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VARIATION IN PROBABILITY, ERGODIC THEORY
AND ANALYSIS

MUSTAFA A. AKCOGLU, ROGER L. JONES AND PETER O. SCHWARTZ

1. Introduction

In many areas of analysis, ergodic theory and probability, square functions have
proven to be one of the most useful tools to study convergence properties. (See the
paper by Stein [17] for a very informative historical discussion of the importance
of various square functions in several areas.) For example, the martingale square
function was used by Burkholder, Gundy and Silverstein [7] to give the first real
variable characterization of H,. An ergodic square function was used by Bourgain
[3] in his proof that the ergodic averages along the sequence of squares converge a.e.
In this paper we consider operators that are closely related to the square functions,
but have very different properties.

Let (Fi) denote an increasing sequence of o-fields. Then the martingale square
function is defined by

|
o0

Sfx) = (ZiEkfm - Ek_lf(xnz) .

k=1

where E; denotes the conditional expectation operator with respect to the o -field F;.
This operator, which maps L? to L? for each p, 1 < p < oo, gives a measure of the
square variation of the martingale sequence (E f). It is natural to ask about the L?
boundedness properties of the g-variation operator

Vof(x) = (ZlEkf(x) - Ek-1f<x)|q> :

k=1

for 1 < g < 2. In Section 2 we show that if ¢ < 2 then the operator V, is very
badly behaved. In particular, we show that it is possible to have V, f(x) = oo a.e.
even for bounded functions, f. The arguments provide a revealing contrast to the
Hilbert space techniques that come into play when ¢ > 2. The martingale result is
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known [6], but we are unable to find a reference. We therefore supply a proof, which,
moreover, is a prototype of our arguments in the more complex situations that follow.

More generally, we consider pointwise convergent averaging operators of several
types: differentiaton operators, ergodic averages, and integration against the Poisson
kernel. Our interest is in demonstrating that even for nice functions the convergence
in each context is slow as measured by variation operators. Each new operator raises
new difficulties, but at the core of all our arguments is the concept of independence
and the Strong Law of Large Numbers. The ideas are most easily understood in the
case of martingales and so that case is presented first.

On L?([0, 1)) one may consider differentiation operators, D, f (x) = % fol flx+
t)dt. For a decreasing sequence (£;) we define the associated g-variation operator,
Vo fx) = O 2, I Dy f(x) — Dek_lf(x)l")é. It was shown in [12, 13] that V, p
is a bounded operator on L?, 1 < p < oo, but we will see in Section 3 that quite
different behavior can occur if ¢ € [1,2). We also consider, in Section 2, the
g-variation operator V, ¢ that compares the dyadic martingale and the associated
dyadic differentiation operator. This operator,

Voof (x) = (Z 1Dy f (x) = Ekf(x)r’)
k=1

is shown in [13] to be bounded in L”, 1 < p < oo, if ¢ = 2. We show that if
g € [1, 2), this operator can diverge a.e. even for bounded functions.

There are similar questions in ergodic theory. Let A, f denote the usual averages;
A f(x) = % ZZ_:_(I) f(z*x). Given an increasing sequence (n;), we can form the
g-variation operator

Voef(x) = (Z [An, f(x) — Ank—lf(‘x)lq) .
k=1

As in the differentiation case, it is known (see [11], [12], [13]) that forg = 2, V,
is a bounded operator on all L”(X), 1 < p < oo, and that it is weak type (1,1). (See
[3], [9], [10] for other related square functions.) However, we will show in Section 4
that for g € [1, 2), the properties of the operator depend on the sequence. This gives
perspective to the well known fact that there is no rate at which ergodic averages
converge.

In harmonic analysis other operators have also played an important role in measur-
ing the variation of a sequence of functions [3], [12], [13], [16]. In 1955, W. Rudin
[15] looked at functions F which are analytic in the interior of the unit circle, and
studied the operator V (F, 0) = fol |F'(re'®)|dr. He showed that there exists an an-
alytic function on the disc with continuous boundary values such that V (F, ) = oo
for a.e. 6. Standard calculus techniques show that this is equivalent to the existence
of a sequence (r¢) such that Y po | |F (re*™®) — F(ri1€¥™%)| = oo for a.e. 8. It is
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not hard to show (see Section 5) that for such functions, the 2-variation V,(F, 8) =
G2 |F(ree®™if) — F(ris1¥9)[2)7 < oo for ae. 6. It is natural to ask about
the properties of the operator V, (F, 8) = (X_po, | F (ree?™%) — F(rk+|e2”"9)|‘1)ll7 for
q € [1, 2) which measures the g-variation of the analytic function F. This will be
the subject of Section 5, where we show that V, (F, 8) may be infinite for a.e. # even
if F is an analytic function with continuous boundary values. Taking g to be 1, this
gives a new proof of Rudin’s theorem. (See also [2] where it is shown that there is,
nonetheless, a dense set of & where V, (F, 6) is finite.)

The reader will note that each of the constructions share common features. Taking
advantage of this, we present the cases in increasing order of difficulty, with each case
presenting a new difficulty. The martingale case is the easiest to understand. It makes
straightforward use of Rademacher functions and stopping times. The differentiation
case also makes use of the Rademacher functions, but we need to select the sub-
sequence of Rademacher functions more carefully and the sets where bad behavior
occurs are harder to control. The ergodic case is similar to the differentiation case,
but makes use of a reverse martingale, and an analog of the Rademacher functions on
Z. The analytic function case requires replacing the Rademacher functions, which
are independent, by exponentials, (¢2*"?), with (n;) rapidly increasing, hence ap-
proximating the independence. Many of the subtleties in the following theorems are
associated with the fact that we want to construct bounded functions for which the
g-variation is infinite. If we were willing to settle for an L? function for which the
g-variation is infinite, the arguments would be much simpler.

2. The martingale case

Consider the unit interval X = [0, 1) with Lebesgue measure u. The sequence of
Rademacher functions, (ri), are defined by ry(x) = sgn sin@mr2%~'x) fork > 1. Let
Fi denote the dyadic o -field with 2k atoms, and let E;, denote conditional expectation
with respect to F.

Fix an increasing sequence of positive integers, (rn;), and define the g-variation
operator associated with this sequence by

1

qu(x) = (Z |En, f(x) — Enk—lf(x)lq) .
k=1

We are interested in showing that the g-variation operator, forq < 2, canbe made to
diverge. If we only wanted to show divergence for f € L?(X), the problem is trivial.
We just consider f,(x) = Y i_, axrn, (x) where Y po, lax|? < co but Y02, |axl? =
oo for ¢ < 2. For example a; = —J—;:‘)? will do. However, to find an L* bounded
martingale with the same property requires a more complicated argument. To obtain
a bounded martingale we introduce a stopping time, t(x) = inf{n : | f,(x)| = 1}.
We find a martingale so that the above properties hold, but such that the stopped
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martingale and the original martinagle are not too different. The fact that we can do
this is the content of the following theorem.

THEOREM 2.1. Let (ny) be an increasing sequence of positive integers. There is a
Sfunction f € L®(X),with || flloo < 1, but such that the associated dyadic martingale

satisfies V, f (x) = oo a.e. forall q € [1, 2).

Proof. 'We will first prove the theorem in the case n; = k for each k. The key to
proving the theorem is the following lemma.

LEMMA 2.2. Let Ny, L, € and q € [1, 2) be given. Then there is a function f
and an integer N such that

L llflle =1,

2. Ex(f) =0forallk < Ny,

3. f is measurable with respect to the o -field Fn,+n,

4. V,f(x) = L except possibly on a set of measure less than €.

Proof. Fix a large integer M so that LYM9~2 < ¢. Define N to be the smallest
integer such that N > (LM)?. We now define a martingale f, = Y ,_, %rk x).
We can associate with this martingale a stopping time defined by 7(x) = inf{n :
|f=(x)] = 1}. Note that since the martingale takes steps on size :I:%, we actually
have t(x) = inf{n : | f,(x)| = 1}. We now consider the stopped martingale f, =
Sfunz. Let (di) denote the martingale difference sequence associated with the stopped
martingale. That is, dy = f — f;_,. We have

” Ty .
Vo (fy)(x) = (Z Idk(X)I") = M(t(x) A N)7.
k=1

Since fy(x) =1if 7 < N, we have
(2 NS 2 1 amy
ulr < N} < Ifyl3 < ; ldell} < Nom = ==

On the set where T > N, a set with measure at least 1 — €, we have V, fy (x) =
=N 7 > L, as required.

In the above construction f} is clearly measureable with respect to Fy. If we
had started the construction with ry,1, 7ny+2, - - ., Tather than ry, ra, ..., then we
would have E;(fy) = 0 forall k < Ny and f§;, would be measurable with respect to
fN()‘FN . a

We now continue with the proof of Theorem 2.1. First assume that Np = 0. Let
L=100x2"ande = 2—', Let f be the function obtained by Lemma 2.2, and define
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g1 = % f- Denote by N the integer N obtained by Lemma 2.2. We then have

N, q
(Z |Eny181(x) — Engl(x)r') >
n=1

for x in a set X; C X of measure greater than 1 — %

We now take No in Lemma 2.2 to be Ny. We take L = 100> x 2% and € = ;. Let
f be the function obtained by Lemma 2.2 and define g, = 5‘; f. Since E, f = 0 for
0 <n < Ny, and E, g, = g for all n > N, if we define b, = g| + g, we see that
Vi (by) = 1002 for x € X, C X with measure at least 1 — 2‘ .

We repeat the construction, so that at the kth stage we have No = N; + N, +
-+« 4+ Ni_;. We have b;_ measurable with respcet to Fy,, and V,bi_; > 100! on
Xi—1 C X with u(Xp—y) > 1— ?[—, We take L = 100¥2* and € = 5'; We construct
the function f using Lemma 2.2, and define g to be 5‘; f. Weletby = by—y + gk.
Hence V,b; > 100% on a set X; C X of measure greater than 1 — 5‘;

At each stage || gklloo < 5‘; so ), 8 converges. Let b = ), g, then ||b]lo < 1
and for all k£ V,b(x) > V,(by) = 100 on a set of measure at least 1 — zlk Since k
was arbitrary, we are done for fixed g.

By taking a sequence (g;) which converge to 2 from below, and by using g, at the
kth stage of the construction, we get a single function that works for all ¢ < 2. If
(ny) is an arbitrary increasing sequence of positive integers, we just use r,, instead
of ry in the construction of the example. There is no other change in the proof. O

L =100

N -

For f defined on [0, 1) and extended periodically with period 1, let D, denote the
differentiation operator defined by

Dy f(x) =2k /EF fx +1t)dt,
0

and as before, let E; f denote conditional expectation with respect to the dyadic
o-field. Define the g-variation operator V, ¢, which compares the differentiation
operator and the dyadic martingale, by

Vie = (Z |Def (x) — Ekfw> :
k=1

In the case ¢ = 2 it is shown in [13] that this is a bounded operator on all L?,
1 < p < oo and is even weak type (1,1). However for ¢ < 2 we have the following
theorem.

THEOREM 2.3. There is a function f € L®[0,1) with || flloo < 1 such that
Voof =ocae. forallg < 2.
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Proof. The main tool in proving this theorem will be the following analog of
Lemma 2.2.

LEMMA 2.4. Let Ny, Ly, €g and q € [1,2) be given. There is a function f and
an integer N such that

Lo flle =1,

2. the smallest index of the Rademacher functions used in the construction of f
is at least Ny,

3. f depends on only N Rademacher functions,

4. V4.c f(x) > Lo except possibly on a set of size €.

Proof. Assume €y < %— Let L > 16(Lo+2)and e < ﬂl Fix J so large that if
N > J andif By, By, ..., By are independent sets, each w1th measure at least L then

N

Z (x)>—

k

except possibly on a set of measure at most €. Such a J exists by the Strong Law of
Large Numbers. As in the proof of Lemma 2.2 let M be chosen so that LI M772 < €.
Define N to be the smallest integer such that N > (LM)?. If N < J, increase L
(and hence M) so that we can assume N > J. Fix a large integer d so that é—f’,v < €.
We will form a martingale using the Rademacher functions as we did in the proof
of Lemma 2.2. However, we will use only a subsequence (ry4), of the Rademacher
functions. This does not change the arguments given there. We again form the
martingale f, = 514- > i—i rak and define the stopping time T = inf{n : [f,| > 1}.
We again consider the stopped martingale defined by f,7 = fy.., and work with the
function f = f5. By the same arguments as in the proof of Lemma 2.2 we have
m{t < N} <e.

If we let Ay f = |Dyx f — Ear f|, then we first need to estimate A;rg. We note
that the intervals associated with the averages Dy are the same length as the lengths
of intervals where r4; is constant. We now observe that Airge > 1 on an interval of
length at least Fﬂ(lj_T on the right hand side of each dyadic interval where r4 is constant.
Thus Ayraze > 1 on a set of measure at least % If we use only these dyadic intervals
where ry; > 0, we have a set of measure at least ‘]—1. (We only use the intervals where
rqax = 1 since later when we introduce the stopped version, and consider Ay (rgx Xr>k)
this will be the same as Ary; for x € {t > k} N {rgx = 1}, but may change if
x € {ryg = —1}.) For each k, denote the union of these intervals by By. Note that
the sets By are independent.

We now estimate Ayry; for j < k. We have averages that are much shorter than
the lengths of intervals where rg; is constant. Hence only mtervals of length 7;-
located at the right hand side of each dyadic interval of length 7- can contribute
non-zero values. There are only 2%/ such intervals, and hence the total measure of
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such intervals is at most %"; Denote this set by E(k, j) and note that on this set we
have Akrdj < 2.

We will also need estimates for Agry; where j > k. In this case the averages are
long compared to the lengths of the intervals were r,; is constant. Since all lengths are
dyadic, we see that both Dgrgj and Egirg; will be exactly zero. Hence Agry; = 0.
However this may not be the case for the stopped version. If we consider Ay (rg;j X:> ),
we see thatif x € {t > j} butx + 7;; € {t < j} then we can get as much as Zr

We are now ready to estimate Vq,c f. We have

Ak | — rderzj) |")
M =
1

1 1 k-1 q
i (1Akaxxe=i)1?) " = (|Ak (Z "derzj) |q)

j=1
1
N q
- (IAk Z rderzj) lq)

= A-B-C.

We first estimate A. Note that Ay (rax x->«) = Ax(rqx) on the set By N {t > k}.
Hence, if x € {t = N}, we have Ay (rg x->«) = 1. Recalling that ,u{t < N} <€<
€ < i‘;,we see that w(B,y N {t > N}) > u(By) — u({tr < N}) > — —g= — . Hence
if x € {r > N}, we have

Vq,Cf(-x)

v

v

(2 %
A>— IxB, 7
M k=1 ‘

On the set where t > N the sets By are independent. Since we have m(B; N {t >
N}) > — , We see, by the Strong Law of Large Numbers and our assumption on N,

that we have A > TE ﬁN g except on a set of measure less than € where T < N, and
a set of measure € where the strong law has not caused the average to be at least & T

We must now show that the other two pieces are small. For B we have

1Bl =

IA IA A
M=M= s—
: M i Mz
NT s IMI

~ E ;:)

= =

- Ea

: 3

IA
[\S)
| =
A
Y
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For C we have

1 N N 2‘”‘
Il < / LN
0 k=1 j=k+1 24
N
< 22_d < 2e.

We now note that m(B > 1) < ||B|l; < 2¢ and m(C > 1) < ||C||; < 2¢. Hence
Vaocof > l'—6L — 2 except on a union of the sets {t < N}, {B > 1}, {C > 1}, and on
the set where the strong law did not get us close enough to the average of the measures
of Bi. The union of these sets is less than 6¢ = €y. Recalling the definition of L, and
that Ly > 2 we see that V, ¢ f > l—l6L —2>Ly. O

To complete the proof of Theorem 2.3 we use the above lemma in the same way
that we used Lemma 2.2 to obtain Theorem 2.1. The details are very similar, and we
only sketch them.

We first note that we can repeat the construction, starting the next block with Ny
so large that the new function constructed has as little interaction with the earlier
fucntions as we desire. Further, we can make the L norms so small that they add
up to 1. By taking a sequence of €’s which go to zero, we can get the exceptional
sets to be as small as we want. We make the construction with a sequence of g;s that
converge to 2 from below. Hence we can apply the operator V, ¢ to the sum of the
constructed functions, and get a value of infinity a.e. foreachq < 2. 0O

3. The differentiation case

Let (€x) denote a decreasing sequence of numbers from the interval [0, 1). For f
defined on [0, 1) and extended periodically with period 1, let D,, denote the differ-

entiation operator defined by Dy, f(x) = ﬁ (f * f(x 4+ t)dt. Define the g-variation
operator V, p by

1

V‘LD = (Z 'kaf(x) - ka-l |q>
k=1

We then have the following theorem.

THEOREM 3.1. Assume that liminfi_, o -2 e L~ = Ao < 1. Then there is a function
f € L0, 1) with || fllec < 1 such that V,, Df oo a.e. forallg < 2.

Proof. The main tool in proving this theorem will be the following analog of
Lemma 2.2.
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LEMMA 3.2. Let Ny, Lo, €9 and q € [1, 2) be given. Then forany A, Ag < A < 1,
there is a function f and an integer N such that

Lol flleo < 1,

2. the smallest index of the Rademacher functions used in the construction of f
is at least Ny,

3. f depends on only N Rademacher functions,

4. V,.pf(x) > Ly except possibly on a set of size €.

Proof. Assume without loss of generality that €9 < 17“2& Take € < % and
L > %(L0+2). Fix J solarge thatif N > J andif B}, B», ..., By are independent

sets, each with measure at least 1—3‘2—* then

N
Z (x)>———):

k=

except possibly on a set of measure at most €. Such a J exists by the Strong Law of
Large Numbers. As in the proof of Lemma 2.2, let M be chosen so that LYM9~2 < €.
Define N to be the smallest integer such that N > (LM)?. If N < J, increase
L (and hence M) so that we can assume N > J. Fix a large integer d so that
é—‘,’, < €. We will form a martingale using the Rademacher functions, as we did in the
previous section. However, we will need to select a subsequence of the Rademacher
functions to use in the construction. Once the sequence of Rademacher functions is
selected, the proof is almost the same as the proof of Lemma 2.4. We again form the
martingale f, = % Y i< I'm, and define the stopping time r = inf{n : |f,| > 1}.
We again consider the stopped martingale defined by f,; = fua:, and work with the
function f = fy. By the same arguments as in the proof of Lemma 2.2 we have
m{t < N} <e.

By hypothesis, we know there are infinitely many & such that —*—I < A LetG
denote the set of k£ with that property Let n; denote the first k € G and let m;
denote the largest integer such that - 2”,, > £n,—1. If my < Ny, select a larger integer
k € G for ny, so that m; > Ny. If we let Ay f = |Dyp—1 f — D("kfl then we
first need to estimate A;r,,,. We see that the intervals associated with both averages
Dln. and D, are no longer than the intervals where r,,, is constant. Using the
fact that the ratio between £, and ¢,,_; is at most A, a simple computation shows
that Ajr,, > 1 — A on an interval of length at least %(E,, =1 — £,,) in each dyadic
interval where r,,, is constant. Thus A;r,, > 1 — A on a set of measure at least
2™ (3)(€n,—1 — €n,) > 7(1 = 1). If we use only the dyadic intervals where r,,, > 0,
we have a set of measure at least é(l —A). Denote this set by B;. We can replace
B, by a possibly smaller set of measure at least 761 —2)s0 that B, will consist of a
union of 2~ dyadic intervals, and is periodic w1th period 2,,,| =

Assumethatny, ny, ..., 0y, andmy, my, ..., my_y, have been selected, and sets
B\, B,, ..., Bi_, have been determined.

ny-1
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We now select n; from G so large that the associated integer my, defined to be the
largest integer such that 2% > £y, 1, satisfies my — my_ > d. Further, we want m;
to be so large that xp; and r,,, are independent for each j < k. By selecting n; large
enough, we will be able to obtain this independence.

As before, we will have Ayr,, > 1— A on aset of measure at least 2™ (%)(Z,,k_l -
£n,) > i(l — A). As before, if we use only the dyadic intervals where r,,, > 0, we
have a set of measure at least %(1 — A). Denote this set by B,. We can replace By by
a possilby smaller set of measure at least % (1 — A) so that By will consist of a union
of 2™~! dyadic intervals, and is periodic with period 2m+r

We now need to estimate Ary, for j < k. We now have averages that are much
shorter than the lengths of intervals where r,,, is constant. Hence only intervals of
length £,,_; located at the right hand side of each dyadic interval of length E,L—k can
contribute non-zero values. There are only 2™ such intervals, and hence the total
measure of such intervals is at most 2™/ ¢, _| < ;Tli Denote this set by E(k, j) and
note that on this set we have Ar,, < 2.

We continue the construction until we reach ny. We will also need estimates for
Ayrm; where j > k. In this case the averages are long compared to the lengths of
the intervals were r,,; is constant. Hence both operators will be close to zero. In
particular, we see that Dypy—1rm; < l—z'l%‘ for all x, and the same estimate holds for
Dy, . Hence Agry, < 2%—*,;—' < 2%;{— for all x.

We are now ready to estimate V, p f. We have estimates very similar to those in
the proof of Lemma 2.4:

1 N q
| Ak (—— rm,szj) |q>
(= (5%

1

i (|Ak (rkatZk) |q)$ - (lAk (jg: rm,Xij) |q)

N q
- (lAk > rm‘,.xfz,) l")
j=k+1

= A-B-C.

v

Vo f(x)

1
q

v

We first estimate A. Note that Ag (7, Xr>k) = Ag(rm,) on the set By N {t > k}.
Hence, if x € {t > N}, we have Ay (r, xr>«) = 1 — A. Recalling that u{r < N} <
€ <€ < ‘3‘—;, we see that w(By N {t > N}) > w(By) — u({t < N}) > '—l‘—ﬁﬁ - '3;;
Hence if x € {t > N}, we have

1 N q
A>—(1-2) Ixa!") -
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On the set where t > N the sets By are independent. Since we have m(B; N {t >

N} > % (1—1), we see that by the Strong Law of Large Numbers, and our assumption

1
on N, we have A > '@—A %N 7 except on a set of measure less than € where 7 < N,

z:nd a set of measure € where the strong law has not caused the average to be at least
-1

64We must now show that the other two pieces are small, but these estimates are
exactly the same as those for the corresponding pieces in the proof of Lemma 2.4.

We now note that m(B > 1) < ||B]l; < 2e and m(C > 1) < ||C|l; < 2¢. Hence

Voo f > lg—fL — 2 except on a union of the sets {r < N}, {B > 1}, {C > 1} and on
the set where the strong law did not get us close enough to the average of the measures
of Bi. The union of these sets is less than 6¢ < €y. Recalling the definition of L, we
seethat V, pf > 2L —2>Lo. O

To complete the proof of Theorem 3.1 we use the above lemma in the same way
that we used Lemma 2.2 to obtain Theorem 2.1. The details are the same and we
omit them. O

While it is clear that the restriction on the sequnce (¢;) in Theorem 3.1 can be
weakened, some condition that implies rapid growth is essential. To see this we note
the following theorem.

THEOREM 3.3.  Assume thaty_po,(1 — —f{—l)" < 00. Then the q-variation opera-
tor V, p f (x) is finite a.e. for all bounded f . In fact V, p is a bounded operator from
L9[0, 1) to itself.

Proof. First we write
1 [

1 b 1
| De, f(x) — Da-.f(x)|=‘(— — ——) A fx+t)dt — T fx+t)dt

e iy =1 Je,

)

Using the triangle inequality we see that

X1 1\ [
v, - +10d
.0 f(x) < (;‘(& fk_n) A f(x +t)dt
1 Ly

o0 q %
+<Z — fx +t)dt )

= b1 Jy,
= Af(x) + Bf (x).
In the following, M f denotes the standard (one-sided) Hardy-Littlewood maximal
function defined by Mf(x) = sup,.o |§ fdv f(x + t)dt|. We know this operator is
bounded on all L?, 1 < p < oo.
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We first show that [[Af|l; < Cyll fll,. To see this we just write

& q
IAfIE < /Z‘(—_E_T) A fx +10)dt| dx
o0 1 ] q q 1 l £y q
=< ———] ¢ — (x +1)dt| dx
;(fk fk—l) k/o & Jo /

00 1
< Oni)/wmwm
¢ 0

k=1 k=1
o0
£
< Z(l_ﬁ) IM£g
k=1 -
o0
£ )
< 1= =) cllfll
< CIFNE.

For B we have a similar argument. We write

1 o0 (79 q
IBlIf < / — (x + t)dt| dx
1 0 ; Loy Jy !
o0 1 q 1 Ly q
= —_— (x +t)dt| dx
;(ek—l /0 & f

q
dx

IA

[T
f fx +t)dt
0

)
2@ L

) ek q 1 1 b=t q
g —, dt| d
5;( k—l) /0 ek—l—ek/ fx +t)dt| dx
1— MFGOd
5;( T ]) fl F)l9dx
= Z('" - ) f | f ()|9dx
k=1
< CIIFI. D

4. The ergodic case

We can also establish an ergodic theory analog to the above results. Let (X, ¥, m, t)
denote a dynamical system, with (X, X, m) a probability space, and  an ergodic mea-
surable, measure preserving point transformation from X to itself. Let A, f (x) denote
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the ergodic average of length n. That is, A4, f(x) = % ZZ____(; f(t*x). For an increas-
ing sequence of positive integers (£x), ¢ > 1, and each positive integer L, we can
define the g-variation operator:

!
L

VEef@) = <Z Ag f (@) — Azk-.f<x)|") :

k=1

and V, g f(x) =lim; quEf(x). For g = 2 it is shown in [12] and [13] that this
operator is bounded on L?, 1 < p < oo, and is even weak(1,1). However for g < 2
we have the following theorem.

THEOREM 4.1. Let ({y) denote an increasing sequence of positive integers such
that liminf,_, » %L < Xy < 1. Then thereisan f € L*®°(X) such that || f|loc < 1,
but Vo pf = ooa.e.

Proof. To prove this we first prove a result on Z. We will then transfer this to the
dynamical system in the standard way. See [8]. For ¢ a function on Z we introduce
the operator D defined by D(¢) = limg_, oo ﬁ Z:L_ g @ (r) if the limit exists. We
note that the limit will exist if ¢ is a periodic function. See [1] for a discussion of
related issues.

For each n, let ¢, : Z — {1, —1} denote the “Rademacher function on Z” defined
by ¢, (k) = 1if0 < k < 2", ¢,(k) = —1if 2" < k < 2"*!, and ¢, is periodic
with period 2n+!  We see that these functions are independent, and in particular,
D(¢n¢m) = 0 for m # n. On Z we define the g-variation operator VqL‘ 2 by

L q
VqL,Z¢(r) = (; |A¢k¢(r) - Alk_|¢(r)|q> )

where A, ¢ (r) = % ZZ;(') ¢ (r +k). With this notation, we can now state the following
lemma.

LEMMA 4.2. If liminfy_, o e‘l—;' = Ay < 1 then given Ly, €y, and A such that
Ao < A < 1, there is an Ny and ¢ such that ||@|l¢~ < 1 and such that if B =
{rIV,"¢(r) > Lo} then D(x5) > 1 — €.

Proof. This proof is similar to the proof of Lemma 3.2 in the differentiation case.
Take € < % and L > %(LO — 2). Select J as in the proof of Lemma 3.2. As in

the proof of Lemma 3.2, select N and M. We also select an integer d so that é—vf <e.
By the hypothesis of the lemma, there is an infinte set of k’s such that f‘e—;l < A

Let G denote this set. Select n; € G. Let m; be such that 2"~ < £y, <2™. In
the following we will inductively select ny < np < n3 < ... < ny from G and
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corresponding m; where 2™~ < ¢, < 2™ Arguing as in the differentiation case,
we define Ay (r) = |A¢, @(r) — Ag,,_ @ ()], and show that A ¢,,, > %(1 —A)on
a set By, where D(B;) > %(1 — A) and B consists of a union of dyadic “intervals”
in Z, and is periodic with period 2™'. We then select n, € G so large that we have
independence of B and ¢,,,. We can also assume thatm,—m,; > d. We then continue
the process as in the differentiation case, and show very similar estimates. As in the
differentiation case we need to construct a function with small enough £*° norm. In
the differentiation case we used a stoppping time. Here we need to reverse time; that
is, after we construct our sequence (nk),’("=l , we consider the “reverse stopping time”,
7, defined by t(r) = inf{n|| % Z}l=o ®ny_; (r)| = 1}. (This reversal is necessary since
we have the large intervals where ¢, is constant when r is large.) Using this reversed
time, we construct ¢, as in the martingale and differentiation case. Since the details
are now nearly the same, we omit them. O

We now establish the ergodic theory version of the above lemma.

LEMMA 4.3. Given a large number L and a small number € > 0, there is an N
and a function f such that || f||co < 1 and such that Vq’YEf(x) > L forx € Xo C X,
withm(Xg) > 1 — €.

Proof. We use Lemma 4.2. Let ¢ be the function given by Lemma 4.2 so that
D(B) > 1 — 5. Find Ry so that if R > Ro then Z—'EZ,I;_R xgk) > 1 — 5.
Note that the operator Vq’f’z only looks a finite distance into the future. Denote

this distance by J. Select R > Ry so that ﬁ < §. Make a Rohlin tower of

height 2R + J such that the tower has measure at least 1 — 5. Note that we have
Z,’;_R xs(k) > 2R(1 — § For x in the base of the tower, define f(1"x) = ¢ (n) for
n=-—R,—(R—-1),..., R+ J, then we see that for x in the bottom 2R steps of the
tower, with the exception of a bad collection of 2R % steps, we have V, g f(x) > L.
2R(1-%)

Hence we have m{x: V, f(x) > L} > Sp

—-§>1—e. O

We can now complete the proof of Theorem 4.1. Note that {x: V, £ f(x) = oo}
is invariant, so if for every ¢ < 2 we can show m{x : V, ¢ f(x) = oo} > 0 then we
are done.

Fix a sequence (g) so that gy — 2, and g < 2 for each k. We will use the lemma
inductively to construct the desired function. Let Vq’t’ ef(x) = (Zf’:l |Ag, f(x) —

AlH,f(x)l")ﬁ. First let ¢ = ¢y and L; = 100 x 2!, Use the lemma to find a
function f| with || fillo < I and V, g fi(x) > L, on at least Z—; of the space. We
can find an integer N, so that in fact Vq’Y gfi(x) > Ly on at least % of the space. Let
by=g = %f;. Then ||g(lloo < % and Vqltl,';gl > 100 on a set of size at least %.
Ifforallq < 2, V, £g1 = oo on a set of positive measure, we are done, so we can

assume for some g < 2, that V, £gi(x) < oo a.e. Thus we can find a number B, and
g’ < 2suchthat m{x|V, g < B} > %
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Next let ¢ = max(q’, ¢2) and take L, = 100 x 22 x By x N;. We find f; with
Il f2llco <1 and with V,, g fo > L, on a set of measure at least %

Define g, = 'ilesz. Then V, g2(x) > 100B; onasetof size atleast % and || g2lloc <
;- Define by = by +g,. Wehave V, £(g2) = Vy 5(ba—b1) < Vg £(b2)+V, £(b1).
Hence V, £(b2) > V,(g2) — V,(b1) > 100B; — By = 99B; > 992 on at least § — }
of the space. Further, we can find N, so large that V;Y}ibz > 992 on a set of measure
at least .

In the same way we constructa sequence by, b, . . ., by, and an increasing sequence
Ny < N, < -+ < Ni with Vqlt,ijj > 99/ on a set of measure at least ; for
j =1,2,..., k. We now construct by,;. Find g > g, and By so large that m{x :
Va.ebk < By} > %. (As before, such a g and By, exists, since otherwise forallg < 2,
V,4,ebr = 00 on a set of positive measure and we are done.) Let Ly = 100B; x
21 5 Ny Find fiy1 by the lemma. Let giyy = 2k—+l|ﬁkfk+l~ Then [|ge+1lleo < ety
and V, ggi+1 > 100B; on a set of measure at least %. Define by = by + gi+y1-
We have V, £(gk+1) = V4 bk + gk+1 — br) < V4 e(biy1) + V4 e(bi). Hence
Vg Ebrs1) = Vg p(8ks1) — Vg e(br) = 100B, — By = 99B; > 99¢*! on a set of
measure at least %. Then there is an Ny such that Vq'j’;:“ (br41) > 99%*! on at least
1 of the space.

We continue the construction, and define a function b = lim_, o, b;. The limit
exists since we have uniform convergence. We will be done if we can show that for
all g < 2 we have V,;b = 00 on a set of positive measure.

We note that for each £ > 1 we have for all ¢ < gy, that Vq}:'gbk = qIY*E((bk -
b)+b) < V% (b—bo) +V,Ve(b). Hence V,'sb > Ve (be) — Vs (b —by) > 99 —
Nillb—byllo. We note that [|b—billoo = llgk+1 +8kr2+- - - lloo < 3524y 18 lloo <
Y i+ 7w < ;- Henceforeachq < g we have Vb > 99 — Nig- > 99 —1
on a set of size at least j.

From this we see that for each ¢ < 2, V,, £(b) = oo on a set of positive measure,
and we are done. [

Theorem 4.1 has the following corollary.

COROLLARY 4.4. Given any increasing sequence (ny), of positive integers, there
isan f € L®(X) such that || flleo < 1, but Vi g f =00 a.e.

Proof. Let (£;) denote a subsequence of the (n;) such that (£;) satisfies the
hypothesis of Theorem 4.1. Let Iy = {n;|€_; < n; < £;}. We know that we can find
afunctionsothat || f|lo < 1, butsuch thatthe 1-variation associated with the sequence

(€x) is infinite. Now just note that by the triangle inequality, |Ag, f(x) — A¢,_, f(x)| <
Yjen |1 An f(X) = Ay f0l. O
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We also have the following analog to Theorem 3.3. Since the proof is almost the
same as the proof of Theorem 3.3, we omit the proof.

THEOREM 4.5. Let (X, X, m, 1) denote a dynamical system. Assume that
Zk ,(1 = b ')" < 00. Then the q-variation operator V, g f (x) is finite a.e. for
all bounded f In fact V, g is always a bounded operator from L9(X) to itself.

As we saw in Corollary 4.4, the case ¢ = 1 yields a divergent operator for all
subsequences. The triangle inequality shows that the 1-variation along a subsequence
is less than the 1-variation along the full sequence, n, = k. The following theorem
shows that the 1-variation operator for the full sequence is only finite on constant
functions.

THEOREM 4.6. Let t is any measure preserving ergodic transformation on a non-
atomic probability space. Consider the 1-variation operator withn, = k. If f is any
non-constant function in L' (X) then V| g f (x) = +o00 for a.e. x.

Proof. Let B(e) = {x]||f(x) — fx f(@)dt| > €}. Since f is not a constant, there
is some €y > 0 such that m(B(ep) > 0. Let B = B(¢ep). Write

A — Fh0)——

[Ap f(x) — A1 fX)] = ‘k+l k+1

|Akf (x) = f(h0)|

k+1

For a.e. x there is an integer n(x) such that for k > n(x) we have

€0
< —.

Mﬂﬂ—ﬁfmm

For such x, if kK > n(x) we have

[Apf(x) = Ak f(0)] =

Mﬂn—ffmm+/fmm—ﬂ#nk+l

€0
k+l C2k+ 1)

v

U fdt — f(t*x)

Hence if in addition, T¥x € B then we have

1 €0
[Arf(x) = A1 f(X)| > Gom 3T D
€0

2k + 1)
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Hence

o0

Ve f(x) = Z 2(k+ ])xB(r x).

k=ng

However we see

i (‘L’ ) . €9 i (rkx) 0 1 1
& 2(k+l)XB = 2k=n()"3 j=kj+1 i+2

_ v L
=2 ; G+DG+2) & Z’“’(t x).

For some N large enough, we have

m(B)
E: t*x) > ——= forall j > N,
J + _n(.XB( ) 2 ! )
Hence V, £ f (x) > 2P 7= No 'ji2 =oco. [

5. The analytic case

Our aim is to construct a function F which is analytic in the open unit disc D =
{z | |z| < 1}, continuous in the closed unit disc, and a sequence of numbers { ry },
0 < ry < reg1 < 1, such that

o0

Y IF(res1€”™) — F(ree”™)|7 = o0

k=1
for each ¢ € [1, 2) and for a.e. ¢ in the unit circle T = [0, 1), considered as a
measure space with Lebesgue measure u. The construction is similar to the one
in the martingale case. Recall that in the martingale case we considered a function
F(x) = Y2, axr(x) such that ), a? <1butd , al =ocoforeachq, 1 <q <2.
To keep the functions bounded we modified the function on a small set and actually
considered ), axr(x) x>« (x). To obtain our analytic function we will do much the
same kind of construction. We will consider

[e.¢]
F(rezmr) — Zakr""ez”i"*' ,
k=1
where n;s are selected so that e2""™! behave much like a sequence of independent
identically distributed random variables. Then 3", axe®* " will behave much like
the martingale example. We will have }_, af = co. We will also select a sequence
rm so that r* = 1 for k < m and r;;* = 0 for k > m. If we can achieve this, then

|F(ris1€”™") — F(rie?™ )| = |ag4 |
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and hence

D IF(rig1€”™") = F(ree™ )| = Y a1 |7 = 00.

k k

As in the martingale case we will need to introduce a stopping time to keep the
function bounded. Since we will want our final function to be analytic, we will need
to approximate x>, by the boundary values of an analytic function. The introduction
of this “analytic stopping time” will result in a change on only a very small set.

The series

00
2mity __ n 2mint
F(re”™") = spr'e
n=0

will be defined in blocks. We will now explain the basic construction used to obtain
these polynomials. In the course of the main proof, however, there will be additional
requirements on this basic construction. By an analytic polynomial on T we mean
the boundary function corresponding to a polynomial in z.

The basic construction. Let 8 > 0and & > 0 be two numbers, L > 2 an integer,
anda = B/L. Let Y (1) = e?*'%' where the by’ s are positive integers to be specified
later. We will define a sequence of continuous functions g;: T — C and a sequence

analytic polynomials h;. Let go = ho = 0. If go, ..., g are already defined, k > O,
let

He={t|teT, [(go+ ---+8)®I<B}.

Findaset E; C H; of measure u(E;) < 2~**+9£ and a continuous function ¢y : T —
[0, 1]suchthatg,(¢) = Oifandonlyift € Gy = T— Hand ¢ (¢t) = 1ift € H,—Ej.
Also, find an integer v; > 1 and a Fejer polynomial 6, (1) = 3 _,, ¢;je™", such
that |y (£) — 6 ()| < 2=**3 forallt € T. Then define gy 4| = @ Wy and by =
aO Y41 The positive integer by appearing in ¥4 will be chosen sufficiently
large such that A, is an analytic polynomial and such that all the inner products
(8j» 8k+1), 0 < j < k, have moduli less than 272¢*Da?2/(k + 1). Later, in the main
proof, there will be another condition to be satisfied that will require that by, must
also be larger than another lower bound.

LEMMA 5.1. Letl < p < 2. Let B > 0and &€ > 0 be two numbers. Then there
are integers L > 2 and K > 1 such that if the functions g; and hy, 1 < k < K, are
constructed as in (2), corresponding to the numbers 3, &, and to this integer L, then
they satisfy the following conditions.

Llgi+--+a&l <2Band|hy + -+ h| <3Bforl <k <K.
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2. Thereis a set B C T such that u(B) < & and, forallt € T — B,
g1+ -+ g @ > 2,

@ + -+ hg O > 1,
and |h ()| = (7/8)|gk(®)| = (7/8)a for 1 <k < K.

Proof. An easy induction shows that |g; + -+ + g¢| < 2B forall 1 <k < K.
Since
lgk — il < 27 gy| = 270 HNg = 270/,

we also have |h; + -+ + hy| < 3B for1 < k < K. To prove (2) define B =
U,{":, (Gr U Ey). Since Gis form an increasing sequence of sets, B is also equal to
the union of Gx with UX_, E;. Note thatif t € T — B then |g(t)| = o for each k,
1 <k < K. Hence

g1 + -+ lgg )] = Ka?
fort € T — B. Now,

K K
w(B) < w(G)+ ) m(E) < w(Gr)+ ) 27*e < u(Gr) +§/2.
k=1 k=1

Hence the proof will be completed by showing that there is a choice for K and
L = B/a such that Ka? = KB9/L? > 2 and u(Gg) < &/2. Since |(go + --- +
gx)(®)| = Bon Gk,

B u(Gk) < llgo+ -+ gkll3

K K k-1

D llgl3 +2) ) I g0l
k=1 k=1 j=1

K k-1
Ka?+2) Y 27242 /(k + 1)
k=2 j=1

Ka* +a* = (K + 1)o? = (K + 1)8%/L*.

IA

IA

IA

Since 1 < g < 2, itisclear that there are integers L and K such that (K+1)/L? < £/2
and Kg9/L1 >2. 0O

THEOREM 5.2. There is a function F which is analytic in the open unit disc
D = {z | |z| < 1} and continuous on the closed unit disc, and a sequence of
numbers {ry },0 < ry < rie1 < 1, such that

o0

Y |F (™) — F(re” )| = oo
k=1

for each q € [1, 2) and for a.e. t in the unit circle T.
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Proof. Choose B™ > 0,£™ > 0,and1 < g™ < 2suchthatg =Y o | B™ <
1, =Y &™ < 1, and such that g™ is an increasing sequence converging to
2. Use Lemma 5.1 to find the integers L™ > 1 and K > 1 for each m, such that
if the functions g( L g;;':,?,, and h(l"') h(,?f,),,, are constructed as in part 2 of
Lemma 5.1, using the parameters g\, L(m), a™ = Bm /L™ and €™, then they
satisfy the following conditions.

GO R 4+ 4R <38 for 1 <k < K™.
(5.2) There is a set B T such that u(B™) < £ and, fort € T— B™),

(n)

( ) (m)
lh{™ ()| R0, 01" >

It will be more convenient to arrange these functions as single sequences g, and
h,, consisting of succesive blocks of lenght K ™. We denote the parameters used in
the construction of g, and &, by the corresponding subindex. Hence |g,(¢)| = «, for
allt € H, — E,, and |h,(¢)| = (7/8)|g.(t)| = (7/8)cy, agan for all t € H, — E,,.
From (5.1) and (5.2) we see easily that the following are true.

(5.3) The series Zn hy(¢) is uniformly convergenton ¢t € T.

(5.4) For all ¢ < 2 and for all ¢ that belongs to infinitely many of the sets
T — B™, we have > - | |h,(1)|? = oo. Since Y ,_, u(B"™) < oo, we see that
Y h ()] =occforae.t eT.

Recall that each A, is an analytic polynomial, which will be written as

Vn

h () = Z q(n) 2mwt

w=x,

where x, and y, are positive integers, x, < y,. We willlet 0, = > ">_ |g\"|. We
will also write

Vi

ha(t, r) = Z q(n) w mer

W=xy,

where r > 0. Hence, h,(t) = h,(t, 1) with this notation. Further approximations
will be controlled by a sequence & > 0 such that 3 22, 3%, ¢; < 1, and such that
Z}'ik g < (1/8)axq4 forallk > 1.

The functions g, and A, will be obtained following the basic construction within each
block of length K™, with an additional requirement. The sequence of numbers r,
will be constructed simultaneously. We start with g = « ¢, where ¥ (¢) = e2mibt
with any positive integer by, for example with b; = 1. At this step we take h| = g;.
Hence x; = y; = b and Q| = «;. We then choose r| such that 0 < r; < 1 and such
that (1 — r{")Q\ < &. Assume that the functions gy, ..., g k1, ..., hi, and the
numbers 0 < r; < --- < ry < 1 are already chosen.
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If both of the integers k and k + 1 are within the same mth block, then g+ and
hy4+ are constructed as in the basic construction, with an additional condition on the
choice of the integer by . First note that Q. is determined before the choice of
bi+1. Now choose by sufficiently large so that x; satisfies

Xk+1
1 Oyt < kgl -

The purpose of this choice is to have

i1 (8, 1)) < Ekgt
for all 1 € T. Finally we choose ry41, ry < ri+1 < 1 such that

k+1

A= "0 < ks -

This implies that, forallt € T,

k1
|hj(t, regr) —hj(t, D] < &g
=1

J

The situation is simpler if g is the last function in the mth block. In this case gx4|
will be the first function in the (m + 1)st block. It will be of the form g+ =
o+ Yi+1. After choosing the positive integer by appearing in Y1, we are going
to let gry1 = hgy1, With xpiy = yrqr = bryg and Qpyy = aipyy. This integer by
is chosen sufficiently large to satisfy r;**' Qx4+1 < &k41. Finally we choose rii,
rr < rr+1 < 1 such that

k+1

Yk
A=rHY "0 < ainr.
j=l

Again, we see that

[k (8, O] < €k
and

k1
[hj(t, reg) —hjt, D] < &g
=1

J
forallt € T.
Finally note that, if n > k then ry < r,_;. This implies that |A,(t, r})| < &,
whenever n > k.

We now let F(re?") = 3% | h,(t, r), where, as defined earlier,

Vn

ha(t, 1) = Z gPreer it

w=x,
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Then F is analytic in the open unit disc and continuous in the closed unit disc, as
follows from (5.3). We see that

k 00 00
[Fre€”™*) = > halt, rOl < Y ha(t, 1)l < Y &0
n=1

n=k+1 n=k+1

Also, since

k
> halt, 1) = he, DI < &,
n=1

we see that

k k 00
|F(ree®™") = Y halt, DI = |F(ree”™) = Y ha(t)l < Y _&n -
n=1 n=1 n=k
Hence

ILF (ri1€”™") = F(ree®™ )] = higr ()] <2 0 < (1/4)tepr -

n=k

Ift e Hy,| — Eyy then

1 = |1 < B/ D1 (D] .

Hence, fort € Hyy| — Egyy,

o0
|F(rieg1€”™"") = F(ree™ )| > |heni ()] =2 e

n=k

> |1 (D] = A/ Boyr > (/D1 (B)].

Hence (5.4) shows that

[e¢]
lF(rk+le2ﬂ”) _ F(rkeZJTlt)lq = 00
k=1

forall g < 2 and for all a.e. t € T. This completes the proof of the theorem. O

If ¢ = 2 then the prior construction cannot be made. In fact we have the following
positive result in the case g = 2.

THEOREM 5.3. Let (r;) C [0, 1) be an increasing sequence. Let f € L?[0, 1)
where f() = Y00 _ . a,e*™ . Let F(r,0) = Y o0 _ anr"e*™"®. Define the

square function Sf(8) = (Y2, |F (rix1, ) — F(ri, 0)[2)7. Then we have ||Sf |2 <
12
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Proof. Using Parseval’s equality we write

1 oo
2 2
ISz = / |F(rks1,0) — F(re, 6)|°d6
0 k=1
0 1| oo ‘ o0 . 2
- Zf Z anr’:z+le2mn9_ Z an";?e2mn0 do
k=10 |n=—c0 n=-—00
0 1 00 ) 2
= / Z an(rf,, —rHe*™ ™| dg
k=1 Y0 |n=—00
o 00
2 2
=YY lali =)
k=1 n=—00
oo 0
< D lanl|Dor—rk
n=-00 k=1
oo
2
=< Z |@nl
n=—00
— 2 O
= [ flz.
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