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ON THE L/e-NORM OF SCALAR CURVATURE

MAN CHUN LEUNG

1. Introduction

Let M be a compact n-manifold without boundary. For a Riemannian metric
g on M, the curvature tensor, Ricci curvature tensor and scalar curvature of g are
denoted by R(g), Ric(g) and S(g), respectively. A natural and interesting problem
in Riemannian geometry is the relations between the topology of the manifold M
and curvatures of g. Often the topology of M would impose certain restrictions on
the behavior of curvatures of the metric g. The Gauss-Bonnet theorem provides a
beautiful relation in this direction. As complexity of the Gauss-Bonnet integrand
increases with dimension, it would be desirable to obtain simpler but not "sharp"
relations. Indeed, there have been many interests on L -curvature pinching and
bounds on topological quantities by integral norms of curvatures. In this article, we
study some questions on obtaining lower bounds on L -norms of the Ricci curvature
and scalar curvature. There are some rather general and well-known problems: given
a compact n-manifold M, for a sufficiently large class of Riemannian metrics g on
M, are there positive lower bounds on

(1) Vol (M, g), provided Kg > -1 or Ric(g)ij > -(n 1)gij or S(g) >_ -n(n
1), where Kg is the sectional curvature of (M, g),

(2) fM IS(g)l dvg or

(3) fM Ric(g)l dvg?

We note that (2) and (3) are both scale invariant, while a lower bound on curvature is
required in (1) so that Vol (M, g) will not go to zero by scaling. As a flat torus would
not have positive lower bounds on (1), (2) and (3), some restrictions are needed on
the manifold M. Some suggestions are:

(a) M admits a locally symmetric metric of strictly negative sectional curvature;
(b) M admits an Einstein metric of negative sectional curvature;
(c) or simply M admits a metric of negative sectional curvature.

Recently, Besson, Courtois and Gallot [5], [6] have demonstrated that if (M, h)
is a compact hyperbolic n-manifold (n > 3), then for any Riemannian metric g on
M with Ric(g) > -(n 1)g, one has Vol(M, g) > Vol (M, h) and equality holds if
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and only if (M, g) is isometric to (M, h). In this note, we mainly consider question
(2) and (3), under one of the conditions in (a), (b) or (c) and with restrictions on the
choices of the Riemannian metric g by certain curvature assumptions or in certain
conformal classes. Our method is to investigate relations between the L -norms of
scalar curvatures for different metrics with that of a standard metric.

The Gauss-Bonnet theorem for two-manifolds shows that ifM is a compact surface
and h is a metric on M with constant negative curvature S(h) then

(1.1) f41S(g)ldvg >_ fM IS(h)ldVh.

Let X (M) be the Euler characteristic of M. The Gauss-Bonnet theorem for higher
dimensions (n even) [16] states that

(1.2) CnX(M)- fM y 8(cr)e(’c)R(g)cr(1)cr(2)roc(l)rocr(2)""

R(g)n-1)n)ron-1)ron) dvg,

where cn is a dimension constant, Cn is the set of all permutations on 1, 2 n}
and e(r) is the sign of r E C. A decomposition of the curvature tensor gives

R(g)ijkl W(g)ijkl -k- Z(g)ijkl -1- U(g)ijkl,

where W(g) is the Weyl curvature tensor and

(1.4) U(g)ijkl
S(g)

n(n 1)
(gikgjl gilgjk),

(1.5) Z(g)ijk!
n 2

(z(g)ilgjl + z(g)jlgit z(g)ilgjl z(g)jtgil),

where z(g) is the trace-free Ricci tensor given by

S(g)
(1.6) z(g)ij Ric(g)ij gij.

n

Let x E M and {el e be an orthonormal basis for the tangent space ofM above
x. We have

S(g)
U(g)ijkl (6i 3i6) at x.

n(n 1)
If we apply (1.3), then at the point x we have

(1.7) Z 6(’)6(z’)R(g)a(1)cr(Z)rcr(1)rcr(2)""" R(g)cr(n-1)cr(n)roa(n-1)roa(n)
_Cn Cn

CoS(g) + P(W(g)ij, Z(g)ij, U(g)ijt, gij),
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where P is a certain polynomial function and Co is a constant that depends on n only.
Putting (1.7) into the Gauss-Bonnet formula, we have

;(M) CoS(g) dvg + P(W(g)ij,t, Z(g)ijkl, U(g)ijkl, gij)dvg

CoS(g’) dvg, + P(W(g’)ijkl, Z(g’)ijkl, U(g’)ijkl, gij)dvg,,

where g’ is another Riemannian metric on M. In general, the above formula is too
complicated to given effective bounds on L -norms of scalar curvatures.

THEOREM 1. Let (M, h) be a compact hyperbolic n-manifold with n being even.

(1) Let n 4. Fbr any conformallyflat metric g on M, we have

IS(g)12 dvg > fM IS(h)12 dVh,

and equality holds ifand only ifg is, up to a positive constant, isometric to h.
(2) Let n > 4. For any conformallyflat metric g on M, we have

Ric(g)l dvg > Cn fM Ric(h)l dl)h,

where C is a positive constant that depends on n only.

THEOREM 2. Let (M, h) be a compact hyperbolic n-manifold with n being even.
which depends on n only such thatfor any metricThere exists a positive constant c

g on M with non-positive sectional curvature we have

IS(g)l dvg >_ c’ fM IS(h)l dvh.

Besson, Courtois and Gallot [4] have shown that if (M, g) is a compact Einstein
manifold with negative sectional curvature, then for any metric g’ in a neighborhood
of g, we have

(1.8) f lS(g’)l dvg, >_ f lS(g)l dvg.

In the proof of this result, they investigated the following.
I (1.8) holds whenever g’ is conformal to g; i.e., if g’ u g for some smooth

function u > 0 and if S(g) is a negative constant, then we have

lS(g’)l dvg, > fM ]S(g)l dvg.
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Then they used the second variation formula to investigate the local behavior of the
Ln/Z-norm of S(g). Partially motivated by their results, we consider the change of

[S(g)l dvg and Ric(g)l dvg

under Ricci flow and conformal change of metrics when S(g) is a positive constant.
The Ricci flow have been considered by Hamilton 11 and many other authors. It has
been proven to be very useful in deforming metrics into standard metrics, especially
when the original metric is close to a standard metric. For example, it has been shown
in 14] and 17] that the Ricci flow starting near a Einstein metric of negative sectional
curvature always converges to it. We obtain the following behaviors of L -norms on
curvatures under the Ricci flow.

THEOREM 3. Let (M, g) be a compact Riemannian manifold with S(g) < O. Let
gt be the Ricciflow starting at g. If S(gt) <_ 0 then

d-- IS(gt)l dvg, <_ O.

Ifwe assume that the sectional curvature Kg ofg is suitably pinched

--1-- <_ Kg <_-1 +
for some > 0 then

d Ld- Ric(gt)l dvg, < O.

Under the above conditions, if the Ricciflow converges to a smooth metric go on M
then

fM ’S(g)’ dvg > fM ’S(go)’ dvgo

and

Ric(g)l dvg >_ fM Ric(go)] dvgo.

In particular, we provide an alternative proof to (1.8). In the last section, we
consider conformal change of metrics when the scalar curvature is positive. An
interesting question is whether Besson-Courtois-Gallot’s result holds for positive
scalar curvature: namely, if g’ is conformal to g and g has constant positive scalar
curvature, does the inequality

lS(g’)l dvg, >_ fM IS(g)l dvg

hold?
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THEOREM 4. Let (M, go) be an n-manifold with b2g Ric (g) > a2g for some
positive numbers a and b. Thenfor any metric g u go, u > O, we have

f lS(g)l dvg >- C f4 lS(go)l dVgo,

where Cn is a positive constant that depends on a, b and n only. In general, Cn < 1.
For the special cases that (i) g is an Einstein metric with positive scalar curvature

and g u go, u > O, or (ii) (M, g) is a compact conformally flat manifold with
positive Ricci curvature and go has constant positive sectional curvature then we

have

fM lS(g)l dvg > fM lS(go)l dvgo.

2. Gauss-Bonnet formula

Given a compact n-manifold M with n _> 4 and a Riemannian metric g on M, the
Weyl conformal curvature tensor can be defined by

W(g)ijkl R(g)ijkl Z(g)ijkl U(g)ijkl,

where Z(g) and U (g) are defined in (1.4) and (1.5), respectively. Using the fact that
gijz(g)i 0 and gikgjl R(g)ijkl S(g), it is easy to show that gikgjlW(g)ijk 0
and gikW(g)ijk O. And we have

(2.1) IR(g)l2 -IW(g)l2 + IZ(g)l 2 + IU(g)l 2.

A direct calculation shows that

(2.2) IU(g)l2 2S(g)2

n(n 1)’
S(g)2

iZ(g)12 4
iz(g)l 2 and Ric(g)l2- Iz(g)l 2 +

(n 2) n

In dimension four, the Gauss-Bonnet formula [3] takes the form

(2.3) fM 12 2x(M) 2 ([U(g) -[Z(g)[ + IW(g)l)dvg,

where X (M) is the Euler characteristic of M. Let h be a hyperbolic metric on M.
Then

(2.4) X (M) S(h)2 dvh,
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where S(h) -4.3 12. In dimension bigger than or equal to four, a Riemannian
metric g is conformal!y flat if and only if W(g) 0. Then (2.2), (2.3) and (2.4) show
that if g is any conformally flat metric on M, we have

S(g) dvu >_ fm S(h)2 dvh.

Furthermore, equality holds if and only if z(g) _= 0 and W(g) 0, i.e., (M, g) is a
hyperbolic metric. By the Mostow rigidity theorem, (M, g) is isometric to (M, h) up
to a positive constant.

THEOREM 2.5. Let (M, h) be a compact hyperbolic n-manifold and n > 4, n
even. For any conformallyflat metric g on M, we have

Ric(g)l dvg >_ Cn Ric(h)l dvg,

where cn is a positive constant that depends on n only.

Proof. As n > 4, the metric g is conformally flat if and only if W(g) =- O.
Therefore R(g) Z(g) + U(g). Applying the Gauss-Bonnet theorem we have

x(M) C(n) fM P(Z(g), U(g))dvg,

where C (n) is a constant that depends on n only and P is a homogeneous polynomial
of degree n/2 in the components of Z(g) and U(g). There exist positive constants

C C C2,.. C,_, which depend on n only, such that
2’

Ix(M)I < fM(COlZ(g)l--FClZ(g)l-lU(g)l
+ C21Z(g)I-21U(g)I2 +... + ClU(g)l)dve,.

Using (2.2) we have

Ric(g)l >_ (n 2)/x/4(n 2)lZ(g)l

and

we have

Ric(g)l > v/(n- 1)/21U(g)[;

Ix(M)I <_ C ft Ric(g)l dvg,
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where C is a constant that depends on n only. For the hyperbolic metric h, we have
W(h) O, Z(h) 0 and Ric(h)l 2 S(h)2/n. The Gauss-Bonnet theorem gives

Ix(M)[- C’(n) fM [S(h)[ dVh C"(n) fM lRic(h)[ dVh,

where C’ (n) and C"(n) are positive constants that depends on n only. Combining the
two formulas we have the result.

THEOREM 2.6. Let (M, h) be a compact hyperbolic n-manifold of even dimen-
sion. There exists a positive constant Cn, which depends on n only, such thatfor any
Riemannian metric g on M with nonpositive sectional curvature we have

L S(g) dvg > cn ft S(h) dVh.

Proof By (1.1), we may assume that n > 4. As h is a hyperbolic metric,
W(h) 0 and Z(h) O. The Gauss-Bonnet formula (1.2) gives

) (M) CoS(h) dvh,

where Co is a non-zero constant that depends on n only (its value can be found by
applying the Gauss-Bonnet formula on S and the fact that ) (S) 2 if n is even).
For the Riemannian metric g, making use ofthe fact that R (g) W(g)+Z(g)+U (g),
the Gauss-Bonnet formula gives

f 4(CoS(g) + P(W(g)ijkl, Z(g)ijkl, U(g)ijkl, gij))dl)g,x(M)

where P is a certain polynomial such that each term contain exactly n/2 terms of
W(g)jklk, Z(g)ijkl or U(g)ijkl. Therefore we have

I(M)I _< fM ClS(g)l dog / fM IP(W(g)ij,, Z(g)i,, U(g)ij,, gij))l dvg.

From (2.1), Ie(g)l >_ IW(g)l, Ie(g)l >_ IZ(g)l and Ie(g)l >_ IU(g)l, there exists a
positive constant Cn that depends on n only such that

[P(W(g)ijt, Z(g)ijkl, U(g)ijkl, gij))l < CnlR(g)l .
Given a point x 6 M, we choose an orthonormal basis {e en for the tangent
space of M above x. Let crij be the sectional curvature of the plane spanned by ei and
ej, if: j, with respect to the Riemannian metric g on M. Assume that rij < O. We
may also assume that al2 is the minimum of the sectional curvatures at the point x.
We have

IS(g)l li,j,iJy O’ij Z Ir2l.
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Let cr (u, v) be the sectional curvature of the plane spanned by u and v in the tangent
space of M above x. Then [7] we have

R(g)ij/cl g{4[cr(ei -+- el, ej -t- e/c) cr(ej + el, ei -+-
-2[or (ei, ej -I- e/c) -k- cr(ej, ei -1- el) + o-(e/c, ei + el) -+- or(el, ej -[-

-l-2[cr (ei, ej --I- el) -k- cr(ej, e/c + et) + or(e/c, ej + et) + r (et, ei -+-
-Yik - O’j O’it O’jk }.

There exists a positive constant C’ which depends on n only, and with gij 6ij, such
that we obtain

[R(g)]2 Z Rij/cIRij/cl < Ct(o’12)2 < C’IS(g)I2

ijkl

and so

Thus

or

IP(W(g)ij/cl, Z(g)ij/cl, U(g)ij/cl, gij))l < CC’lS(g)l

Ix(M) (ICol + Cn Ct) fM IS(g)l dvg,

IS(h)l dl)h < C IS(g)l dvg,

where C + Cn C’/ICo is a positive constant that depends on n only.

Remark. From the proof of the above theorem, one can replace the condition of
non-positive sectional curvature by a pinching condition that the absolute value of
sectional curvature of any 2-plane above a point x 6 M is lesser than or equal to

cn ]S(g)(x)l, a positive constant times the absolute value of the scalar curvature at that
point. Then we have

IS(g)l dvg > ’ fM IS(h)l dVh,

where c’ is now a constant that depends both on n and cn.

Remark. It is easy to see that the same result in theorem 2.6 holds for conformally
flat metrics of nonpositive Ricci curvature.

The Gauss-Bonnet formula yields the following estimate on the Ln/2-norm of
scalar curvature.
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LEMMA 2.7. For an even integer n bigger than two, let (M, g) be a compact

n-manifold with X (M) O. Then there exist positive constants 3n and, depending
on n, which can be chosen a priori such that if

]Z(g)l dvg < 6n and

then

]W(g)l dvg <_ -n

IS(g)l dug >_ Cn,

where c is a positive constant that depends on n only.

Proof. As R (g) W(g) + Z(g) + U(g), applying the Gauss-Bonnet theorem
we have

x(M) C(n) P(W(g), Z(g), U(g))dvg,

where C (n) is a non-zero constant that depends on n only and P is a homogeneous
polynomial of degree n/2 in the components of W(g), Z(g) and U(g). There exist
positive constants C,, Co, C, C2 C and C (n l, nz, n3), which depend on n, n l,

n2 and n3 only, such that

(2.8) Ix(M)I fM(CIU(g)I
+ C(n, n2, n) fM [g(g)ln’ ]Z(g)[nlW(g)]"") dvg

nl, gt2,t’/3

/ fM(ColZ(g)l / CllZ(g)l-lW(g)l

-t-C2lz(g)l-2lW(g)l2 + -t- C,,_lW(g)l) dvg,

where nl, n2, andn3 are positive integers such that nl +n2 q-n3 n/2 andnl < n/2.
For positive numbers s, t, p and q such that

n
s+t=- and -+-= 1,

2 p q

a calculation shows that if tq n/2, then we have sp n/2 as well. Appling the
H61der’s inequality to (2.8) (twice to the terms with nl, n2, and n3), we have

(2.9) Ix(M)I C:, in4 IU(g)l dye

-+- C(nl, n2, n3) IU(g)l 5 dvg IZ(g)15 dvg
/’/I ,g/2,n3
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IW(g)l dvg -4--Co IZ(g)l dog

(fM )(fM I q’-
+ C1 [Z(g)[ dvg IW(g)[ dvg +...

)q-,+ C-I IZ(g)l dvg IW(g)l dvg

-t-C IW(g)l dye,

where

and q, ,qPn,rnz,qn3, Pl P-I
are positive constants specifed in the H61der’s inequality. If we choose 8n and n
(which depend on Co, C C/2, i.e., depend on n only) sufficiently small so that

IZ(g)l dl3g <_ and IW(g)l dvg <_

then

fm (fm )’1 (Urn)q"-(Co IZ(g)l dvg + Cl IZ(g)l dvg IW(g)l dvg

/C_ IZ(g)l dvg ’-’ IW(g)l dvg

-t-C IW(g)15 dv <_ -,
and the fact that

(2.9) gives

IU(g)l 2 2S(g)2

n(n 1)

IS(g)l

as ,(M) # 0 and hence I, (M)I >_ 1. Here c is a positive constant that depends on
n only.

COROLLARY 2.10. Foranevenintegern biggerthantwo, let(M, g) beacompact
Einstein n-manifold with Ric(g) +(n 1)g. If X (M) 0 and

IW(g)l dvg <
2C
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then Vol(M, g) > c’n, where C is the same constant as in (2.9) and c’n is a positive
constant that depends on n only.

Proof As (M, g) is an Einstein manifold, we have Z(g) 0. Therefore in (2.9),
the terms involving Z(g) vanish and we just need

IW(g)l dvg <
2C

to conclude that

Using the fact that

IS(g)l dvg >_ C

IS(g)l- n(n 1)

for an Einstein manifold with Ric(g) +(n 1)g, we obtain the result.

COROLLARY 2.11. For an even integer n bigger than two, let (M, g) be a compact
Einstein n-manifold with Ric(g) (n 1)g and x(M) V O. Then there exists a

positive number en, which depends on n only, such that if

lW(g)l dl)g <_

then g has constant positive sectional curvature. In the case n 4, we can drop the
assumption that ) (M) O.

Proof. Ifwetakee < 1/(2C), then Corollary (2.9) shows that Vol (M, g) > c
for some positive constant C!n that depends on n only. A result in 15] shows that there
exists a positive constant c, which depends on n only, such that if

VoI(M, g),IW(g)l dvg <_ C

then g is a metric of constant sectional curvature one. We can take n
min{cc!’!, /(2C) }. If n 4, then the Gauss-Bonnet formula for an Einstein metric
has the form

x(M) (Ig(g)l 2 -t- IW(g)l2) dvg.

It follows that X (M) 0 if Ric(g) (n 1)g. !-1

Remark. Similar pinching results are obtained in 12] and [9].
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3. Ricci curvature flow

Let (M, go) be a compact Riemannian manifold. In this section we consider the
Ricci curvature flow

26S(g)
(3.1)

Og
-2z(g) g, g(0) go,

Ot n

where z(g) Ric(g) [S(g)/n]g is the trace free Ricci tensor as in Section and

aS(g)- S(g)- fall S(g) dvg

fM dvg

The Ricci curvature flow has been studied extensively by Hamilton, Huisken, Marg-
erin, Nishikawa, Shi, Ye, and many others in respect to the questions of long time
existence and convergence; we refer to [17] for comprehensive references. It has
been shown that if (M, h) is a compact Einstein manifold of strictly negative sec-
tional curvature, then there exists an open neighborhood of h in the space of smooth
metrics with C-norm such that each metric go in that open neighborhood converges
to h under the Ricci curvature flow (3.1) 14], [17]. Furthermore, we can choose an
open neighborhood such that the Ricci curvature remains negative during the Ricci
curvature flow.

LEMMA 3.2. For n > 4, let M be a compact n-manifold. Let g be a solution
to the Ricci curvature flow equation (3.1) on the time interval (0, t’), where t’ may
equal infinity. Assume that limt-+t, g g’ is a smooth Riemannian metric on M. If
S(g) < 0for (0, t’), then

6--7 IS(g)l dvg 0 for all (O, t’).

Hence

IS(g)l dvg > fM IS(g’)l dvg,.

Proof From (3.1) (see 11 ], 16]) we have

(3.3)
dS(g) 26S(g)

AS(g) -+- 21zl 2 q- S(g).
dt n

As z(g) is trace-free, we have

(3.4) t )(dvg)’-- trg - dvg---S(g).
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Therefore

dt
IS(g)l dog -IS(g)l- -IS(g)l dvg + IS(g)l (dog)

-IS(g)l- dvg

.f, IS(g)l (6S(g)) dvg (as S(g) < O)

lS(g)l -l -AS(g) 21zl 2
n

IS(g) (3S(g)) dvg

L n( ’](n_l) -2 12\,, IS(g)l v IS(g)l

fM nz-2 lS(g)lS-11l dvg <_ O,

S(g)) dvg

as--AS(g) AIS(g)I. E3

THEOREM 3.5 [4]. For n > 4, let (M, h) be a compact Einstein n-manifold of
strictly negative sectional curvature. Then there exists an open neighborhood ofh in
the space of smooth metrics on M with CC-norm such thatfor any metric g in the
open neighborhood,

IS(g)l dl)g > IS(h)l dvh.

Proof The existence of such an open neighborhood of h for which the the Ricci
curvature flow (3.1) converges to h is shown in 17]. Furthermore, we may choose the
open neighborhood such that the scalar curvature remains negative during the Ricci
curvature flow. Then we can apply Lemma 3.2.

THEOREM 3.6. For n > 4, let (M, h) be a compact hyperbolic n-manifold. Then
there exists an open neighborhood of h in the space of smooth metrics on M with
C-norm such thatfor any metric go in the open neighborhood, if g is a solution to
the Ricci curvatureflow (3.1) with initial condition go, then

d-- Ric(g)l dvg < O.

Proof As Ric(g)l 2 Iz(g)l 2 q- S(g)2/n, we have

d d 2)d--(I Ric(g)l) -(I Ric(g)l
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n 12),_1) d
(I Ric(g) -71Ric(g)l2

n d ( 12(IRic(g)]2)(-l) Iz(g) +
S(g)2 )n

We have (see [17])

0 4

0-7 Iz(g)12 AIz(g)l 2 21V z(g)l2 -+- 4Rm(z(g)). z(g) + -3S(g)lz(g)12’n
where Rm(z(g)) z(g) gii’gjj’gkk’gll’R(g)ijklZ(g)i,k,Z(g)j,l,. From (3.3) we have

0 4

0--71812 2S(g)AS(g) + 4S(g)lz(g)l2 + -6S(g)S(g)2n
4

A[S(g)I2 21V IS(g)ll 2 -+-4S(g)lz(g)l 2 + -6S(g)S(g)2,
n

as S(g) < 0 and Au2 2uAu + 21V ul 2. Therefore

d fa4 fa4 n 12)"-1) 2 19-d--7 Ric(g)l dvg [(I Ric(g) (Alz(g) 21V z(g)

4
+ 4Rm(z(g)). z(g) + -6S(g)lz(g)l

4
+ -(A[S(g)I 2 21V IS(g)[I) / -S(g)[z(g)l 2

n n
4 S(g)2

+ -S(g) ]dvg IRic(g)lS(g)dvg
n n

f ,n(n ) [2)(n __2) 12-1 (IRic(g) (-lyRic(g)

2 4 2)+4Rm(z(g)). z(g) -I V IS(g)ll 2 + -S(g)lz(g)l dvg,
11 n

das Alz(g)l2 + kAIS(g)12n ml Ric(g)12 Therefore 27 fMIRic(g)1 dvg _< 0 if we
can show that

Rm(z(g)) z(g) + -S(g)lz(g)l2 <_ O.
n

LEMMA 3.7. There exists a positive constant which depends on n only (n > 4)
such that if (M, g) is a compact Riemannian n-manifold with sectional curvature K
satisfying -1 < K < -1 + , then

nRm(z(g)) z(g) + S(g)lz(g)l2 50.
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Proof. We show the case n 4 first. Let x M. Choose an orthonormal basis
{el, e2, e3, e4} for the tangent space above x such that, at the point x,

gij 6ij and z(g)ij ),i6ij for < i, j < 4.

Let oij be the sectional curvature of the plane spanned by ei and ej. Then, at the point
xM,

Rm(z(g)) z(g) R(g)ijktz(g)i,:,z(g)j,t,gii’gJJ’gkk’gu’

Z R(g)ijijz(g)iiz(g)jj
i#j

Z O’ij ), ),

i#j

Therefore

4Rm(z(g)) z(g) + S(g)lz(g)l 2) 4Z O’ij),i),J -4- Z O’ij(), Jr- ), -+" ), -JI- ),)
i#j ij

Z O’ij a), ), -Jr- ),21 -Jr- ), -Jr- ), -+
ij

We need to show that

(3.8) O’ij(4),i),j -{- ), -+- ), q- ), -{- ),) < O.
i#j

Assume that -1 < oij < -1 -4- for < i, j < 4. Then

(3.9) 0"12(4),1),2 -[- ),: q- ),22 -t- ), -’F ),42) "k 0"34(4),3),4 -{’- ),: -k ),. q" ), -’k ),24)
--2[(),1 -+" ),2) 2 q- (),3 -{" ),4) 2]
+ 0()[4(),),2 + ),3),4) + 2(),21 + ), + ), + ),24)]-

And

(3.10)

Since

--[()V -- .2)2 -Jr- ()V +),4)2 +2(), )L3 -It-), 4 -4-),2),3 "JI-),2)V4) [(), "4-),2) -I- (),3 4-),4)]2
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we add (3.9) and (3.10) together to obtain

(3.1 1) 0",2(4.1X2 -+- XI2 + X22 + , + X42) + 0"34(4.3X4 + X12 -+- )2 + ) _+_ .42)
+0"13(4)13 + )21 + +" -t- )-I-0"14(4)14 "+" )21 q- )L -t- 32 -t- 42)
+0"23 (4.2)V + ,: + )v22 + )v -+- )v)-+-0"24(4)V2)4 + )v: q- )V. + )V + .)

[(.1 + .2 + .3 -I- )v4) 2 + (1 + .2)2 + (.3 ’[-/’4)2 + (/.1 + .3)2

-t- (-1 + .4)2 "1- ()2 -t’- 4)2 -t- (2 + 4)2 + 2()21 + . + ) + .42)]
-t’- O()[4().1)2 + )3)4 -t- ).13 + ).1)4 + )2.3 + 2)4)

+ 6(,k21 + k22 + . + k])] < 0.

The last inequality holds if we choose e to be small, as the term (Z2 + .2 + ) + ,k])
will dominate all the terms with e. We can explicitly choose e 1/4. As O’ij (Tji
the remaining six terms in (3.8) is in fact the same as in (3.11). Hence

4Rm(z(g)) z(g) + S(g)[z(g)[2 <_ O.

For n > 4, the proof is similar but more complicated. Choose an orthonormal basis
for the tangent space above x 6 M such that z(g)ij )i(ij for < i, j < n. We
need to show that

i<j,l<_i,j<_n

ij(n)Li)j + +...-- )Ln2_l + )L2n) _< O.

By induction, we may assume that there exists a positive number Cn-1 such that

+ +... +  2._11
i<j,l<i,j<n-1

< --Cn-l( + q- )V2n_l)

0(6)( E
<j, <i, <n-

Then

i<j,l<_i,j<n-1

(lij[n)Li) -- )L --... + ,n2_l -+- )L2n

2< C "Jl- -lr" )Ln_ 1)
(n 1)(n 2) 2

i<j,l<_i,j<n-1

"+-0()( E
i<j,l<i,j<n--1

In the sum Ei<j,l<i,j<n-1 i’’J each Ji appears n 2 times for < < n 1. We
have

i<j,l<i,j<n

oij(n)i + )v +’’’-’]- .2n_ -I- )2n)
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2

i<j,l<i,j<n-I

2 2(/’/)ln 31- 21 -lf-""" + /’n--1 + n)

(n- 1)(n-2) 2

2
,k,

2 2n -1)V -}- )V -[-’’"-[- )V q- An)

+ 0(6.)( Z i) .qL )21 _... + )2n_ -- Z2n)
i<j,l<_i,j<n

-._, (z +... + z._,)
<j,l <i,j<__n--I

,i,j n(),.),.n +... + n-ln)

-(n 1)() +...+)2n_ l) [(n 1)(n 2)
2

+ (n 1) ,k-- 0 . Z i )J -- -- .qt_ )2n_ + )2n
i<j,l<_i,j<_n

-c,_, (z +... + z,_,) (’’i’3f-)ij"-j
i<j,l<i,j<n-1

We have

()1 -- )2)2 -[- (3 -- )n)2 -]- "V/-(/I/’3 -[- ln -+- 2’3 -- )2n)2

(____.
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Therefore

o.ij(n)Li)Lj .qt_ _... + n2_l .qt_ ,2n)
i<j,l<i,j<n

)Vl q- )v2 + )L3 "JI-

()i + )vj) 2

j, <i, <n- 1, (i, j)#(1,2), (1,3), (2,3)

_(1 2.2 (/- 1).2.3 +

1 + g + (g + g4 +... + g-l
-[(n-), + (n )XX. + (n -2)XX +4n ’’’ n-ln)

g (--1 +o( xx++...+_+
i<j,li,jn

j, <i, j <n- 1, (i, j)#(1,2), (1,3), (2,3)

/-
-[() )) + (. + .)]

2

R---[()L3 + n)2 +’’" + (n-1 + n)21 n

2 2

+ o() (i<j,li,jn
[()l -[- )Vn)2 + ()v2 + ,n)2]

+ +... + _, +,ij
!

where in the last inequality c, is a positive constant. Therefore

Z o’ij[ni)Lj -I- )v +’’’ + )L2n_l + 2n]
i<j,l<i,j<n

<__ __Cn(J21 .qt_....ql_ )2n_ + ,n)

+ 0(6.) ( Z )vi)vJ)V+’’’"’2n-’ --)V2n)i<j,l<i,j<n
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Hence we can choose sufficiently small so that

o.ij(ni) .qt_ ) __... 2t_ 12n_l + 2n) O.
i<j,l<i,j<n

By induction, we have finished the proof for all n > 4. !-I

Proofof Theorem 3.6 continued. We may choose an open neighborhood of h
such that the sectional curvatures of all the metrics in the open neighborhood is
sufficiently pinched. As shown in [17], curvature pinching is preserved during the
Ricci curvature flow. Therefore we can apply Lemma 3.7 to finish the proof.

Remark. We may apply Lemma 3.7 to show theorem 3 in the introduction.

4. Conformal changes of metrics

We begin with the following lemma (cf. [4]), which says that among all conformal
metrics, the ones with constant nonpositive scalar curvatures have minimal L -norms
of scalar curvatures. The result has been proved in [4]. For the sake of completeness
we present a proof here, using a different scalar curvature equation.

LEMMA 4.1. Let M be a compact n-manifold with n > 3 and g be a Riemannian
metric on M with constant nonpositive scalar curvature. Thenfor any metric g’ that
is conformal to g, we have

fM lS(g’)l dvg’ > ft lS(g)l dvg,

where equality holds ifand only ifg’ cg for some positive constant c

Proof. Let g u g’ with u > 0. If S(g’) is the scalar curvature of the metric
g’, then

n+2
(4.2) CnA’u- S(g’)u -S(g)u,----5,

where Cn 4(n 1)/(n 2) and A’ is the Laplacian for the metric g’. Multiplying
(4.2) by u and then integrating by parts we have

-Cn IV Ulg,

IS(g)l Vol(M, g),

as S(g) is a nonpositive constant. Therefore

(4.3) [ S(g’)u2 dog, >_ IS(g)l Vol(M, g),
JM



ON THE ln/2-NORM OF SCALAR CURVATURE 625

and equality holds if and only if u is a constant. Using H61der’s inequality we obtain

IS(g’)l dvg, u-z dvg, >_ S(g’)u2 dvg,.

Combine with (4.3) to obtain

IS(g’)l dye, (VoW(M, g))W IS(g)l VoW(M, g).

That is,

Ig(g’)l dog, IS(g)l Vol(M, g) fM IS(g)[ dvg.

For a Riemannian metric g on a compact manifold M, .the Yamabe invariant is
defined as

{ 4(n-1) fM’Vu’:zdvg+fMRgu2dvg ](4.4) Q(M,g)=inf n-2 C
(fM lul dvg)’-- lu (M), u 0

It is known that the Yamabe invariant for the standard unit sphere is equal to the best
constant for the Sobolev inequality on R (Theorem 3.3 of [13]); i.e.,

Q(Sn, go) n(n 1)og;,

where wn is the volume of the unit n-sphere.
Lemma (4.1) does not hold in general for constant positive scalar curvature. How-

ever, for Einstein metrics with positive scalar curvature we have the following result.

LEMMA 4.5. For n > 3, let (M, go) be a compact Einstein manifold with positive
scalar curvature. Thenfor any metric g that is conformal to go, we have

IS(g)l dvg >_ fM IS(g)l dvg"

Proof As the scalar curvature of (M, go) is positive, we have Q(M, go) > 0. If

Q(M, go) < n(n 1)o, then there is a smooth positive function u such that

4(n-l) flv ul2 dl)g + f Rgu2 dvgn-2
n-2Q(M, go)

fM lul.__._2 dvg)__
and the metric U4/(n-2)go has constant positive scalar curvature. Obata’s theorem A
implies that u is a positive constant and

Q(M, go) n(n 1) Vol(M, go)
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The same relation holds of the standard n-sphere. (4.4) gives the inequality
-2

(f, ) 4n-lf(4.6) n(n 1) Vol(M, go) lul dVgo < V ul 2 dvgo
n-2

+ fM Rgu2 dvgo

for u C(M). Let g u go, u > 0. We have

n- n+2
(4.7) 4 AoU- S(go)U -S(g)urZ-,

n-2

where Ao is the Laplacian for (Sn, go). Multiplying (4.7) by u and then integrating
by parts we obtain

f. f.n 12 S(g)u dvg(4.8) 4 IV U dvg -1c- S(go)U2 dvg
n-2

Applying the H61der’s inequality and the inequality (4.6) we have

n-2

)--2n 2n

S(g)u ";’- dvg <_ IS(g)lu dvg tt ";=- dvg

< [n(n 1) Vol(M, go);]-1 IS(g)l dvg

x 4 ’2 V u] 2 dug,, -b" dug

So from (4.8) we obtain

We must have

or

as S(go) n (n 1).

[n(n 1) Vol(M, go);] -1 ]S(g)[ dvg >_1,

lS(g)l dvg > [n(n 1] Vol(M, go) fM IS(g)l dog’
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COROLLARY 4.9. For any metric g on S that is conformal to go and with S(g) <
n(n 1), we have Vol (Sn, g) > Vol (Sn, go)

PROPOSITION 4.10. Let (M, g) be an n-manifold with bZg > Ric (g) > aZg for
some positive numbers a and b. Thenfor any metric g’ u ,-- g, u > O, we have

ft lS(g’)l dvg’ >- Cn fn4 lS(g)l dvg,

where Cn is a positive constant that depends on a, b and n only.

For the smooth positive function u, the Sobolev inequality on (M, g) 1]Proof.
gives

(4.11) u .2--5"-2 dvg _< (Vol(M, g))-1/4 ran V ul 2 dvg

-Jr- U
2 d l3g

where r Diam (M, g)/n and an, otn are positive constants that depend on n only.
As Ric(g) > aZg, Myers’ theorem gives Diam (M, g) < rrv/n- 1/a. Therefore
there exists a positive constant C (n, a), which depends on n and a only, such that

n-2

(fm2n )"- (j; fu2 )(4.12) uZ-2 dvg <_ C(n, a) (Vol(M, g))-; V U[ 2 dvg -+- dvg

In the proof ofLemma (4.5), if we use the inequality (4.12) instead of (4.6), we obtain

4 IV u dvg + S(g) dvg
n-2

2(f ,2 )5 C(n, a) [S(g’)[ dvg (Vol(M, g))-- ]7 U dvg + dvg

As S(g) > na2, we must have

C(n, a) [S(g’)l dvg,

or

where

(Vol(M, g)) { 4(n-l) }>min
(n-2)

ha2

IS(g’)l dvg, > fM IS(g)l dvg,

C(n,a,b)
4(n-l) na2}min (n-2)

C (n, a)nb
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We have made use of the fact that S(g) < nb2. C(n, a, b) is a positive constant that
depends on n, a and b only. [21

Hamilton has introduced the following normalized Yamabe flow (scalar curvature
flow), similar to the Ricci curvature flow:

(4.13)
Og,

(g(gt) S(gt))gt,
Ot

where J(gt) fM S(gt) dvg,/Vol(M, gt). The Yamabe flow has been used by Hamil-
ton, B. Chow [8], and R. Ye 18] to obtain constant scalar curvature metrics on various
situations. As in Section 3, we consider the change of the L -norm on scalar curva-
tures along the Yamabe flow.

LEMMA 4.14. Let (M, go) be a compact Riemannian n-manifold with n > 4.
Assume that (M, go) has positive scalar curvature. If gt is a solution to the Yamabe

flow (4.13) with initial metric go, then

d IS(gt)l dvg, O,

and equality holds at time ifand only if gt has constant scalar curvature.

Proof. It is more convenient to consider the unnormalized Yamabe flow

(4.15)
Ogt

-S(gt)gt.
Ot

One can rescale in time for the solutions of (4.15) to obtain corresponding solutions of
(4.13) [8], 17]. Under the flow (4.13), the evolution equation for the scalar curvature
[81 is

--S(gt) (n 1)AS(gt) + S(gt)2.
Ot

It follows from the maximal principle that if go has positive scalar curvature, then
S(gt) > 0 for all > O. Under the normalized Yamabe flow (4.13), the evolution
equation for the scalar curvature 18] is

0
(4.16) --S(gt) (n I)AS(g,) + S(gt)(S(g,) g(gt)),

at

and

(4.17)
dg n

(dvg)’-- -trg(----)dvg -(g(gt)- S(gt)).
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Therefore we have

d---i IS(gt)l dog, -S(gt)- ---iS(gt) dvg,

+ -s ((g,) s(g,)) dye, (as S(g) > O)

n
S(g,)- [(n 1)AS(gt) + S(g,)(S(gt) (g,))]dvg,

n S (J(gt) S(gt)) dvg,+ -5- ---l S(gt) vS(g) dvg, <0,

and equality holds if and only if S(gt) is a constant.

Let (M, g) be a compact conformally flat manifold with positive Ricci curvature.
The Yamabe flow (4.6) with initial metric g is known to converge to a constant
curvature metric go as --+ oo [8]. Applying the above lemma we have the following.

THEOREM 4.18. Let (M, g) be a compact conformallyflat manifold with positive
Ricci curvature. Then

(4.19) S(g)l dvg >_ fM IS(g)l dvg’

where go has constant positive sectional curvature.

Remark. As the Ricci curvature of (M, g) is positive, it is bounded from below
by a positive constant. Hence the fundamental group is finite by Myer’s theorem. The
universal covering of M is then conformally equivalent to the standard n-sphere S
under the development map. Because a finite group of conformal transformations of
the S is conjugate to a group of isometrics of Sn, we see that the metric g is conformal
to a metric of go of constant positive sectional curvature. Proposition (4.10) provides
a not so sharp lower bound on the L -norm on S(g).

We note that there exists a family of metrics on Sn for n > 3 with L -norms
on the scalar curvatures concentrate around one point. For any > 0, the family of
functions

n-2

Ue(X) 2 -I-Ixl 2
x

satisfy the equation
n+._2
n-2Aou + n(n 2)u 0,
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where Ao is the Laplacian for R with the standard flat metric (ij. That is, the
n-2metric go,, u, (ij has scalar curvature equal to n(n 2). Let S --+ R

be the sterographic projection which sends the north pole to infinity. Using the fact
that d((0, 0 0, 1), y) 1/l(y)l, where (0, 0 0, 1) is the north pole of Sn,
y 6 S \ (0, 0 0, 1) and d is the distance on S, the pull back of the family of
metrics go, by , denoted by g,, on S", is a family of nonsingular metrics on Sn.
Then (S \ (0, 0, ..0, 1), g) (R", go,) is an isometry. The scalar curvature
of (Sn, g) equals n(n 2). And

]S(g)l dvg, [n(n 2)1 dvgo.

2n

[n(n 2)]u, dvo

[n(n 2)] dvo
52 --IX[2

rn- dr,Cn l+r2

where cn [n(n 2)] Vol(S"-1) and r [xl/, x Rn. As -+ 0, L-norms
on the scalar curvatures concentrate around the south pole; i.e., there exist a positive
constant Cn such that

IS(g)l dvg, > Cn

for all > > 0 while if O is any open neighborhood of the south pole, then

IS(g)l dvg, -- 0 as e --+ 0.

While as e oe, the integral concentrates around the north pole.
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