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CONTINUITY AND ANALYTICITY OF FAMILIES
OF SELF-ADJOINT DIRAC OPERATORS
ON A MANIFOLD WITH BOUNDARY

P. KIRK AND E. KLASSEN

Section 1

Given a continuous or analytic family Dt of self-adjoint elliptic operators on
a manifold X, it is often useful to know whether the spectrum of Dt also varies
continuously or analytically. If X is a closed manifold, the answer to this question is
well known to be yes (assuming, in the analytic case, that the parameter space is an
interval in the reals). The key point here is that because the domain of the operator
is independent of the parameter t, one may apply standard theorems on deformations
of self-adjoint operators to conclude that the spectrum varies in as nice a way as the
operator. An excellent reference for these theorems is Kato’s book, Perturbation
Theory For Linear Operators [K].

If X is a compact manifold with boundary the situation is not as simple because
one must choose boundary conditions in order for the operator to be self-adjoint; if
these boundary conditions vary with the value of the parameter then the domain of
the operator is changing. It is reasonable to expect a theorem that states essentially
that given a continuous (resp. analytic) family of formally self-adjoint operators on
a manifold X with boundary, and a continuous (resp. analytic) path of self-adjoint
boundary conditions, one may conclude the the spectrum varies continuously (resp.
analytically). In the context of Dirac operators and Atiyah-Patodi-Singer (APS)
boundary conditions, this is precisely what our main theorem says.

THEOREM. Let T be a topological space and D, Do + At a family offor-
mally self-adjoint Dirac operators on an odd-dimensional manifold with boundary
in cylindricalform near the boundary. Suppose that the dimension of the kernel of
the tangential operator Dt is independent oft. Choose afamily L(t) ofLagrangians
in the kernel of Dr. Then:

1. If the map - At is a continuous map into the space of smooth bundle
endomorphisms and thefamily L(t) is continuous then the self-adjointfamily
obtained by imposing APS boundary conditions on Dt is continuous in the
graph topology; in particular the spectrum of Dt with P+ (t) + L(t) boundary
conditions depends continuously on t.
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2. If T is an interval and the map - At is analytic into the space of smooth
bundle endomorphisms and the family L(t) is analytic then the self-adjoint
family obtained by imposing APS boundary conditions is an analyticfamily of
self-adjoint operators; it follows that the eigenvectors and eigenvalues of Dt
with P+(t) + L(t) boundary conditions can be chosen to depend analytically
on t.

The assumption that the tangential operator has constant dimensional kemel is not
essential for this result, and we indicate in the last section how to remove it.
We now say a few words about the importance of this theorem; we begin with

part (1). Several papers have recently been written (for example [Y], [N], [CLM],
[MW], and [B]) concerning the spectral flow of a path of operators on a manifold
with boundary; the goal in these papers is to find a formula expressing the spectral
flow on a closed manifold as the sum of spectral flows on two submanifolds with
boundary, together with a Maslov index term giving the relationship between the
boundary conditions. However, in order to make sense of the spectral flow on a
manifold with boundary one needs a theorem stating that in this case the spectrum
varies continuously (such as part (1) of our main result). For this reason, and because
we also need it for the proof of part (2), we have included part (1) in our main theorem
and provided a detailed proof.
A paper of Bismut and Cheeger contains a theorem closely related to part (1)

above. To be precise, Theorem 3.2 of [BC] states and proves the special case of (1)
in which the tangential operator is assumed to be invertible for all 6 T.

The paper of Melrose and Piazza [MP] uses the idea of a "Cl(1)-spectral section"
to construct continuous families of boundary conditions for the case in which the
kernel of the tangential operator is not always zero and, in fact, not even constant
dimensional. Though they use the fact that the resulting family of self-adjoint elliptic
operators is continuous, their paper does not appear to contain an explicit proof of
this fact.

Our need for part (2) above (the "analytic" result) arose from our own research,
and was our main motivation for writing this paper. In [KK3], we consider the path of
signature operators Dt arising from an analytic path of flat SU(2)-connections on an
odd-dimensional manifold with boundary. We show that the first derivatives of those
eigenvalues of Dt which pass through 0 at 0 can be computed using the cup product
structure on Heven (X; adsu(2)). In order to apply our techniques, however, we need
to know that the eigenvalues and eigenvectors of Dt vary analytically. Continuous
(or even smooth) l-parameter families of operators are inadaquate for our needs; it
is not hard to construct a smooth family of self-adjoint matrices whose eigenvectors
cannot be chosen to vary continuously.
A special case of this theorem was proven for the odd signature operator on a

3-manifold with torus boundary in [KK1 ]. These results provide partial extensions
to the bounded case of the main theorems of [KK2] and [FL], which show how to
express the spectral flow of the odd signature operator on a closed manifold in terms
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of homotopy invariants. The theorem also allows us to remove a technical restriction
(that a path be "fine") which was used in [KK1]. For that reason we restricted
our attention in [KK1 to 3-manifolds with torus boundary. That restriction is now
unnecessary.
We remark that the requirement that the parameter space be an interval is also

important, since it is not hard to produce a 2-parameter analytic family of self-adjoint
matrices whose eigenvectors cannot be chosen to vary analytically.

The paper is organized as follows. In Section 2, we state the definition and basic
properties of the Dirac operators we are studying. In Section 3, we show that if the
path of "tangential operators" Dt varies continuously (resp., analytically) then the
corresponding path of positive spectral projections Pt also varies continuously (resp.,
analytically). In Section 4, we prove the main theorem.
We wish to thank T. Mrowka, U. Bunke, and K. Wojciechowski for helpful dis-

cussions.

Section 2

Fix a locally compact parameter space T. In those cases in which we are dealing
with analytic families of operators, T will be taken to be an interval. Otherwise T
can be arbitrary. A good example to keep in mind is to take T to be the moduli space
of fiat connections on some bundle.
We will consider generalized Dirac operators in cylindrical form on a manifold

with boundary. More precisely we make the following assumptions and notation.

1. X is a smooth odd-dimensional Riemannian manifold with boundary Y. The
metric is isometric to a product in a collar of Y; fix an isometry of I x Y with
a collar of Y taking {0} x Y to OX (I [-1,0]).

2. E X is a smooth, complex vector bundle equipped with a positive definite
Hermitian inner product (,) on the fibers. This inner product defines an L2

inner product (4, r)x fx (4, r)dvolx on the space of sections of E.
3. Dt B -t- Ct is a T-parameterized family of essentially self-adjoint operators

of Dirac type acting on sections of E. What this means is that for each T,
Dt is a first order, elliptic self-adjoint operator such that the principal symbol
of Dt2 is given by the metric, i.e.,

rO,Z () --Il2 Id.

Furthermore, B is a fixed operator, Ct is a continuous map Ct" T
C(hom(E, E)), and each Dt is essentially self-adjoint in the sense that
(Dtqb, "c) x (qb, Dt’c)x whenever 4 and r are smooth sections which van-
ish near Y.

4. We are given a bundle/ --+ Y and a bundle isomorphism 4: zr*/ - Ellxr,
where 7r" I x Y Y is the projection to the second factor. The bundle/ has
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a fiberwise Hermitian inner product which defines an L2 inner product (,)r
on the sections of/. The fiberwise inner product is consistent with the inner
product on E (i.e. b is a bundle isometry). Notice that the principal symbol cro,
of Dt is independent of t. In particular, if du denotes the unit inward normal
covector on the collar, let

denotetro,(du). Then cr 2 -[du[ 2 Idandsotr is abundle automorphism.
5. In the collar I x Y, Dt takes the form

D r r *cr re*Dr + -u
for any T, where /t / + t is a T-parameter family of 1st order,
self-adjoint, elliptic operators acting on sections of E. Again / is a fixed
st order, self-adjoint, elliptic operator and t is defined by a continuous map
T C(hom(E, E)).

As is standard we will suppress the zr* from our notation and write Dt cr (bt --uon the collar. The operator b is called the tangential operator for the operator Dt.
We will call a family of operators Dt with parameter space T (-e, e) analytic if

it satisfies the conditions 1-5 as above and, in addition, the following two conditions:

6. Dt B + Yx_. Cktk and the series converges in C(hom(E, E)) (i.e., it
converges in C for all r > 0).

7. The tangential operators on the boundary Y are ofthe form b +Yk%l ktk
and the series converges in C(hom(/,/)).

Define a pairing on sections of/ by

(o, 3} ((r (c),

where (,)r denotes the L2 pairing on sections of/.
We list some of the properties of Dr, t and |, }; these are well known.

2.1 LEMMA. I. tr* --or. In particular {or, 3 --{3, ot }.
2. cr Dt --Dttr. In particular,tr interchanges the tx and-lz eigenspaces of Dt

and preserves the kernel of Dr.
3. The pairing {, measures thefailure of Dt to be self-adjoint in the sense that

(Dtdp, r)x (q, Dtr)x {qlr, fir} (2.1)

for smooth sections , r of E.
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4. The kernel t of )t is even-dimensional. The map cr preserves t and the
eigenvalues of tr 7-it --+ -[t are -4-i with the same multiplicity.

Proof. The first three assertions are routine. The fourth assertion depends on
the fact that /)t "bounds". We outline a proof. Consider Dt with Atiyah-Patodi-
Singer boundary conditions P+ + 7-/t. Thus we consider Dt acting on the space of
sections of E whose restriction to the boundary lie in the span of the non-negative
eigensections of/t. The eta-invariant of Dt vanishes since the (non-zero) spectrum
of Dt is symmetric (by 2.). Since X is odd dimensional the local forms which arise
in the Index Theorem vanish. Thus the Atiyah-Patodi Singer theorem for Dt reduces
to

Index Dt (e+ q- 7-t) 1/2 dim 7-/t.

Since the adjoint of Ot (e+ q- 7"It) is ot(e+) (see [APS-I]), one easily sees that the
composite

pr’tker Dt P+ + ’t)re_ctp+ "3
t- 7-It 7"t

has image a half-dimensional subspace. By 3., the form {, must vanish on this
subspace. This forces the eigenvalues of or: 7-it 7-(t to have the same multipli-
city.

Suppose (H, ()) is a 2n-dimensional Hermitian vector space, and or: H -- H is
a linear map satisfying cr 2 Id, tr -or* and the 4-i eigenspaces of cr each have
dimension n. Define a skew-hermitian form by

Then (H, {, }) is a (complex) symplectic vector space. A subspace/2 C H is called
Lagrangian if the form {, vanishes identically on/2 and E is maximal with respect
to this property. Let H+ denote the -+-i eigenspaces of or, so H H+ H-. It is not
too hard to see that every Lagrangian is of the form/2 {h + ,(h) h 6 H+}, where
,: H+ -- H- is an isometry. Thus the space of Lagrangians in H is homeomorphic
to U (n).

The previous lemma shows that 7-t ker/)t is a symplectic vector space. Given
a Lagrangian subspace t of 7-/t, one can restrict the domain of Dt to those sections
whose boundary values lies in P+ (t) + Et. This gives an elliptic self-adjoint operator
(e.g., see [BW] and Section 4) which we will denote by )t(t).
We turn to the notion of continuity and analyticity for real, discrete spectra. Let ,

denote the set of maps f: Z --+ R satisfying:

1. f is finite-to-one.
2. The image f(Z) is a discrete subset of R.
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Topologize , as a subspace of the countable product of R. Equivalently, give
the metric

d(f, g) SUPn
d(f(n),g(n))

Inl+
where d(f(n), g(n)) inf{[f(n) g(n)l, 1}

Let Sym(Z) denote the symmetric group on the set Z. Then S has a Sym(Z) action
given by (/3 f)(m) f(-l (m)). Let S denote the orbit space. Thus points of S
are discrete subsets of R with finite multiplicity.

If D is a self-adjoint operator whose resolvent (D ,k) -1 is compact, then the
spectrum ofD is discrete and each eigenvalue is real with finite multiplicity. Therefore
D determines an element I2D of S. We say that the spectrum of a family Dt, T
of self-adjoint operators with compact resolvents varies continuously if there is an
open cover {Ua} of T and continuous lifts a of ?’(t) 12o,, Ua (i.e., so that
the functions - f,(t)(n) are continuous from Ua to R for each Ua). If T is an
open interval in R we will say that the spectrum of Dt varies analytically if the lifts- f, (t)(n) can be chosen to vary real-analytically in t. (With these notions it is
easy to define the define the spectral flow of a path of self-adjoint operators with
continuously varying spectrum ([APS-III], IT]).

Section 3

In this section we prove a key result about the tangential operators/t. These form
a family of self-adjoint operators on the closed manifold Y 0X, parameterized by
T. We will construct a family of projections to P+(t) + E(t) which vary continuously
(or analytically) in the operator norm topology.

In this section and in Section 4 we make the assumption that the kernel of b is
constant dimensional. This is for ease of exposition, and the reader who would like
to understand the general case should read Section 5 which indicates how to make
the necessary modifications to obtain the general case.

Let L2 (/) denote the completion of the space of smooth sections of 7 with respect
to the L2 inner product. Let L() be the Sobolev space of sections with s derivatives
in L2, interpreted in the usual way when s is not an integer. We remind the readers
that there is a compact inclusion L() C Lr2(") if s > r (Rellich’s Theorem). Since
we are considering closed manifolds at the moment the domain of b is taken to be
the image L2() L2(). In particular, this domain is independent of 6 T.

One remark about notation" the Sobolev L norm will be denoted by I1,, and
]l..t will denote the operator norm for an operator L: L --+ Lt2. We will drop the

subscripts when using the L2 norm.
Let Kt" L2(/) -- L2() denote the 2L -orthogonal projection onto the kernel of

/t. It is is well known that gt is a pseudo-differential operator of order -cxz (e.g.,
see [BW]).
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The map gt defines a continuous map T Bd(L(/)) for any s > 0, as
one can check using the resolvent formula:

Kt (Z- bt)-ld/,,

where F is a circle in the complex plane centered at 0 of radius smaller than the
smallest non-zero eigenvalue of Dt for is some small neigborhood in T. Continuity
then follows from the continuity in norm of tt by applying the formula

(z- )- (z- - _((, o)(Z- b,o)-)k.
k=O

3.1 LEMMA.
over T.

The spaces ker(/t), E T, form a syrnplectic vector bundle 7-[

Proof The subset {(t, v) (Kt Id)v 0} of T x L2(") is a vector bundle
since gt is continuous and since the kernel of Kt Id is constant dimensional. We
have already observed that the fibers are symplectic. Clearly the symplectic structure
is continuous from fiber to fiber, since it is the restriction of a symplectic structure on
the trivial vector bundle L2() x T. D

In the case where Dt is an analytic path of operators, the tangential operators
bt form an analytic path of elliptic self-adjoint operators over a closed manifold,
and so perturbation theory [K, p. 386] shows that one can find analTtic paths of
vectors Pi(t), k, which form a basis for the kernel of Dt for each
(recall we are assuming the kernel of/)t is constant dimensional). Thus the bundle of
Lemma 3.1 (in this case a bundle over the interval T (-e, e)) inherits an analytic
structure, defined by declaring a section to be analytic if it can be written in the
form Zi fi(t)i(t) for analytic functions f/. An analytic Lagrangian subbundle
is a Lagrangian subbundle locally spanned by analytically varying sections. More
generally an arbitrary subbundle of 7-/is called analytic if it is locally spanned by
analytic sections.

Suppose a subbundle/ T of the kernel bundle T is given. In the analytic
context, we assume the subbundle is analytic. (We are most interested in the case
when/ is a Lagrangian subbundle, but the cases when E is equal to 7-(, or is the zero
subbundle are also interesting.) For E T, let Lt" L2(/) L2(/) be the projection
to the fiber of Z at t. Since Lt factors through Kt, it is easy to see that Lt is a
continuous (resp. analytic) map of T into Bd(L(/)) for all s.

We use Lt to "split the kernel" of/)t. Let Lt-L be the orthogonal projection to the
orthogonal complement of t in 7-/t. Then define

Rt )t + Lt L -1-.
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Thus gt is a continuous (resp. analytic) family of self-adjoint pseudodifferential
operators whose spectrum coincides with that of/t except that /t lies in the +
eigenspace of Rt and the orthogonal complement of Et in ’t lies in the eigenspace
of Rt. Moreover, Rt is invertible.
We remark that Rt is introduced only for technical reasons, namely, to make the

proof Theorem 3.2 more transparent. All the ideas of the arguments we give are

present in the special case when the kernel of/t is zero for each t. For this case
Rt Dt.

Let Pt" L2 (/) L2() be the L2 projection onto the span of the positive
eigenvectors of Rt. Thus Pt is the projection to the sum of the positive eigenspace
of Dt and/2t. We will show continuity of the Pt, as well as analyticity if Dt (and
hence bt) is an analytic path of operators. Fix to T, (where T means (-e, e) in
the analytic case).

Let I"n C C be the vertical segment in the complex plane

Fn {ir -n < r < n}.

Define the operators

Qn(t) (r- Rt)-1 (r Rto)-ldr.

We wish to thank U. Bunke for suggesting a simplified proof of the following
theorem. Compare to [B, Lemmas 2.1 and 2.2].

3.2. THEOREM. As n -- o, the an(t) converge to Pto Pt in the operatornorm
topology on Bd(L(/)) for all s. The projections Pt are continuous in asfunctions
T --+ Bd(L(/)). Moreover, the projections Pt are analytic in if b is analytic,
that is, the map (-, ) -- Bd(L(/)) taking to Pt is analytic.

Proof. To begin with, let At Rt Rto. If Dt is an analytic path, then At
i>0 Aiti"

Let r 6 R denote a purely imaginary number as well as the corresponding mul-
tiplication operator r: L(/) --+ L(). Observe that if r Rt is invertible for
near to,

(r Rt)- (r Rto)- [(I (r Rio) -1 At) -1 l](r Rto)-.
The Neumann series

(I (r gt0) -1 At) -1 Z[(r Rto) -l At]k
k=0

(3.1)

converges in Bd(L(/)) if [[(r Rto)-I I1.,. IlAtll.,. < 1.
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The spectral theorem implies that there is an orthonormal basis {lPi}ic___o of L2(/)
such that gri is a/zi eigenvector of Rto. Since/to is elliptic and Rto agrees with
away from the finite dimensional space 7-(to the vectors

lPi,s lpi/(1 + I/Zil2)

form an orthonormal basis for an admissible norm for L(’), and,

(r Rto)-l ri,s i,s.

Let, equal half the smallest positive eigenvalue of Rto. Notice that Ir -/zi[ >
Max{Irl, ’} since r is purely imaginary and ]J’i is real. It follows that

{’ ’}[[(r- Rto) -llls,s < min [-,

Given s > 0, there is some neighborhood of to so that for in this neighbor-
hood, [IAtll,,. < ,/2. Thus the Neumann series (3.1) converges for any in this
neighborhood and any r R.

Hence, for any in this neighborhood and any r R,

(1 + II(r R,o)- II.,.s IIA, II.,..,)- _< 2

and so

II(r Rt) -l (r Rio) -1

_< II(r Rto) -1 I1,,. ’ II(r Rto) -1 II,.IIA, .,
k=l

II(r Rto)-lll,sllAtlls,s II(r Rto)-lll,sllatll,s
k=0

II(r- R,0)- II,.,IIA, II.,,.(I -II(r- g,o)-I II.,,,,IIA, II.,,.)-<,ll(r-R,o)-’ll 2 <man{ ’ 1}
Since f r-2dr converges, the limit

lim [ (r R,)- (r Rto)-tdr
It--+O JFn
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converges in norm, and so

lim frn--+x
(r Rt) -I (r Rto)-ldr

is a well-defined operator; call it Q(t) temporarily.
The family of operators At varies continuously in norm with 6 T, and so the

integrand

(r Rt) -1 (r Rto) -1 [(I (r -Rto)- At) -1 l](r Rto) -1

varies continuously in t. Therefore, Q(t) varies continuously in t. In the analytic
case, one concludes that Q(t) varies analytically using the Neumann series (which
implies that the map taking a bounded operator to its inverse is an analytic map).

It remains to show that

Q Pto Pt

For this one computes that

lim (r Rt)-dr l/t lim
n+ 2re n- 2n" r -/z -- 1/t if/Z > 0 and

1/ti
lpi if/z < 0

Thus

a(t) -(I Pt) - Pt -(I Pro) + - Pto Pto Pt.

This finishes the proof of Theorem 3.2.

Section 4

Assume now that the subbundle C 7-/is a Lagrangian subbundle. Let Pt be the
family of projections constructed in the previous section. Thus Pt is the projection
to the sum of/2t and the span of the positive eigenvectors of/)t. The projection
I Pt Bd(L2(/)) is continuous (resp. analytic) in by Theorem 3.2. The kernel of
I Pt will be our space of self-adjoint boundary conditions. We denote this subspace
of L2(/) by P+(t) +

For each 6 T, denote by 79(12) be the closed (unbounded) operator on LZ(E)
equal to Dt with domain

ker((l Pt) c i*): L2(E) L (/),

where i*" L(E) L2, (/) is the bounded linear map induced by the restriction to
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Y. Thus the domain of Dr(/2) is the set of once-differentiable sections of E whose
restriction to the boundary lies in the span.of the positive eigenvectors of/t and

The domain of Dt() depends on t. (Notice however that Dt (Z) is a restriction of
Dr, and Dt has domain the image of L2(E) in L2(E). In particular the family
extends to a non self-adjoint family Dt with constant domains.) To deal with the
varying boundary conditions, we will construct a parameterization of the boundary
values by a fixed Banach space.

Given to T define V Bd(L2(/)) by

Vt Id +(Pto Pt)(Id-2Pto). (4.2)

Then Vt is continuous (resp. analytic) in into L(/) for any s, and

Vt(I- Pto) (I- Pt)Vt.

Moreover, Vt is invertible if II(eto Pt)(Id-2Pto)llL2 < 1, and this happens if
e,o P, < g. It was shown that Pt is continuous in with respect to the norm

topology. Therefore, if is close enough to to, Vt is invertible and so I Pto
Vt- (I Pt) Vt. (We thank K. Wojciechowski for pointing out formula (4.2).)

We now come the the main theorem of this article. It states that the family of
operators with Atiyah-Patodi-Singer boundary conditions varies continuously (resp.
analytically). Note that the continuity result is similar to a result in [BC] which
considers the case when the tangential operators have trivial kernel.

4.1 THEOREM. Each 7t (,,) is self-adjoint with pure point spectrum. IfDt varies
continuously in T, then the map from T to the space of self-adjoint, closed
operators in the graph topology given by w- lt (..) is continuous, and the spectrum
varies continuously in t.

If Dt varies analytically in (-, ), then the spectrum and eigenvectors of
t (-.) vary analytically in t. More precisely, there exist real-analyticfunctions ;k(t)
and smooth sections dp,k so that

q(t) Cx,,
k=O

the sum converges in L2(E),

Dt (,)dpx (t) )(t)qbx (t)

for all small enough, andfor each the set {x(t)} forms a complete orthonormal
basis ofL2 E).
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Proof. That P+ (t) + Et is a self-adjoint boundary condition for Dt can be found
in [Y], [BW], or [MW]. The essential observation is that if 49, r P+ (t) + Et, then

(Dt, r)x (, Dtr)x {qlY, flY} {prj,qblr, projT, fly} 0

since/2t is a Lagrangian in 7-/t.
We first deal with the continuous case. Fix to T. We show continuity at to.

We begin by constructing operators which parameterize the domains. The restriction
i*: L2(X; E) L2,_ (Y;/) is bounded and onto; e.g., see [PI. Denote by B the closed

subspace B ker(i* o (I Pro))" L(E) -- L (.) P+(to) + -.to.
Let S" L2, (/) L2(E) be a bounded right inverse to i*. Define Jr" B L2(E)

by

Jr(g) g + S o (Vt Id)(i*(g)),

where Vt is the operator defined by Equation (4.1). Then

i*(Jt(g)) i*(g) + i*S(Vt Id)(i*(g)) Vt(g).

Therefore, Jr(g) ker: i* o (I Pt)" L(E) -- L (/). Composing Jt with the

inclusion L(E) C L2(E) yields a bounded operator qt" B -- L:(E) whose image
is the domain of 79t(/2). The map T Bd(B, L2(E)) given by - qt is continuous
in since Vt is continuous.

The composites 79t(.) o qt" B L2(E) are bounded. Indeed, )t(/) O kI/t
Ot o Jr, and Dt" L21(E) L2(E) is bounded since Dt is a first order elliptic operator
and X is compact.

Finally, the map T -+ Bd(B, L2(E)) given by 79t(.) o qt is continuous in
since if B then

[l(Dt o Jt Dto o Jto)]lL < II(Dt o Jt Dt o Jto)llL2
-t-[[(Dt o Jto Dto o J/0)ll

_< ([IOtll,0 IIJt Jr011 + IIDt- D/0ll,0 IIJ/01l)llll
The right side goes to zero as approaches to since Jt is a continuous family and since

Dr" L(E) --+ L(E) is a continuous family of bounded operators.
The fact that Dt(.) is a continuous family in the graph topology is now a con-

sequence of Theorem IV.2.29 of [K]. The operators 79t (.) have compact resolvents
gt(x) ( 79t ())-1 by Rellich’s theorem since the resolvents factor through the
inclusion L2(E) L2(E). Hence 79t(E) has pure point spectrum; each eigenvalue
has finite multiplicity and the set of eigenvalues forms a discrete subset of R.

Let to T. Let e > 0 be some number between 0 and the smallest positive
eigenvalue of 79to (E). Then 79to (/2) e is invertible. So Theorem IV.2.21 of [K]
shows that 79t (/) 6 is invertible whenever

(79t0(,) ?, 79t (/) 6) _< (1 + 11(79t0(;) e)-I 112) -1/2,
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where (A, B) denotes the gap metric between closed operators, defining the graph
topology. Since the/gt (Z) e form a continuous family in the graph topology (with
respect to t), there exists a neighborhood U of to in T so that 79t (Z) e is invertible
for all in U.

Define a function

f" U Maps(Z, R)

as follows: for each in U, let fl (t) be the smallest positive eigenvalue of Z)t(Z).
Then let f2(t) be the next smallest, etc. always counting with multiplicity, so that
for example if the smallest positive eigenvalue of 79t(Z) has multiplicity 2, then
f(t) f2(t) -7(: f3(t). Repeat the definition for the non-positive eigenvalues, so
fo(t) is the largest non-positive eigenvalue of 79t (3, f-1 (t) is the next largest non-
positive eigenvalue of g)t (/), etc.. Thus f parameterizes the spectrum of 79t, and so
defines a map f" U ,S lifting the map U S defined by
We must show that each coordinate function fn (t) is continuous. Theorem IV.2.20

of [K] shows that the family of resolvents (7)t(ZD ))-1 is continuous in the norm
topology on bounded operators. Assume by induction that fk(t) is continuous in
on U for all0 < k < n. Fixs U. Thus f,(s) is aneigenvalueof79.().

This eigenvalue may have multiplicity; assume fn+i(s) fn(S) for --a,...
1,0,1 b.

Let F be a small circle in the complex plane encircling f, (s), but containing no
other eigenvalues. The continuity of the resolvents (79t () ))- implies that there
exists a neighborhood W C U of s so that , does not lie in the spectrum of
for s W and , F. Then the L2-projection onto the span of the eigenvectors of
/9. (Z) spanned by the eigenvectors inside F is given by the formula:

q)t (Z),(/) ,)-ld

for W. Notice that (I)t is continuous in norm since F is compact and since
(79t(C) ,)- is continuous in norm (with respect to both and ).

Define

M, Id +((I)t (I) 2 (I) Id).

Then on a possibly smaller neighborhood V C W ofs, Mt is invertible for V since
(I)t is continuous in t. Now Mt (P, Mi- (P. Let H denote the (finite dimensional)
range of (P,. Then

Ft (Mtdi).- UV)Dt(Utq)sU-)" S -- H
is a continuous family of self-adjoint operators on the finite dimensional space H.
Thus the eigenvalues of Ft when ordered in a non-decreasing manner, vary continu-
ously. But these eigenvalues are just fn-a(t) fn+b(t). In particular, f,(t)varies
continuously over V. Hence fn is continuous at s. Since s U was arbitrary, f, (t)
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is continuous on all of U. This shows f is continuous and so the spectrum varies
continuously.
We turn to the analytic case. To begin with, since the projections Pt and the path

of Lagrangians t vary analytically, we can extend the function 73t() to an
open set U C C.
We recall what it means for a family of closed operators to be holomorphic (in the

sense of [K]). First, a family Bt of bounded operators between two Hilbert spaces
H and K defined for in an open set U in C is called bounded holomorphic if the
map U Bd(H, K) is differentiable. This is equivalent to the map (Bth, k)
being a differentiable function for any h H and k K. A family Dt CI(H, K)
of closed operators is said to be holomorphic if there exists a Banach space B and a
family of bounded operators qt: B H such that the image of kI/t is the domain of
Dt and such that kii and Dt o kii are bounded holomorphic.
We show that the family Dt(), {t Cllt[ < } is holomorphic. The family

qt" B L(E) defined above is a bounded holomorphic family since Vt" L] (,) --L2 (’) is a holomorphic family. Furthermore, 79t(E) o kii Dt Jt is bounded

holomorphic since both Jt and Dt are bounded holomorphic.
Hence Dt (,) forms a holomorphic family of operators, which are self adjoint for

real t. The results of [K; Ch. VII], especially p. 386, shows that the eigenvalues and
eigenvectors of Dt (/) can be chosen to vary analytically.

Smoothness of the tPZ,k follows from elliptic regularity: D0tPz,0 L(0)tPz,0 and
so Pz,0 is smooth. Taking coefficients of in the equation 7)t()qbz(t) .(t);(t)
shows the higher derivatives are smooth also.

This completes the proof of Theorem 4.1.

It follows from this theorem that given any Lagrangian subbundle/2 C 7-t and
path y(t) in T the spectral flow SF(D(,), y(t)) is well defined. Thus the spectral
flow of a path of Dirac operators on a manifold with boundary with Atiyah-Patodi-
Singer boundary conditions is defined. An analytically varying path has analytically
varying eigenvectors and eigenvalues. This is useful when computing the spectral
flow, since the local behavior of an analytically varying eigenvalue ,k(t) with ,k (t0) 0
is determined by the order to which , vanishes at to and the sign of its first non-
vanishing derivative at to. This principle is used in the study of the odd signature
operator in [FL], [KK1 ], [KK2], and for general Dirac operators on a manifold with
boundary in [KK3].

Section 5

We conclude with a brief discussion ofhow to extend these results when the kernel
of the tangential operator jumps up.

First, given a general T-parameterized family ofoperators as above, one can stratify
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the set T into subsets

Tn {t 6 T dimker/)t n}.

Then over each stratum one can pick a Lagrangian subbundle and construct continuous
self-adjoint families as above. (for example, in the applications of this theorem we
consider signature operators parameterized by flat connections, and the Tn are defined
in terms of the dimensions of certain cohomology groups.) Then as long as one stays
within the strata, The assumption made at the beginning of Section 3 applies.

However, this assumption (that the kernel of Dt is constant dimensional) can be
weakened in Theorem 4.1 if one takes more care in defining the boundary conditions
by enlarging the symplectic vector bundle in the following manner.

Given to 6 T, Choose a continuous positive function e(t) with the property that
-t-e(t) misses the spectrum of the tangential operator/t. Let 7-/t be the the sum of
the eigenspaces of Dt corresponding to eigenvalues whose absolute value is less than
e(t). The function e can be chosen so that ’t (the "thickened" harmonic space) forms
a symplectic vector bundle in a neighborhood of t. (For example, in the analytic case,
choose e(t) so that ’J-/t is the span of those z(t) which satisfy ,(0) 0.) Notice that

L2(/) P-(t) ’-[.t e(t)

where Pt (resp. P-,t) denotes the span of eigenvectors of/t corresponding to
eigenvalues greater than e(t) (resp. less than -e(t)).

Choose a continuous (resp. analytic) family t of Lagrangians in 7-/t. Then define

79t () to be the operator Dt restricted to those sections whose boundary values lie in
.t +P(t).

Then the statement of Theorem 4.1 holds for this more general family. The proof
is essentially the same. One needs only make use of the gaps in the spectrum of
/t corresponding to the function e(t). Since Theorem 4.1 is a local result, the local
compactness of the parameter space makes it possible to replace e(t) by a small
positive constant.

REFERENCES

[APS] M. Atiyah, V. Patodi, and I. Singer, Spectral asymmetry and Riemanian geometry, I, H, III, Math.
Proc. Cambridge Philos. Soc. 77, 78, 79 (1975).

[BC] J.M. Bismuth and J. Cheeger, Families indexfor manifolds with boundary, superconnections and
cones I, J. Funct. Anal. $9 (1990), 313-363.

[BW] B. Booss-Bavnbek and K. Wojciechowski, Elliptic boundary problems for Dirac operators,
Birkhauser, 1993.

[B] U. Bunke, On the spectralflow offamilies ofDirac operators with constant symbol, Math. Nachr.
165 (1994), 191-203.

[CLM] S. Cappell, R. Lee, and E. Miller, Self-adjoint elliptic operators and manifold decompositions.
II. Spectralflow and Maslov index, Comm. Pure Appl. Math. 49 (1996), no. 9, 869-909.

[FL] M. Farber and J. Levine, Jumps of the eta-invariant. With an appendix by Shmuel Weinberger:
Rationality of p-invariants, Math. Z. 223 (1996), no. 2, 197-246.



138 P. KIRK AND E. KLASSEN

[K] T. Kato, Perturbation theoryfor linear operators, Grundlehren der Mathematischen Wissenschaft,
no. 132, Springer-Verlag, 1966.

[KK1] P. Kirk and E. Klassen, Computing spectral flow via cup products, J. Differential Geometry 411
(1994), 505-562.

[KK2] The spectralflow of the odd signature operator and higher Massey products, Math.
Proc. Cambridge Philos. Soc. 121 (1997), 297-320.

[KK3] Analytic deformations of the spectrum of a family of Dirac operators on an odd-
dimensional manifold with boundary, Mem. Amer. Math. Soc. 124(592), (1996).

[MP] R. Melrose and P. Piazza, Families ofDirac operators, boundaries and the b-calculus, preprint,
1995.

[MW] T. Mrowka and K. Walker, notes, 1990.
IN] L. Nicolaescu, The Maslov index, the spectral flow, and splittings of manifolds, Duke Math. J.

811(2) (1995), 485-533.
[P] R. Palais, Seminar on the Atiyah-Singer index theorem, Annals of Mathematics Studies, no. 57,

Princeton University Press, 1965.
[T] C. Taubes, Casson’s invariant and gauge theory, J. Differential Geometry 31 (1990), 547-599.
[Y] T. Yoshida, Floer homology and splittings ofmanifolds, Ann. of Math. 143 (1991), 277-324.

Indiana University Bloomington, Indiana
pkirk@indiana.edu

Florida State University Tallahassee, Florida
klassen@zeno.math,fsu.edu


