n)

n--0 (kn)

The dual condition for large weighted Bergman spaces can be found in Section 5
of [7].

2. Necessary conditions for boundedness and compactness

We give necessary conditions, in terms of the angular derivative I0’ (()I, for Co to
be bounded or compact on a small space H2(/3). The first of these requires only the
weak hypothesis that

n=0 fl(n)2
< oo. (2.1)

Note that (2.1) implies that every function in H2(fl) extends continuously to .
Recall that any analytic map qg: D --+ D with no fixed point in D has a distinguished

fixed point (in the radial limit sense) on O D, called the Denjoy-Wolff point, at which
the angular derivative is less than or equal to 1. If q9 is not the identity nor an elliptic
automorphism of D, its iterates converge, uniformly on compact subsets of D, to the
interior fixed point of p (if there is one) or to its Denjoy-Wolff point.
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THEOREM 2.1. Supposecp: D --+ D isanalyticwith Igo’(’)l > forsome OD
satisfying I0(’)1 1. Then C is not compact on H2(/3) whenever {/3(n)} satisfies
(2.1).

Proof Suppose p(’) r/ 60D. Let P(z) ’p(z) so that (’) ’.
Notice that p’(’) IP’(’)l > 1. But must either have an interior fixed point,
or Denjoy-Wolff point on 0D, which cannot be ’. Call this point a. We have

C(K) K() K and C(Ka) Kg(a) Ka, where Kw denotes the kernel

function for evaluation at w 6 D (see Theorem 2.10 of [2]). Thus if C0, and hence
also C, is compact on H2(/), then dimker(C 1) dimker(C 1) >_ 2.

But if f 6 ker(C 1) then f o lpn f, where Pn is the nth iterate of . If
a OD, continuity of f on D implies that f is constant. The same conclusion holds
if a 6 D, since p is not an elliptic automorphism of D. Thus C0 cannot be compact
on H2(fl). [-I

An alternate proof can be obtained by applying Proposition of 11 to see that
under the hypothesis (2.1), if C is compact on H2(/), then p has a unique fixed
point in D.

The next result applies to small spaces defined slightly more restrictively by re-
quiring that functions in the space have derivative which extends continuously to D.

THEOREM2.2. Supposecp: D-- Disanalyticwithlqg’()l forsome OD
with I0(’)l 1. If

n2

,,,=2-g"/3(n):Z < oo

then C is not compact on HZ(fl).

Proof. We normalize by choosing eiO so that p ei099 fixes " and consequently
’(’) 1. As before, CK K, where Kc is the kernel function for evaluation
at ’.

If K}) is the kernel function for the evaluation of the first derivative at ’, it is easy
to see (p. 266, [2]) that

()C(K1)) ’(’,-.() K1).

Thus is an eigenvalue of C with multiplicity at least 2. As in the proof of Theo-
rem 2.1 this shows that C (and hence Co) cannot be compact, since dim ker(C
1) 1. i--I

The next result, due to J. Shapiro [8], provides a stepping stone for obtaining
a necessary condition, in terms of the angular derivative, for C0 to be bounded on
n2(fl).
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THEOREM C (SHAPIRO). Suppose {/3(n)} is increasing and

/3 ([otn])Z < cx for some a or0, 0 < or0 < 1. (2.2)
.=o (n)

Ifo(z) rz + (1 r), where 0 < r < oto, then C is compact on H2(fl).

THEOREM 2.3. Assume {/3(n)} is increasing with (2.2). Suppose maps D into
D with 17/(()1 > at some OD with IP(ff)l 1. Then C is not bounded on
n2(fl).

The result should be compared with Theorem A which shows that no map with
angular derivative less than gives a bounded composition operator on a large space
(nA(n) -- 0 for all A > 0).

Proof. Consider the map P(fz) where (() r/. This map fixes and has
derivative greater than at 1. Since rotations induce unitary composition operators on
any weighted Hardy space, this shows that we may assume without loss of generality
that 7t(1) and p’(1) > 1.

Set rn (aP’(1)) -n. Fix n sufficiently large so that rn < or0 and, for this n set
o(z) =-- rz + (1 r). If Pn denotes the nth iterate of and r 0 o p,, we have
r(1) and r’(1) qg’(1)p(1) rn(Tt’(1)) 1. Thus C is not compact on
H2 (/), by Theorem 2.2, which applies since (2.2) in fact implies ’n__0 n2/ (/3 (n))2 <
o for all k (see, for example, the proof of Corollary 7.15 in [2]).

On the other hand, C C,, o Co and C0 is compact by Theorem C. Therefore

C cannot be bounded, which is the desired conclusion. I-!

As a corollary to this last result, note that if {/3 (n) is increasing and satisfies (2.2),
then H2(/) supports no bounded composition operators with automorphism symbol,
other than those induced by rotations. Theorem 3.3 in the next section will generalize
this to a wider range of small spaces.

The conclusion of Theorem C, and therefore also of Theorem 2.3, may hold for
certain small spaces which are less restrictively defined than by the condition (2.2).
Examples will be given in Section 3.

For small spaces, as was the case for large spaces (see [7]), the angular derivative
alone does not, in general, determine boundedness. We give one example now which
shows this; in Section 3 other examples, with linear fractional symbol, will be given.

Example. Let tp: D --+ D be defined by

0(z)
(z -+- 1)2
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Then o(1) 1, qg’(1) and I0(’)1 < for " 6 OD\{1}. Consider C acting on
H2(/) where/(n) e"a 7 < a < 1. We claim that C is unbounded. To see this

let en be the unit vector and compute, using the binomial expansion,

IICo(en)ll II(z-+-1)2nll/tn 4

/3(n) 4
C (2n, k)z

=0

C(2n, k)2fl(k)2
/3(n) 4

\=0

/3(n) 4
C 2n n + [x/if])/3(n + [,v/if]).

For large n, by using Stirling’s formula to estimate C(2n, n + [v/if]), we see that this
is bounded below by

/3(n) 4 x/h_ e,/_ff+e_,/_ff+ /3(n + [x/-])--

where c is a positive constant. When a > 1/2 this tends to ec as n oc. Thus Co
is not bounded.

By contrast, any rotation (angular derivative everywhere) gives a bounded (in
fact unitary) composition operator on any weighted Hardy space.

3. Linear fractional maps

In this section we continue our study of composition operators acting on small
spaces by restricting our attention to symbols which are linear fractional maps of D
into D. Our main tool will be a modest extension of a recent result due to E Hurst
[5], [6], which gives a method of relating linear fractional composition operators on
different weighted Hardy spaces. Hurst’s work has its origins in C. Cowen’s study
of linear fractional composition operators on HZ(D) (see [4]). We begin with a few
ideas from that work.

If

az+b
p(z) (ad bc :/= O)

cz+d
maps D into D, then the map

r(z)
az -c

-bz + d
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also takes D into D (Lemma 1, [4]). We call a the dual map to q9. Note that q) is the
dual map to a so there is no ambiguity in referring to {q9, a as a dual pair, and that
q0 is an automorphism of D if and only if cr is. If z0 6 C t_J cx (where C denotes the
complex plane) is a fixed point of q9, then (Theorem 2.2, [5])

is a fixed point of a (3.3)
z0

and

a’
0’(z0)

(3.4)

where denotes the ordinary derivative.
Hurst’s theorem sets up a relationship between C and C on appropriate weighted

Hardy spaces. To state his result (Theorem 5, [6]) we use the notation Tg for the
operator of multiplication by g, where g is analytic in D, and let

ad bc
/z(z)- and v(z)- (3.5)

-bz + d (-bz + d)2

az+bTHEOREM D (HURST). Suppose q)(z)--c--z-z-z maps D into D with dual map
a(z). Let H2(y) be a weighted Hardy space, defined from a positive sequence
{y(n)} with y(O) and limn y(n) 1/n 1. Define {fl(n)} by (0) and
(n) 1/y(n- 1)forn > 1. If C is bounded on H2(fl) and C and Tu are
bounded on H2(y), then the restriction ofC to the invariant subspace zH2(fl) is

unitarily equivalent to TC acting on H2 (y).

We need a slight extension of this result which is obtained by showing that Tu
(and hence T) is automatically bounded on the weighted Hardy spaces of interest to
us, and that the boundedness of both C0 and C on their respective weighted Hardy
spaces need not be assumed.

LEMMA 3.1. Suppose {y (n)} is a positive sequence so that either y (n) is even-

tually monotone decreasing and limn__,o y(n) 1/n or limn (n+l) Let
v(n)

q)(Z)- az+b map D into D with ad bc 5 O. Then Tu and hence T are bounded
on H2(y).

Proof. Since 99 maps D into D so does a(z) _z-_. Thus -z + 0 has
-bz+d

no solution in D (since ad bc - 0) and/z(z) 1/(-bz + d) is analytic in a
neighborhood of. Either hypothesis on H2 (y) guarantees that multiplication by z,
and hence T(_-z+2), is bounded on H2(y) (Proposition 2.7, [2]). We will show that

T(_-z+-d) is in fact invertible on He(y). Since

T(_-z+d T_-(z_d/b)
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it is enough to show that d/b is not in the spectrum of T on H2(y). We use the
spectral radius formula to show that Tz has spectral radius p(Tz) at most and recall
that 1/1 > to get the desired conclusion. Now using the norm estimate by A.
Shields [9], we have

y(k +n)
IITznll=llTz,ll=sup for n=l 2

,(k)

If {y(n)} decreasing then clearly IITz. and p(Tz) limn_ IITz, 1In 1.
If on the other hand, {?’(n)} satisfies the hypothesis r,, y(n) 1, we have

y(k + n) y(k + n) y(k + n 1) y(k + 1)
y(k) y(k + n 1) y(k + n 2) y(k)

Fk+n- 1Fk+n-2 Fk+ 1Fk.

Givene > O, choose N so that rj < l+eforj > N. Letr max{rj" < j < N}.
Then for all k and n, the estimate

y(k + n)
< rU(1 + e)n

()

holds. So

p(Tz) lim IITII /"

--n-lim (sukPY(k+n))l/n
< lim (rU(1 + )n)l/n__ + .

n----o

Since > 0 is arbitrary we conclude p(Tz) < 1. Thus T(_b-z+d)-
invertible on H2 (y). Its inverse must be T,.

T_-&z_2/-) is

We use Lemma 3.1 to extend Hurst’s Theorem. Let v be as in (3.5).

THEOREM D’ Let qg(Z) az+b map D into D with dual map or(z) and let {y(n)}
satisfy the hypothesis ofLemma 3.1. Define (n by (0) and fl (n / ?’ (n
for n > 1. If C is bounded on H2(y), then C is bounded on H2(/3), with the
restriction of C to zH2(fl) unitarily equivalent to TvC on H2(y). Conversely,

if C is bounded on H2(/3), then C is bounded on H2(y) (and the same unitary
equivalence holds).

COROLLARY 3.2. Let p, or, {y(n)}, {/3(n)} be as above. Then C is compact
on H2(/5) ifand only if C, is compact on HZ(y).
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ProofofTheorem D’. With the result ofLemma 3.1 in hand, the proofofTheorem
D’ is almost exactly like that of Theorem D. For completeness we sketch the argument
here, but refer the reader to [5] and [6] for further details.

Assume C, is bounded on H2(,) and let U be the unitary map of H2(y) onto
),(n) zn+ zn+zH2(/), which takes z to t(,+l) fl(n+l)

Form, n > we have

(3.6)

(3.7)

where (3.6) = (3.7) follows from the fact (Lemma 4, [6]) that

TClzi<o)Tz TC on H2(D).

If P is the projection of H2(/) onto zH2() this shows that PCIzI:,) agrees
with the bounded operator (UToCU*)* on the polynomials in zH2(), a dense set
in zH2(). Hence PCIzI2<,) extends to a bounded operator on zH2().

Finally we conclude that Co is bounded on zH2(), since f o tp P(f o 99) +
f 99(0), and thus Co is bounded on H2(/). This gives the first part of the theorem.

For the converse statement, if C, is bounded on H2() then U*CIzrI2,)U is
bounded on H2(’), with U defined as above (since zH2() is an invariant subspace
for C0). Calculations similar to those above show that U C, IzI,)U agrees with

TC, on polynomials, a dense subset of H2(?’). Thus TC is bounded on H2(?’),
and since Tv is invertible in He (?’), Co is bounded as well. El

In the next result we apply Theorem D’ to consider the question of automorphism
invariance (boundedness of composition operators with autismorphism symbols) on
weighted Hardy spaces. The automorphisms of D are the one-to-one analytic maps
of D onto D; by the Schwarz Lemma they are all linear fractional maps.

THEOREM 3.3.
n -+ o. Then:

Suppose {y(n)} is a weighted sequence satisfying (n+l) __+ asy(n)

(a) If limn__, nA’(n) --0 for all A > O, no non-rotation automorphism of D
gives a bounded composition operator on H2 (,).
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(b) If limn__, n) --0 for all A > 0, no non-rotation automorphism gives a

bounded composition operator on H2(’).
nA(c) If there exists a real number A and c > 0 so that lim_ ,(n) c, then

H2 (V is automorphism invariant.

Proof Since a non-rotation automorphism has angular derivative less than at
some point of 0 D, part (a) follows from Theorem (1.1)’ of [7].

For (b) we first make the observation that it is enough to show that

z+r
or(z) err(z) (0 < r < 1)

l+rz

cannot induce a bounded composition operator on H2(,), since any non-rotation
automorphism can be written as U1 err U2 where U1 and U2 are rotations and r 6 (0, 1)
(see, e.g. [3]).

Setqg(z) z-r so that r, 0 are a dual pair. Let {/3 (n) be associated to {, (n) as in

Theorem D’. Let us assume, for a contradiction, that Co is bounded on H2 (,). Then

C is bounded on H2(/3). But q9 is a non-rotation automorphism and na(n) -+ 0 as
n --+ x for all A > 0. This contradicts part (a) and therefore Co cannot be bounded
on H2(y).

Part (c) follows from the observation that if na’(n) -- c where c is finite positive
constant, then H2(/) Hz(z’), up to equivalent norm, where r(n) (n + 1)-a.
Since Hz(z") is automorphism invariant [10], so is Hz(v). [-’]

Next we consider linear fractional maps of D which are not automorphisms. If
limn_, (n)/ 1, then any linear fractional map p with Ilqgll < induces a

compact (indeed trace class) composition operator on HZ(fl) (Theorem 4.7, [2]).
Thus we are interested in the case Ilqgll 1. We distinguish several .cases via the
fixed point structure of 0. Relative to C U {cx}, and including multiplicity, 0 has 2
fixed points. For linear fractional maps taking D to D, various possibilities exist for
the location of these fixed points.

If q9 has one fixed point in D and one in 0 D, then by consideration of properties
(3.3) and (3.4), the dual map must have Denjoy-Wolff point in OD with angular
derivative strictly less than there, since the derivative of 0 at the boundary fixed
point must be greater than by Wolff’s Lemma (Theorem 2.48, [2]). So Co cannot
be bounded on any space H2(fl) where nail(n) -- 0 as n -- xz for all A > 0. By
Theorem D’, Co is not bounded on any small space H2(’) where na/v(n) 0 for
all A > 0 and {?, (n)} satisfies the hypothesis of Lemma 3.1.

If p has one fixed point in 0D and one outside D, its dual map r has one fixed
point on OD and one in D. By Wolff’s Lemma o- has angular derivative strictly
greater than at its boundary fixed point, and q9 has angular derivative strictly less
than at its boundary fixed point. Since Io(’)1 only for " equal to boundary
fixed point of o- (we are assuming 0, and therefore o-, is not an automorphism of D)
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we know (by Theorem B) that C is compact on any large weighted Bergman space
A2G(D) defined from a fast regular weight G(r). Setting ,(n) IlznllG and noting
that ?’(n) is monotone decreasing with limn_ ,(n)/ (for the latter fact, see
Dynkin’s Lemma, p. 182, [7]), we conclude that Co is compact on any small space
H2 (/) where

’(n- 1)/(n) -- c 6 (0, xz) as n --The affine maps 0(z) rz / r (0 < r < 1) fall into this category (fixed points
cx and 1) and we are able to conclude that Co is compact on certain small weighted
Hardy spaces not covered by Theorem C.

For a specific example, consider the fast regular weights

G (r) e-(lg )-r for <or <2.

The next result estimates the weight sequence g (n)} for these choices of G.

LEMMA 3.4.

c2

2n+2

for large n.

There are positive constants c, c2 so that

e-[lg(2n+2)] < /(n)2 < 2n+2
e-[log(2n+2)-ot log log(2n+2)]

Proof. For the lower estimate we have

f01 f0 2n+2
r2n+l G(r) dr >_ r2n+l G(r) dr >_ G(3)

2n + 2"

Setting 6 (n large) gives the lower bound.2n+2
For the upper estimate,

f0’ r2n+l G(r) dr r2n+l G(r) dr + r2n+l G(r) dr

)2n+2 )2n+2
< G(0)

2n+2
+G()

2n+2

Choosing ) [lg(Zn+2)] (n large) gives the upper estimate, if]
2n+2

LEMMA 3.5. If H2 (fl) is the small weighted Hardy space with

3(0)-- 1, 3(n)=
y(n- 1)

where {y(n)} is the weight sequence for G(r) e-(lg)(l-r) (1 < Ot < 2), then for
qg(Z) rz + (1 r) (0 < r < 1), Ce is compact on H2(/) yet

([an])Z =cxz for all 0<a < 1.
n=0 /(n)
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Proof The first part of the conclusion follows from Corollary 3.2: {y(n)} is de-
creasing with lim,__,o y(n) 1/" 1. The dual map cr induces a compact composition
operator on H2(y) (by Theorem B), so C is compact on H2(fl).

For the second part of the conclusion we use Lemma 3.4 to estimate

n=O (n) n=O Y ([an] 1)

Using the lower estimate for y (n 1)2 and the upper estimate for y ([an] 1)2 we
see that

y(n- 1)2
> c e(lgz[an]-tlglgz[an])’-(lg(zn))’

y([an]-l)2

For large n this is bounded below by c g, since < ot < 2. Therefore

Z fl ([an])

n=0 /(n)

The affine maps qg(z) az + b mapping D into D give bounded composition
operators on any small space H2(fl) for which fl(n) is (eventually) increasing with
lim._,l (n) /n 1. To see this, note that the dual map

r(z)

takes 0 to 0. A result of C. Cowen (Cor. 3.3, [2]) shows that C is bounded on H2(y),
where

y(O) 1, y(n)=
fl(n+ 1)’

since {y(n)} is (eventually) decreasing. By Theorem D’, C is bounded on H2(fl).
If q9 has one fixed point on 0D of multiplicity two, then the derivative at the fixed

point is 1. Notice that the dual map cr has exactly the same fixed point character.
Conjugating by a rotation, we may assume the fixed point is 1. The map then cor-

l+z of D onto RHP- {z: Re(z) > 0}responds, under the conformal map z
to a translation w ---> to + a of RHP, with Re(a) > O. When Re(a) 0, p is an
automorphism of D, so we are interested in the case Re(a) > 0. We have

(2 a)z + a 2 4
qg(z)-- 1--- +-

-az + (2 + a) a a (-az + 2 + a)

If a is real it is not hard to verify that

M(r) m0ax Iqg(rei)l
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is attained for z r and thus

M(r)
2r-ar +a
-ar + 2 + a

We wish to apply results of Kriete and MacCluer (Theorems 5.8 and 5.9, [2]) to study
Co on large weighted Bergman spaces A2G To this end we compute

a
(3.8)

M(r) r 2

Consider the following families of fast regular weights:

G(r) e-c(27-) (c > O, ot > O)

VZ-;-r (C>0, a> 1)G(r) e-c(lg )

(3.9)

(3.10)

G(r)Using (3.8) and the Mean Value Theorem to estimate ’GM’ir)) we see that for G(r) in
(3.9) we have

1, if 0<or <

lim
G (r)

e if et
r G(m(r))

cx, if or>

By the results mentioned above (Theorems 5.8 and 5.9, [2]), this says that Co is
bounded (but not compact) when 0 < ot < and unbounded for ot > 1. Similarly,
for G(r) in (3.10) we see that Gr)

G(M(r)) -- 1, and thus Co is bounded on A.
The computation of M(r) is considerably more complicated when Re(a) > 0 but

a is not purely real. Nevertheless, Mathematica calculations verify that the real part
g(r) of the point z(r), where M(r) is attained, satisfies

g(r) r g(r) [Im(a)]2
lim and lim
r--,l 1-r rl (1-r)2 2[Re(a)]2

From this it can be shown that

) Re(a) [Im(a)]2
lim
r--l M(r) r 2 2Re(a)

Thus, as before, limr--, 1G(r)/G(M(r)) is finite for G as in (3.9) with ot < orfor G
as in (3.10), while limr G(r)/G(M(r)) cx for G as in (3.9) with c > 1. Hence
we reached exactly the same conclusions about Co acting on A as we did for the case
Im(a) 0. Once we understand the properties of Co on A2(G), Theorem D’ allows
us to draw conclusions about Co on the small spaces H2(fl), fl(n) 1/y(n 1)
(where {,(n)} is the weight sequence for the fast regular weights G(r) in (3.9) and
(3.10)), as we did for Co on A H2(y).
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Finally, a linear fractional map q9 of D into D may have one fixed point in D and
one outside . If ]]qgll 1, there exists eiO so that 7t elq9 has a fixed point on
0D and will be in one of the three previously discussed cases. The boundedness
and compactness properties of Co and C are the same on any weighted Hardy space,
and the angular derivative of q9 at the point " where ]0(’)l is the same as the
angular derivative of p at its boundary fixed point. All three cases can occur. For
example, if

then q9 fixes and cxz while p (z) -qg(z) fixes and xz (one boundary point and
one exterior point). If

z
0(z)

2 + z’
then 99 fixes 0 and -3 while P(z) -qg(z) fixes 0 and -1 (one boundary point and
one interior point). If

z+l
0(z)

then p fixes 2 4- while (z) -qg(z) has fixed point one of multiplicity 2.
This concludes the discussion of all possible configurations for the fixed points of

a non-automorphism p which is a linear fractional map of D into D.
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