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MODULES THAT ARE FINITE BIRATIONAL ALGEBRAS

DAVID EISENBUD AND BERND ULRICH

Let A be a commutative ring and let B be a faithful A-module with a distinguished
element e 6 B. It would be nice to understand in terms of the theory of A-modules
whether B supports the structure of an A-algebra with identity element e. In general
there is of course nothing unique about such an algebra structure. But there is at most
one such structure if B is a finite birational A-module in the sense that there is an
element d 6 A, which is a nonzerodivisor on B, such that dB Ae B. In this
case, indeed, the algebra structure of B is determined by the fact that it is a subalgebra
of B[d-1 A[d-1 ].
A number of authors (Catanese 1984], Mond and Pellikaan 1987], de Jong and

van Straten 1990], Kleiman and Ulrich 1995]) have given interesting applications of
criteria that, under quite special hypotheses, test whether B is an A-algebra in terms
of conditions on annihilators of elments of B, or even in terms of a presentation matrix
of B as an A-module. It is the purpose of this note to re-examine and generalize these
criteria. (For a thorough survey of the history and relations of the criteria, see the
introduction to Kleiman and Ulrich 1995].)

Assuming that A is Noetherian, for us the interesting case, the finite birational
hypothesis implies that B is a finitely generated A-module (it is contained in d- Ae).
If B is an A-algebra, then our hypothesis implies that Enda (B) EndB (B) B, so
there is an obvious criterion: B is an A-algebra iff every A-module homomorphism
Ae B extends to an A-module homomorphism B B. Equivalently, B is
an A-algebra iff the map B Extla (B/Ae, B), induced by the exact sequence
0--+ Ae -- B B/Ae --+ 0 is zero.
We shall write -* for Homa (--, A). It is easy to see that if B is an A-algebra, then

B** is too. In fact, it is not hard to see that B** is an A-algebra iff the composite map
B ---> Ext (B/Ae, B) --> Ext (B/Ae, B**) is zero. Our first result is that there is a
simple alternative criterion in terms of annihilators for determining when this occurs:

THEOREM 1. Let A be a Noetherian ring, and let B be a birational A-module as
above. Thefollowing conditions are equivalent:

(a) B** is an A-algebra with identity element e B B**.
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(b) For every b B whose annihilator in A is 0,

ann(B/Ab) ann(B/Ae).

(c) For some elements bi B that generate B as an A-module, and such that
ann(b/) 0, we have

ann(B/Abi)

_
ann(B/Ae).

Example 1. Let k be a field and let A kit3, 4, 5] C kit]. Set B A + At, the
vector space span of 1, t, 3, 4, 5 The A-module B is a finite birational module
in the sense above (with e 1). B is obviously not a ring, but it is not hard to see
that B* (t3, 4, tS)A and thus B** kit], which is a ring. Interpreting Theorem

in this case, we might for example take b t, and we compute ann(B/At)
(t4, 5, t6)A C ann(B/Ae), in accordance with condition (b).

What makes Theorem interesting is that condition (c) can easily be deduced from
frequently occuring conditions on the minors of a presentation matrix for B. If M
is any matrix and k is a non-negative integer, we write Ik(M) for the ideal generated
by the k k minors of M. In applications, A itself is a factor ring of some larger
"ambient" ring R (perhaps a regular ring or a polynomial ring), and we get a stronger
result by taking the presentation matrix over R.

THEOREM 2. Let R be a Noetherian ring, let A be a homomorphic image of R,
and let B be afinite birational A-module with distinguished element e B. Suppose
that M R -- R is a presentation matrixfor B as an R-module whose first row
corresponds to the element e B. Let MI be the submatrix ofM consisting of all
the rows except the first, and let I be the ideal It-i (MI). Writing B** for the double
dual of B as an A-module, we have:

(a) If B** is an A-algebra with identity element e then the radical of I contains
I,_(M).

(b) If I contains It-I (M), and either

(b l) I is a radical ideal; or

(b2) I has grade > s + 2 in R,

then B** is an A-algebra with identity element e.

Remarks. Here the grade of a proper ideal I is defined to be the length of a
maximal regular sequence contained in I, or, in another terminology, the depth of I
on R. Since B/Ae is a torsion A-module, we must have s > 1. The grade required
in (b2) is the maximum possible for B Ae. If (b) is satisfied and s > then, by
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Buchsbaum-Eisenbud 1977], I is the annihilator of B/Ae, while if s then
we shall see that B Ae. Similarly, if the grade of J := It(M) is s + and
s > + then J is the annihilator of A; that is, A R/J.

The proofs show that if A is a graded ring, and B is a graded A-module, then B**
is a graded algebra whenever Theorem or 2 shows that B** is an algebra.

Example 1, continued. With notation as in Example 1, let R k[x, y, z], and
regard A as a homomorphic image of R by the map sending x - y - 4, z - 5

The module B, as an R-module, has two generators 1, -t and presentation matrix

y z x2)x y z

The ideal I defined in Theorem 2 is (x, y, z), which satisfies both conditions (b 1) and
(b2).

We now turn to the proofs. If M is an A-module we write annA (M) or simply
ann(M) for the annihilator {a A aM 0} of M in A.

For Theorem we shall use some general remarks (which work in the non-
Noetherian case too): For any subsets M, N of an A-algebra C we set

(M :c N) {x 6 C IxN M},

and we set

M-1 ={xeCIxM_A1 C}.

If B is a subring of C, and M a subgroup, then (M :c B) is naturally a B-module.
If B is a subring of C, then B-1 is a B-module, and thus BB-1 C B-1. The

converse fails, as in the example following Theorem 1, but we have:

PROPOSITION 3. Let C be an A-algebra. IfB c_ C is an A-module containing 1,
then (B-1 )-- is a subring ofC iff

BB-1 c B-1.

Proof. Note that

BB-1 c_ (B-l)-1 ((B-I)-I) -1.
If (B-I) -1 is a ring, then ((B-1)-I)-1 is a (B-l)-l-module, so

BB-1 C_ ((B-I)-I)-1-- B-1

as required.
Conversely, suppose BB-1 c_ B-1. Since 6 B we have BB-1 B-1 so

(B-1 )- (BB-1 )-1. On the other hand, (BB- )-1 (B-1 "C B- tautologically.
In particular (B-l)-I is a subring. [21
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In the main case of interest, where C is the total quotient ring of A, Proposition 3
may be interpreted as a statement about duals as follows:

If A is a subring of C and M and N are A-submodules of C then there is a natural
map

(M :c N) --+ Homa(N, M); x - {x "n w- xn}.

If C is a ring of quotients of A and N contains an element a that is invertible in C,
then this map is an isomorphism with inverse 4 cb(a)/a.

It follows that for any A-submodule B ofthe total quotient ring K ofA that contains
a nonzerodivisor of K we have (A :K B) Homa (B, A) =: B*, the A-dual of B.

If B is finitely generated as an A-module, then B-1 contains a nonzerodivisor (for
example the product of the denominators of a finite set of elements that generate B)
and thus (B-I) -1 B**.

PROPOSITION 4. Suppose that A is a Noetherian ring, that K is a ring ofquotients
ofA, and that M is an A-submodule ofK. IfM contains a nonzerodivisor of K, then
M is generated by nonzerodivisors of K.

Proof Without loss of generality we may suppose that A

___
K and M is finitely

generated. Thus dM A for some nonzerodivisor d of A, and we may suppose
that M is an ideal of A. Let I be the ideal generated by all the nonzerodivisors
of A that are contained in M. If Pl Ps are the associated primes of A, then
M c_ I tO Pl... U p. Since by hypothesis M is not contained in any Pj, the Prime
Avoidance Lemma yields M c_ I, whence M I.

Example 2. If A contains an infinite field then one can replace K by any Noethe-
rian A-algebra in Proposition 4, but in general this is not possible, as shown by the
example

A := Z/2 C Z/2 x Z/2 =: B,

where B is not generated by nonzerodivisors.

ProofofTheorem 1. Let K be the total quotient ring of A, obtained by inverting
all elements that are nonzerodivisors on A. We may regard B as embedded in K, and
make the identifications B* B- and B** (B- l)-l. If b is any nonzerodivisor
of K, then b is invertible in K, and we see directly from the definition that (Ab :
B) =bB-1.

Suppose that B** is a subring of K. It follows by Proposition 3 that BB-l
___

B-l.
Thus if b 6 B is invertible in K, then (Ab :to B) bB- c_ B-l Thus condition
(b) is satisfied.

Condition (b) implies condition (c) by Proposition 4.
Now suppose that condition (c) is satisfied. For each bi we have immediately

bi B-I bi(A "g B) . (Abi :K B). On the other hand (Abi "g B) c_ (Abi "K



14 DAVID EISENBUD AND BERND ULRICH

Abi) A since bi has no annihilator in A. Thus (Abi "K B) A N (Abi "K B)
ann(B/Abi) so condition (c) implies bi B-1 C_ B -l Since the bi generate B we have
BB- __

B-1. Thus BB- c_ B-1, and B** is a ring by Proposition 3. D

In the proof of Theorem 2 we will extend R by adjoining a new indeterminate x.
Recall that if R is a local ring with maximal ideal m, then R(x) denotes the local ring
R[X]mRtxl, which is a localization of the polynomial ring R[x].

LEMMA 5. Let (R, m) be a Noetherian local ring, let I := (fl fn) c_ R be
an ideal, and let gl gn be any elements of R. Ifx is a new indeterminate, then
the ideal J := (gl + xfl gn + Xfn) C_ R(x) satisfies grade(J) > grade(l).

Proof It suffices to show that if all the f/and gi are contained in m and the f/
form a regular sequence in R, then the gi -[- xfi form a regular sequence in R(x). Set
y x -1 Since x is a unit of R(x), it suffices to see that the elements hi "= Ygi -1- fi
form a regular sequence. But R(x) R(y) is a localization of the polynomial ring
R[y], in which y, h hn obviously form a regular sequence. Thus they also form
a regular sequence on the localization R[y](m,y), where we may permute them without
destroying this property. It follows that h hn form a regular sequence in the
further localization R (y).

Proofof Theorem 2. The matrix M is a presentation matrix for the module
B/Ae. Thus I is the 0th Fitting ideal of B/Ae, and as It- (M) is the first Fitting ideal
of B, all the conditions of the theorem are independent of the chosen presentation M.

As before, let K be the total quotient ring of quotients of A. We may regard B as
a submodule of K. It follows from Proposition 4 above that we can suppose that the
generators of B corresponding to the given free generators of R are nonzerodivisors
in K.

To prove part (a), suppose that B** is an A-algebra. Let bi be the nonzerodivisor
in B that is the image of the th basis element of Rt, and let Mi be the submatrix of
M consisting of all rows of M except the th. By Theorem and Fitting’s Lemma,

It-l(Mi) C__ ann(B/Abi) c_ ann(B/Ae) c_ Rad(1).

As this is true for every i, condition (a) follows.
Now suppose that I contains It_(M) and one of the hypotheses (bl)or (b2) is

satisfied. We will show that ann(B/Abi) c_. ann(B/Ae); by Theorem this suffices.
First, if I is a radical ideal then I is equal to the annihilator of B/Ae by Fitting’s
Lemma. Since I is the radical of/t-l (M), another application of Fitting’s Lemma
shows that I contains the annihilator of each B/Abi.
Now suppose (b2) is satisfied. The case s is trivial: Here the row of signed

minors of M, divided by the determinant of M, induces a map B A that splits
the inclusion A -+ Ae. Thus A is a summand of B, and since B is birational to A,
we have Ae B B**.
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Finally, suppose s > t. Theorem shows that we may assume R to be local and
that we may then replace R by R (x) for a new variable x. Modify the first row of M
by adding x times the sum of the other rows. Now by Lemma 5, each of the matrices

Mi obtained by omitting one row from M satisfies grade(It_(Mi)) > s + 2.
The main theorem of Buchsbaum-Eisenbud 1977] shows that the ideal It-1 (Mi) is
the annihilator of B/Abi for each i. Since these ideals are all contained in I by
hypothesis, we are done.
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