MODULES THAT ARE FINITE BIRATIONAL ALGEBRAS

David Eisenbud and Bernd Ulrich

Let A be a commutative ring and let B be a faithful A-module with a distinguished element $e \in B$. It would be nice to understand in terms of the theory of A-modules whether B supports the structure of an A-algebra with identity element e. In general there is of course nothing unique about such an algebra structure. But there is at most one such structure if B is a finite birational A-module in the sense that there is an element $d \in A$, which is a nonzerodivisor on B, such that $d B \subseteq A e \subseteq B$. In this case, indeed, the algebra structure of B is determined by the fact that it is a subalgebra of $B\left[d^{-1}\right]=A\left[d^{-1}\right]$.

A number of authors (Catanese [1984], Mond and Pellikaan [1987], de Jong and van Straten [1990], Kleiman and Ulrich [1995]) have given interesting applications of criteria that, under quite special hypotheses, test whether B is an A-algebra in terms of conditions on annihilators of elments of B, or even in terms of a presentation matrix of B as an A-module. It is the purpose of this note to re-examine and generalize these criteria. (For a thorough survey of the history and relations of the criteria, see the introduction to Kleiman and Ulrich [1995].)

Assuming that A is Noetherian, for us the interesting case, the finite birational hypothesis implies that B is a finitely generated A-module (it is contained in $d^{-1} A e$). If B is an A-algebra, then our hypothesis implies that $\operatorname{End}_{A}(B)=\operatorname{End}_{B}(B)=B$, so there is an obvious criterion: B is an A-algebra iff every A-module homomorphism $A e \rightarrow B$ extends to an A-module homomorphism $B \rightarrow B$. Equivalently, B is an A-algebra iff the map $B \rightarrow \operatorname{Ext}_{A}^{1}(B / A e, B)$, induced by the exact sequence $0 \rightarrow A e \rightarrow B \rightarrow B / A e \rightarrow 0$ is zero.

We shall write $-{ }^{*}$ for $\operatorname{Hom}_{A}(-, A)$. It is easy to see that if B is an A-algebra, then $B^{* *}$ is too. In fact, it is not hard to see that $B^{* *}$ is an A-algebra iff the composite map $B \rightarrow \operatorname{Ext}_{A}^{1}(B / A e, B) \rightarrow \operatorname{Ext}_{A}^{1}\left(B / A e, B^{* *}\right)$ is zero. Our first result is that there is a simple alternative criterion in terms of annihilators for determining when this occurs:

Theorem 1. Let A be a Noetherian ring, and let B be a birational A-module as above. The following conditions are equivalent:
(a) $B^{* *}$ is an A-algebra with identity element $e \in B \subseteq B^{* *}$.

[^0](b) For every $b \in B$ whose annihilator in A is 0 ,
$$
\operatorname{ann}(B / A b) \subseteq \operatorname{ann}(B / A e)
$$
(c) For some elements $b_{i} \in B$ that generate B as an A-module, and such that $\operatorname{ann}\left(b_{i}\right)=0$, we have
$$
\operatorname{ann}\left(B / A b_{i}\right) \subseteq \operatorname{ann}(B / A e)
$$

Example 1. Let k be a field and let $A=k\left[t^{3}, t^{4}, t^{5}\right] \subset k[t]$. Set $B=A+A t$, the vector space span of $1, t, t^{3}, t^{4}, t^{5}, \ldots$. The A-module B is a finite birational module in the sense above (with $e=1$). B is obviously not a ring, but it is not hard to see that $B^{*}=\left(t^{3}, t^{4}, t^{5}\right) A$ and thus $B^{* *}=k[t]$, which is a ring. Interpreting Theorem 1 in this case, we might for example take $b=t$, and we compute ann $(B / A t)=$ $\left(t^{4}, t^{5}, t^{6}\right) A \subset \operatorname{ann}(B / A e)$, in accordance with condition (b).

What makes Theorem 1 interesting is that condition (c) can easily be deduced from frequently occuring conditions on the minors of a presentation matrix for B. If M is any matrix and k is a non-negative integer, we write $I_{k}(M)$ for the ideal generated by the $k \times k$ minors of M. In applications, A itself is a factor ring of some larger "ambient" ring R (perhaps a regular ring or a polynomial ring), and we get a stronger result by taking the presentation matrix over R.

THEOREM 2. Let R be a Noetherian ring, let A be a homomorphic image of R, and let B be a finite birational A-module with distinguished element $e \in B$. Suppose that $M: R^{s} \rightarrow R^{t}$ is a presentation matrix for B as an R-module whose first row corresponds to the element $e \in B$. Let M_{1} be the submatrix of M consisting of all the rows except the first, and let I be the ideal $I_{t-1}\left(M_{1}\right)$. Writing $B^{* *}$ for the double dual of B as an A-module, we have:
(a) If $B^{* *}$ is an A-algebra with identity element e then the radical of I contains $I_{t-1}(M)$.
(b) If I contains $I_{t-1}(M)$, and either
(b1) I is a radical ideal; or
(b2) I has grade $\geq s-t+2$ in R,
then $B^{* *}$ is an A-algebra with identity element e.
Remarks. Here the grade of a proper ideal I is defined to be the length of a maximal regular sequence contained in I, or, in another terminology, the depth of I on R. Since $B / A e$ is a torsion A-module, we must have $s \geq t-1$. The grade required in (b2) is the maximum possible for $B \neq A e$. If (b) is satisfied and $s \geq t$ then, by

Buchsbaum-Eisenbud [1977], I is the annihilator of $B / A e$, while if $s=t-1$ then we shall see that $B=A e$. Similarly, if the grade of $J:=I_{t}(M)$ is $s-t+1$ and $s \geq t+1$ then J is the annihilator of A; that is, $A=R / J$.

The proofs show that if A is a graded ring, and B is a graded A-module, then $B^{* *}$ is a graded algebra whenever Theorem 1 or 2 shows that $B^{* *}$ is an algebra.

Example 1, continued. With notation as in Example 1, let $R=k[x, y, z]$, and regard A as a homomorphic image of R by the map sending $x \mapsto t^{3}, y \mapsto t^{4}, z \mapsto t^{5}$. The module B, as an R-module, has two generators $1,-t$ and presentation matrix

$$
\left(\begin{array}{ccc}
y & z & x^{2} \\
x & y & z
\end{array}\right)
$$

The ideal I defined in Theorem 2 is (x, y, z), which satisfies both conditions (b1) and (b2).

We now turn to the proofs. If M is an A-module we write $\operatorname{ann}_{A}(M)$ or simply $\operatorname{ann}(M)$ for the annihilator $\{a \in A \mid a M=0\}$ of M in A.

For Theorem 1 we shall use some general remarks (which work in the nonNoetherian case too): For any subsets M, N of an A-algebra C we set

$$
\left(M:_{C} N\right)=\{x \in C \mid x N \subseteq M\}
$$

and we set

$$
M^{-1}=\{x \in C \mid x M \subseteq A 1 \subseteq C\}
$$

If B is a subring of C, and M a subgroup, then $\left(M:_{C} B\right)$ is naturally a B-module.
If B is a subring of C, then B^{-1} is a B-module, and thus $B B^{-1} \subset B^{-1}$. The converse fails, as in the example following Theorem 1, but we have:

Proposition 3. Let C be an A-algebra. If $B \subseteq C$ is an A-module containing 1, then $\left(B^{-1}\right)^{-1}$ is a subring of C iff

$$
B B^{-1} \subseteq B^{-1}
$$

Proof. Note that

$$
B B^{-1} \subseteq\left(B^{-1}\right)^{-1}\left(\left(B^{-1}\right)^{-1}\right)^{-1}
$$

If $\left(B^{-1}\right)^{-1}$ is a ring, then $\left(\left(B^{-1}\right)^{-1}\right)^{-1}$ is a $\left(B^{-1}\right)^{-1}$-module, so

$$
B B^{-1} \subseteq\left(\left(B^{-1}\right)^{-1}\right)^{-1}=B^{-1}
$$

as required.
Conversely, suppose $B B^{-1} \subseteq B^{-1}$. Since $1 \in B$ we have $B B^{-1}=B^{-1}$ so $\left(B^{-1}\right)^{-1}=\left(B B^{-1}\right)^{-1}$. On the other hand, $\left(B B^{-1}\right)^{-1}=\left(B^{-1}:_{C} B^{-1}\right)$ tautologically. In particular $\left(B^{-1}\right)^{-1}$ is a subring.

In the main case of interest, where C is the total quotient ring of A, Proposition 3 may be interpreted as a statement about duals as follows:

If A is a subring of C and M and N are A-submodules of C then there is a natural map

$$
\left(M:_{C} N\right) \rightarrow \operatorname{Hom}_{A}(N, M) ; \quad x \mapsto\left\{\phi_{x}: n \mapsto x n\right\}
$$

If C is a ring of quotients of A and N contains an element a that is invertible in C, then this map is an isomorphism with inverse $\phi \mapsto \phi(a) / a$.

It follows that for any A-submodule B of the total quotient ring K of A that contains a nonzerodivisor of K we have $\left(A:_{K} B\right)=\operatorname{Hom}_{A}(B, A)=: B^{*}$, the A-dual of B.

If B is finitely generated as an A-module, then B^{-1} contains a nonzerodivisor (for example the product of the denominators of a finite set of elements that generate B) and thus $\left(B^{-1}\right)^{-1}=B^{* *}$.

Proposition 4. Suppose that A is a Noetherian ring, that K is a ring of quotients of A, and that M is an A-submodule of K. If M contains a nonzerodivisor of K, then M is generated by nonzerodivisors of K.

Proof. Without loss of generality we may suppose that $A \subseteq K$ and M is finitely generated. Thus $d M \subseteq A$ for some nonzerodivisor d of A, and we may suppose that M is an ideal of A. Let I be the ideal generated by all the nonzerodivisors of A that are contained in M. If P_{1}, \ldots, P_{s} are the associated primes of A, then $M \subseteq I \cup P_{1} \ldots \cup P_{s}$. Since by hypothesis M is not contained in any P_{j}, the Prime Avoidance Lemma yields $M \subseteq I$, whence $M=I$.

Example 2. If A contains an infinite field then one can replace K by any Noetherian A-algebra in Proposition 4, but in general this is not possible, as shown by the example

$$
A:=\mathbf{Z} / 2 \subset \mathbf{Z} / 2 \times \mathbf{Z} / 2=: B
$$

where B is not generated by nonzerodivisors.
Proof of Theorem 1. Let K be the total quotient ring of A, obtained by inverting all elements that are nonzerodivisors on A. We may regard B as embedded in K, and make the identifications $B^{*}=B^{-1}$ and $B^{* *}=\left(B^{-1}\right)^{-1}$. If b is any nonzerodivisor of K, then b is invertible in K, and we see directly from the definition that ($A b:_{K}$ $B)=b B^{-1}$.

Suppose that $B^{* *}$ is a subring of K. It follows by Proposition 3 that $B B^{-1} \subseteq B^{-1}$. Thus if $b \in B$ is invertible in K, then $\left(A b:_{K} B\right)=b B^{-1} \subseteq B^{-1}$. Thus condition (b) is satisfied.

Condition (b) implies condition (c) by Proposition 4.
Now suppose that condition (c) is satisfied. For each b_{i} we have immediately $b_{i} B^{-1}=b_{i}\left(A:_{K} B\right) \subseteq\left(A b_{i}:_{K} B\right)$. On the other hand $\left(A b_{i}:_{K} B\right) \subseteq\left(A b_{i}:_{K}\right.$
$\left.A b_{i}\right)=A$ since b_{i} has no annihilator in A. Thus $\left(A b_{i}:_{K} B\right)=A \cap\left(A b_{i}:_{K} B\right)=$ $\operatorname{ann}\left(B / A b_{i}\right)$ so condition (c) implies $b_{i} B^{-1} \subseteq B^{-1}$. Since the b_{i} generate B we have $B B^{-1} \subseteq B^{-1}$. Thus $B B^{-1} \subseteq B^{-1}$, and $B^{* *}$ is a ring by Proposition 3 .

In the proof of Theorem 2 we will extend R by adjoining a new indeterminate x. Recall that if R is a local ring with maximal ideal m, then $R(x)$ denotes the local ring $R[x]_{m R[x]}$, which is a localization of the polynomial ring $R[x]$.

LEMMA 5. Let (R, m) be a Noetherian local ring, let $I:=\left(f_{1}, \ldots, f_{n}\right) \subseteq R$ be an ideal, and let g_{1}, \ldots, g_{n} be any elements of R. If x is a new indeterminate, then the ideal $J:=\left(g_{1}+x f_{1}, \ldots, g_{n}+x f_{n}\right) \subseteq R(x)$ satisfies $\operatorname{grade}(J) \geq \operatorname{grade}(I)$.

Proof. It suffices to show that if all the f_{i} and g_{i} are contained in m and the f_{i} form a regular sequence in R, then the $g_{i}+x f_{i}$ form a regular sequence in $R(x)$. Set $y=x^{-1}$. Since x is a unit of $R(x)$, it suffices to see that the elements $h_{i}:=y g_{i}+f_{i}$ form a regular sequence. But $R(x)=R(y)$ is a localization of the polynomial ring $R[y]$, in which y, h_{1}, \ldots, h_{n} obviously form a regular sequence. Thus they also form a regular sequence on the localization $R[y]_{(m, y)}$, where we may permute them without destroying this property. It follows that h_{1}, \ldots, h_{n} form a regular sequence in the further localization $R(y)$.

Proof of Theorem 2. The matrix M_{1} is a presentation matrix for the module $B / A e$. Thus I is the 0 th Fitting ideal of $B / A e$, and as $I_{t-1}(M)$ is the first Fitting ideal of B, all the conditions of the theorem are independent of the chosen presentation M.

As before, let K be the total quotient ring of quotients of A. We may regard B as a submodule of K. It follows from Proposition 4 above that we can suppose that the generators of B corresponding to the given free generators of R^{t} are nonzerodivisors in K.

To prove part (a), suppose that $B^{* *}$ is an A-algebra. Let b_{i} be the nonzerodivisor in B that is the image of the i th basis element of R^{t}, and let M_{i} be the submatrix of M consisting of all rows of M except the i th. By Theorem 1 and Fitting's Lemma,

$$
I_{t-1}\left(M_{i}\right) \subseteq \operatorname{ann}\left(B / A b_{i}\right) \subseteq \operatorname{ann}(B / A e) \subseteq \operatorname{Rad}(I)
$$

As this is true for every i, condition (a) follows.
Now suppose that I contains $I_{t-1}(M)$ and one of the hypotheses (b1) or (b2) is satisfied. We will show that $\operatorname{ann}\left(B / A b_{i}\right) \subseteq \operatorname{ann}(B / A e)$; by Theorem 1 this suffices. First, if I is a radical ideal then I is equal to the annihilator of $B / A e$ by Fitting's Lemma. Since I is the radical of $I_{t-1}(M)$, another application of Fitting's Lemma shows that I contains the annihilator of each $B / A b_{i}$.

Now suppose (b2) is satisfied. The case $s=t-1$ is trivial: Here the row of signed minors of M, divided by the determinant of M_{1}, induces a map $B \rightarrow A$ that splits the inclusion $A \rightarrow A e$. Thus A is a summand of B, and since B is birational to A, we have $A e=B=B^{* *}$.

Finally, suppose $s \geq t$. Theorem 1 shows that we may assume R to be local and that we may then replace R by $R(x)$ for a new variable x. Modify the first row of M by adding x times the sum of the other rows. Now by Lemma 5, each of the matrices M_{i} obtained by omitting one row from M satisfies grade $\left(I_{t-1}\left(M_{i}\right)\right) \geq s-t+2$. The main theorem of Buchsbaum-Eisenbud [1977] shows that the ideal $I_{t-1}\left(M_{i}\right)$ is the annihilator of $B / A b_{i}$ for each i. Since these ideals are all contained in I by hypothesis, we are done.

REFERENCES

[1984] F. Catanese, "Commutative algebra methods and equations of regular surfaces" in Algebraic geometry, Bucharest 1982, edited by L. Bǎdescu and D. Popescu, Lecture Notes in Math., no. 1056, Springer-Verlag, New York, 1984, pp. 68-111.
[1977] D. A. Buchsbaum and D. Eisenbud, What annihilates a module, J. Alg. 47 (1977) 231-243.
[1990] T. de Jong and D. van Straten, Deformations of the normalization of hypersurfaces, Math. Ann. 288 (1990) 527-547.
[1995] S. Kleiman, and B. Ulrich, Gorenstein algebras, symmetric matrices, self-linked ideals, and symbolic powers, preprint, 1995.
[1987] D. Mond and R. Pellikaan, "Fitting ideals and multiple points of analytic mappings" in Algebraic geometry and complex analysis, edited by R. de Arellano, Springer Lecture Notes in Math., no. 1414, Springer-Verlag, New York, 1987, pp. 107-161.

David Eisenbud, Brandeis University, Waltham, MA 02254
eisenbud@math.brandeis.edu
Bernd Ulrich, Department of Mathematics, Michigan State University, Lansing, MI 48824-1027
ulrich@math.msu.edu

[^0]: Received October 5, 1995.
 1991 Mathematics Subject Classification. Primary 13B02; Secondary 14E05, 13B21
 Both authors are grateful to the NSF for partial support during preparation of this paper.

