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NORM INEQUALITIES IN THE CORACH-PORTA-RECHT
THEORY AND OPERATOR MEANS

MASATOSHI FUJII, TAKAYUKI FURUTA AND RITSUO NAKAMOTO

1. Introduction

Throughout this note, an operator means a bounded linear operator acting on a
Hilbert space. In particular, an operator A on H is positive, denoted by A > 0, if
(Ax, x) > 0 for all x 6 H.

In [2], Corach-Porta-Recht gave a norm inequality as a key of their theory on
differential geometry. Afterwards, we pointed out that it is equivalent to the Heinz
inequality [6]. On the other hand, Furuta 10] showed that the Cordes inequality

() AtBt IIABII for A, B > 0 and 0 < <

is equivalent to the LOwner-Heinz inequality (cf. [16])

(2) A > B > 0 implies A >_ B for 0 _< < 1.

Under such situation, we developed Furuta’s argument on the equivalence of (1)
and (2) in [8]. However the Jensen inequality [12]

(3) (X*AX) >_ X*Atx for A > 0 and contractions X

is not discussed there.
Very recently, Corach-Porta-Recht [3] proposed the norm inequality, denoted the

CPR inequality,

(4) II(A gt B)I/2(C , D)l/211 IIA/2C/21II-tlIB/2D/2IIt

for positive operators A, B, C and D, where t is the t-power mean defined by

(5) A t B A/2(A-1/2BA-/2)tA /2

for invertible A, B > 0 and 6 [0, 1]; see [15]. As stated in [3], (1) is the special
case of (4), i.e., take A C in (4). For the sake of convenience, the t-power
mean defined by (5) is extended as in 11 ]" For 6 ,
(5’) A t B A1/2(A-1/2BA-1/2)tA 1/2
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for invertible A, B > 0,
In this note, we show that the CPR inequality (4) is implied by the Jensen inequality

(3). Moreover we consider the reverse inequality of the CPR inequality:

(4’) (A t B) l/2 (C t D) 1/2 A 1/2C 1/2 i1- B /2D/2

for A, B, C, D > 0 with invertible A, C and < < 2. Similarly we do those of the
Cordes and Jensen inequalities (1) and (3):

(1’) IIAt Btll IIABII for <t_<2,

(3’) (X*AX) < X*AtX for contractions X and < < 2.

Thus we prove that the inequalities (1)-(4), (1’), (3’) and (4’) are mutually equivalent;
the proof is done in an elementary way and clarifies the importance of the L6wner-
Heinz inequality (2). Next one of them is discussed in a general setting (cf. [7]): A
nonnegative continuous function f on [0, c) is operator monotone if and only if the
Jensen inequality holds for f* (x) xf(x-); i.e.,

f*(X*AX) > X*f*(A)X

for A >_ 0 and contractions X. Here we remark that if f is the operator monotone
function corresponding to an operator mean o., i.e.,

A o. B A/2f(A-/2BA-/2)A /2,

then f* corresponds to the transpose to of o", defined by A to" B B o" A; see 15].
Finally we give a simple proof of the fact that a real-valued continuous function f on
[0, cx) is operator monotone if and only if jT(x) xf(x) is operator convex.

2. The CPR inequality

First of all, we state our result.

THEOREM 1. Thefollowing inequalities hold andfollowfrom each other, where
A, B, C and D are positive operators:

(ll) II(A t B)l/2(C t D)l/21l < IlA/2cl/21ll-tllBl/2D1/2llt forO < < 1.
(12) II(A t n)l/2(C t D)l/2ll >_ IIA/2C/2llt-lllB/2D1/21lt forinvertible A, C

and < < 2.
(II) IIAtntll <_ IIAnllt forO <_t <_ 1.
(I12) IIAtntll >_ IIAnllt for <_ <_ 2.
(113) A 1/2 B /2 _< AB 1/2.
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(114) [[A2B2I[ >_ IIABII 2.
(Hs) IIAtBtAtII <_ IlABAllt forO <_ <_ 1.
(116) [IAtBtAtl[ >_ [IAnAllt for <_ < 2.
(II1) A > B > 0 implies A >_ n for O < < 1.
(IV1) (X*AX) >_ X*AtXforcontractions X and O < < 1.
(IV2) (X*AX) < X*A Xfor contractions X and < < 2.

We remark that (11) =, (H1) =, (115)is stated in [3], (115) =, (//1)is easily
checked, and the equivalence of (//1) and (III) is proved by Furuta 10]. To prove the
others, we prepare the following lemmas, one of which is made for the proof of an
extension of the Furuta inequality in 11] and is quite usefull for such a discussion.

LEMMA 2. For invertible operators X and A > O,

(X*AX)t X*A/2(A1/2XX*A/2)t-A1/2X

for all ,. In particular,

A t B B _t A

forO<t < l.

Proof. For the sake of convenience, we give a simple proof via the polar decom-
position: Let X*A 1/2 UH be the polar decomposition of X*A 1/2. Then, for s 6 N,
we have

(X*AX)1+, (UH2 U*)l+s UH2+2s U*
UHH2,HU X*A1/2(A1/XX*A/)SA1/zX.

Next we reformulate the Jensen inequality (3) as follows:

LEMMA 3. If A >_ 0, then, for any operator X, (i) X*AtX < IIXII-2t(X*AX)
forO <_ <_ and (ii) (X*AX) < [[X[[2t-2X*AtX for < < 2.

Note that (ii) is easily obtained using Lemma 2 and (i) is just a reformulation of
the Jensen inequality (3).

The following lemma is a simple application of Lemma 3.

LEMMA 4. The following inequalities hold for invertible A, B, C, D > 0:

(i) A t B < [[A1/2cl/2ll2-2t(C-1 t B) for0 < < 1.
(i2) C t D < [[B1/2D1/2II2t(C t B-l) for0 < _< 1.
(iil) A t B > 11Al/2cl/2[12t-2(C-1 t B) for < < 2.
(ii2) C t D > [[n/2D1/2ll2t(C t B-l) for < < 2.
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Proof. (il) It follows from Lemma 3 (i) that

A t B C-1/2CI/2A1/2(A-1/2BA-1/2)tA/2C/2C-1/2
<_ C-1/21IC1/2A1/2112-Zt (c1/2A1/2(A-1/2BA-1/2)A1/2CI/2) C-1/2

IIA1/zC1/ZlIZ-Ztc-1/Z(c1/ZBC1/z)tc-1/2
I[A1/zC1/ZIIZ-Ztc-1 t B.

(i2) It follows from Lemma 2 and the above (il) that

CtD D_tC
<_ Ilol/2D1/2ll2-2(1-t)(O-1 l--t C)

Ilol/Zol/2ll2t(C t B-l)

The proofs of (iil) and (ii2) are similar to those of (il) and (i2). [-1

Now we prove Theorem based on Lemmas 2 and 4.

PROOF OF THEOREM 1. The proof is divided into two parts, namely the equiva-
lence (11) = (//l) := (II3) = (III) =: (IV1) = (11) and the implication (III) =: (IV2)

= (I2) := (112) := (II4). Since (II3) and (I14) are clearly equivalent and proved in
[8], it suffices to show the equivalence and implication stated above.

(III) = (IV1). It suffices to show that

(CAC) > CA C

for invertible positive operators A and C < 1. It follows from Lemma 2 that

(CAC) CA1/2(A1/2C2A1/2)t-IA1/2C
CA1/2(A-1/2C-2A-1/2)I-t A1/2C

> CA 1/2 (A- 1) 1-tA 1/2C by (III)
CAtC.

(IV1) == (I). It follows from Lemma 4 (i) and (i2) that

II(A t B)I/2(C t D)I/2II2
II(C t D)1/2(A t B)(C t D)I/2II

<_ IIA/2C1/2112-211(C t D)/2(C- , B)(C t D)/211
IIA1/2C1/21I2-2tII(C-1 t B)I/2(C t D)(C- t n)l/211

<_ IIA/2C/2112-2tlIB/2D/2112tlI(C- t n)/2(C t B-)(C- tt n)/211
IIA/2C/211z-2tlIB/2D/2II2t

because C t B-1 (C-1 t B)-.
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Since (I1) = (HI) by taking A C and (HI) (III) and (H1) (113) are
shown in 10] and [8] respectively, the first half is proved.

For the latter half, we prove (111) = (IV2) = (12) because (I2) = (I12) =: (II4) is
easily seen.

(III) = (IV2). Let s -4- 1; then 0 < _< 1. Then it follows from Lemma 2 that
for a contraction X and A > 0,

(X*AX) X*A1/2(A1/2XX*AI/2)tA1/2X
<_ X*A1/2(A1/2A1/2)tA1/2X by (III)

X*A,X.

(IV2) = (/2)" The proof is quite similar to that of (IVI) =, (I1). As a matter of
fact, it follows from Lemma 4 (i/l) and (ii2) that

II(A tl, B)l/2(C t D)l/2ll2
II(C t, D)l/2(A t B)(C , D)l/2ll

> IIA1/2cl/2112t-211(C tt D)I/2(C-1 t B)(C t D)I/2II
IlA1/2C1/2112t-211(C-1 t B)l/2(C , D)(C-1 tt B)l/2ll

> IlA1/2C1/2112t-211B1/2D1/2112tll(C-1 t B)l/2(C t B-1)(C-1 t B)l/211
--ilA1/2C1/2ll2t-2llB1/2D1/2ll2,"

So the proof is complete.

3. Operator monotone functions

A binary operation rn among positive operators is called a mean if rn is upper-
semicontinuous and satisfies

A <CandB < DimpliesArnB <CrnD

and the transformer inequality

T*(A m B)T < T’AT m T*BT

for all T. We note that if T is invertible, then it is replaced by the equality

T*(A m B)T T*ATm T*BT.

Now the Kubo-Ando theory on operator means says that there is an affine-iso-
morphism of the operator means r onto the nonnegative operator monotone functions

f on [0, cxz) such that

Acr B A1/2f(A-1/2BA-1/2)A 1/2
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for invertible A, B > 0, or simply

f(x)--lrx for x>_0,

which is called the representing function of r. Clearly a binary operation cr defined
by

A tcr B B cr A

is an operator mean if so is r. If f is the representing function of r, then that of to.
is given by

f*(x) tr X ---X(X -1 tr 1) X(1 O" X -1) --xf(x-1).
Since t(t) l-t by Lemma 2, (III) = (IVy) in Theorem suggests the following
generalization:

THEOREM 5. Let f be a nonnegative continuous function on [0, cx) such that
limx--,0 f* (x) exists. Then f is operator monotone ifand only ifthe Jensen inequality
holdsfor f*, i.e.,

f*(X*AX) > X*f*(A)X

for A > 0 and contractions X.

Proof. We use the following formula of Furuta’s type instead of Lemma 2: for
invertible operators A >_ 0 and X,

f*(X*AX) X*A/2f(A-/2(XX*)-A-/2)A1/2X.

This can be checked via the Weierstrass approximation theorem.
Now we assume that f is operator monotone. For invertible positive operators A

and C < 1, we have

f*(CAC) CA/2f(A-/2C-2A1/2)A/2C
>_ CA/Zf(A-)A1/2C by C-2

Cf*(A)C.

Conversely we take invertible B > A > O. Since B- _< A-, there exists an
invertible contraction X such that B-1/2 A-1/Zx. Since B 1/2 X-1A 1/2

A1/2X*-I we have

X*A-1/Zf(B)A-1/Zx X*A-1/Zf(A1/Z(xx*)-IA1/Z)A-1/2X
f*(X*A-X)

> X*f*(A-)X
X*A-/2f(A)A-/2X,

so that f(B) > f(A), as desired.
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A real-valued function g on [0, cx) is operator convex if it satisfies

g(sA + (1 s)B) < sg(A) + (1 s)g(B)

for A, B > 0 and 0 < s < 1. Hansen-Pedersen [13] proved that for a real-valued
function g on [0, ), g is operator convex and g(0) < 0 if and only if

g(X*AX) < X*g(A)X

for A > 0 and contractions X; see also Davis [4], [5] and [7], [9], 14].

COROLLARY 6. A real-valued continuousfunction f on [0, o) is operator mono-
tone ifand only ff is operator concave, i.e., f is operator convex.

Proof It is known in [7, Theorem 2] that the operation f ----+ f* preserves the
operator concavity. By the theorem of Hansen-Pedersen stated above, the operator
concavity of f is equivalent to f* satisfying the Jensen inequality. Therefore Theorem
5 leads us to the conclusion.

Finally we give an elementary proof of the characterization of operator monotone
functions by the operator convexity, see 1, Theorem 111.2].

THEOREM 7. A real-valued continuous function f on [0, o) is operator mono-
tone ifand only if f(x) xf(x) is operator convex.

Proof Suppose that f is operator monotone. Take A > 0 and a contraction X.
Then we have

f(X*AX) X*A1/2f(A1/2XX*A1/2)AI/2x
< X*A 1/2f(A)A 1/2X (since XX* < 1)

X* f(A)X.

Conversely suppose that f is operator convex and A >_ B _> O. Since we may
assume that they are invertible, we have B /e A/X for some invertible contraction
X. Hence it follows that

X*A1/2f(A)A/2X X*f(A)X
>_ f(X*AX)

X*A/2f(A1/2XX*A/2)A/2X
X*A1/Zf(B)A1/zx,

so that f(A) > f(B). This completes the proof.

Acknowledgement. The authors would like to express their thanks to the referee
for heart-warming suggestions.
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