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ON CHEN’S BASIC EQUALITY

MARCOS DAJCZER AND LUIS A. FLORIT

Given an isometric immersion f: Mn Q.+P of a riemannian manifold into a
space of constant sectional curvature c, it was shown by B. Y. Chen [Chl that the
inequality

M < Ilnll 2 + (n + 1)c (1)
2 (r- 1)

holds pointwise. Here, H denotes the mean curvature vector of f and stands for
the intrinsic invariant defined as

t(x) s(x) inf{K(cr)" cr C TxM},

where K and s denote, respectively, sectional and not normalized scalar curvature
of Mn.

It is then natural to try to understand all submanifolds for which equality in (1) holds
everywhere. In euclidean space, Chen showed that the trivial examples satisfying
his basic equality are either affine subspaces or rotation hypersurfaces obtained by
rotating a straight line, that is, cones and cylinders. Nontrivial examples for n >_ 4
divide in two classes, namely, any minimal submanifolds of rank two, which we
completely describe in [DF], and a certain class of nonminimal submanifolds foliated
by totally umbilic spheres of codimension two.

In this paper, we show that connected elements in Chen’s second nontrivial class
have the simplest possible geometric structure among submanifolds foliated by totally
umbilic spheres, namely, they are rotation submanifolds over surfaces. This means
that Mn is isometric to an open subset of a warped product L2 o 7-2, o C (L)
positive, and

f(x, y) (h(x), o(x) y) (2)

being h" L2 ]Kp+I a surface and gl denotes a unit sphere. The surface k :=
(h, o)" L2 ]1p+2 is the profile of f.

The paper is organized as follows. First, we discuss the general problem whether
a submanifold foliated by totally umbilic spheres of codimension two is rotational,
and present necessary and sufficient conditions for this to occur. Then, we see that
submanifolds satisfying the basic equality are either minimal or fall under those
conditions. Finally, we present the restrictions for f in (2) in order to satisfy the basic
equality. In particular, we show that rotational hypersurfaces over surfaces satisfying
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the basic equality are in correspondence with solutions of the second order quasilinear
elliptical partial differential equation in the plane

99 tr(R Hesse) + 0, where R I (1 + 99 2)- (799 , V99.

Rotation (n 2)-umbilic submanifolds

We say that a submanifold f" M Q.+P is k-umbilic when it carries a maximal
k-dimensional totally umbilic distribution H. This means that there exist a smooth
vector field r/ TM of unit length and a positive function # C (M) so that

H-- {X TM: af(X, Y)- #(X, Y)- O, Y Y TM}
where otf’TM x TM --> TM denotes the second fundamental form of f. Then
it is well known that/g is an integrable distribution whose leaves are totally umbilic
submanifolds of M and Q+P along which be is constant and r/is parallel in the
normal connection; cf. [Re] for details.
We call a k-umbilic submanifold f generic if it satisfies

dim{ker(A0 be I) (x) n k, x e Mn,

where A0 denotes the second fundamental form of f in direction r/. Any k-umbilic
hypersurface is trivially generic and can be parametrized, when in euclidean space,
as an (n k)-parameter envelope of spheres; see [AD] for details. We discuss next
an useful extension to higher codimension of this parametrization.

Given a submanifold g: Ln-k ---> ]1n+p, an orthogonal smooth splitting of its
normal bundle TL Ak+l + A+/-, a positive function r C+(L) and a smooth
section s A+/- so that IlVrll2 + I111 < 1, we define a map : A---> ]1n+p by

(w) g- rr/, r/= Vr + + f2 w, (3)

where f2 := (1 IIVrll 2 11112) /2 and AI stands for the unit bundle of Ak+l.
Although at regular points parametrizes a submanifold foliated by k-dimensional
spheres, it is not a k-umbilic submanifold in general. Nevertheless, we have the
following basic fact.

PROPOSITION 1. Any generic k-umbilic submanifold f: Mn ]n+p admits
locally a parametrization (3).

Proof. First observe that the map

g := f + ro, r 1/be, (4)
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is constant along the leaves ofH and, being f generic, has constant rank n k. Hence,
we may also consider g and r as smooth maps on the submanifold L"-k g(Mn)
endowed with the induced metric. Being r/normal to f, we have

O= (r/,f,X) (r/,g,X)-X(r), VX TM.

Hence, the TL-component of r/is Yr. The proof follows now from the fact that the
leaves ofH are spheres in "+P and r/II 1.

The following is our main result in this paper.

THEOREM 2. Let f" Mn -+ n+p, n >_ 4, be a generic (n 2)-umbilic subman-
ifold and assume that tr A o nlz. Then f is a rotation submanifold over a surface
ifand only if tr Ao is constant along the leaves oflg.

Proof The direct statement is trivial. For the converse we use Proposition 1. It
suffices to show that A’’-I is constant in ambient space. Then g reduces codimension
to p + 1, and the result follows.

From (4), we have

f,X g,X X(r) o r o,X, Y X TM. (5)

Denote by PM and PL the orthogonal projections on TM and TL, respectively. Hence,

rPMo,X PMg,X- f,X (6)

and

PL f,X (S r Qw)g,X,

being S, Qw" TL - TL the tensors on L2 given by

(7)

S=I-(Vr, ,)Vr

and

Qw Hessr -B f2Bw, w A"-,
where B denotes the second fundamental form of L2 relative to r.
We claim that T PL PMIrL is a well defined tensor on L2. From

g.X (I- rAo)f.X + V-ro, (8)

we get

Tg,X g,X- PL(I- PM)g,X g,X- PL(Vrrl)
(S PL PIo>-)g,X
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where TM (r/) (r/)+/-. The claim follows from the fact, easy to check, that the
subbundle (r/) +/- is constant in ]1n+p along leaves of/g.

Fix a point x Mn, and let .1, ,k2 be the eigenvalues of Ao different from #
corresponding to the eigenvectors Xl, X2. We want to compute .l + ,k2 in terms of
g and r. Taking the TL-component of

--PM o, Xi i f,Xi

and using (6) and (7), we get

Tg,Xi (S- rQw)(1 -r,ki)g,Xi, <_ <_ 2.

Now observe that T > 0. In fact, this is equivalent to TMN TgL 0, which follows
from (8) and .j /z. We conclude that S r Q0 is not singular.

Our assumption yields

0 :/: 0 "= (2# ,kl )2)r tr(S rQo)-lT tr(P + vBw)-lT

is independent of w. Here,

P=S-rHessr+rB and v=rf2.

For a pair C, D of 2 x 2 matrices, we have

tr(C- D) det C tr C tr D tr(CD) det(C + D) det C det D,

where we assume that C is not singular only for the first equality. Therefore,

0 det(P + vB,) tr T tr(P + vB,) -tr(T(P + vB,)).

Thus,

0 v2 det Bw v tr(T 0 P) tr Bw v tr((T 0 P)Bw) + tr T tr P

-tr(TP)-0detP, Yw6A.

Since dim An-1 >_ 3, we easily obtain

det Bw 0,

and

tr(T OP) tr Bw tr((T OP)Bw), (9)

det(T 0 P) det T > 0. (10)

Suppose that Bw - 0 for some wo 6 An-1 Then (9) yields ((T -OP)v, v) 0 for
0 - v 6 ker B,,, which is in contradiction with (10) and proves that

Bw =0, ’v’w An-. (11)
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Since leaves of L/are the images of A under parametrization (3), we have

+/- M,(0) +/- C Tg(x)L Ag(x), ’x (12)

Observe that Tx)M Tgx)L 0 implies that (0) Tgx)L 0. Hence, the
ohogonal projection

(x): (O(x)) C TM Ag(x) C Tg(x)L
is an isomohism. On the other hand, using (5) we have

(g.Y rr(Vr +
It follows from (11), (12) and thin (0) is constant along the leaves that

(yw,

Being an isomowhism, we conclude from (11) that A- is constant and this proves
the theorem.

Remark 3. The assumption that tr A -# nix in Theorem 2 is essential. Otherwise,
from 0 0 in the proof we have tr T tr Bw tr(TB0) and tr T tr P tr(T P). This
alone does not imply that f is rotational. For instance, in the hypersurface case, we
conclude that f is (n 2)-umbilic with tr A nix if and only if {g, r} in (3) satisfies
tr(S-1B0) 0 for all to Tg+/- L and r tr(S- Hessr) 2.

THEOREM 4. Let f" Mn -+ 7+P, n >_ 4, be a generic (n 2)-umbilic sub-
manifold and assume that tr Ao : nlx. Then tr Ao is constant along the leaves
of lg if and only if there exists a surface h: L2 p+2, Ilhll < 1, such that

-2 __+ n+p C n+p+ is a rotation submanifold.f M Q L2
x/l_llh(x)ll2

Proof It suffices to show that the composition f of f with the inclusion of gT+P
into n+p+ satisfies the conditions in Theorem 2. In fact, the principal curvatures
for the umbilic direction 1/v/l + Ix2 (ixr/- f) for f are

-4- Ix2
(kjix- 1), j 1,2, /

x/l--: -4- Ix2
(Ix2 1),

and the proof follows.

Next, we analyze nongeneric (n 2)-umbilic submanifolds.

THEOREM 5. Assume that f: Mn -- n+P is a (n 2)-umbilic submanifold with

dim{ker(Ao-Ix/)(x)}=n-1, Yx 6 Mn.
Then f is a rotation submanifold over a surface if and only if the mean curvature
vector is parallel in the normal connection along the leaves ofbl.
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Proof The direct statement is trivial. For the converse, let X, Y 6 b/+/- be or-
thonormal eigenvectors for A0 with eigenvalues ,/x, respectively. By assumption,
there is a smooth field of unit length 6 TM, _1_ r/, parallel along/A with A Y # 0
and trA constant along/A. Taking the/g+/--component of the Codazzi equation for
(X, T, 0), i.e.,

(VxAo)T Av;oT (VrAo)X AvoX, T H,

we get

VX =0, (13)

where Zv (respectively Zh) denotes taking the/A (respectively H+/-) component of Z.
Similarly, the X-component of the Codazzi equation for (Y, T, r/) yields

V,X =0. (14)

Now, a straightforward computation of the Codazzi equations for (X, T, ) and
(Y, T, ) gives

(Vr Y, T)(A Y, Y) + (Vx Y, T)(A Y, X) 0

and

(Vx Y, T)(A Y, Y) (Vv Y, T)(A Y, X) 0,

from which we conclude that

vY o vY. (5)

Equations (13), (14) and (15) say that the distribution b/+/- is totally geodesic (autopar-
allel) in Mn. The following observation (cf. [DT]) concludes the proof. El

LEMMA 6. Let f: M --+ In+p be k-umbilic. Assume that the distribution/A+/-
is totally geodesic (autoparallel) in Mn Then f is a rotation submanifold.

Proof Let ?, denote the mean curvature vector of the leaves of/g in Mn, i.e.,

VshT=(S,T)y, S, T /A.

Take X /A+/- and T /A of unit length. We have,

VhTVxT Rh(T, X)T + VV.T -+- Vy + Vr,xl,T + Vh
[T, Xp T.

A straightforward computation using the fact that/A+/- is totally geodesic and the Gauss
equation yields

Vxy #AoX + (X,
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We claim that the mean curvature vector a ?, + #r/ofthe leaves ofH in euclidean
space satisfies

xa=(X,y)a, YX+/-. (16)

In fact, the T-component of the Codazzi equation for (X, T, r/) gives

X(/z) tt(X, y) -(AoX, ).

On the other hand, the Codazzi equation for A yields

(AX, ?’)-/z(Vxr/, )=0.

To obtain the claim, compute Vxa and use (16), (17) and (18).
From the claim,

Set

X(ll 2) 2(X, ,) Ila 2,

(17)

(18)

(19)

F f + Ilall-2m
Using (16) and (19), we get

rF 0 and xF X Ilall-2(X, ?,)a, YT- , X H+/-.

From Vx T Vx T and (16), the subspaces L L/ff span{a containing the
leaves of/.g are parallel in ambient space. Since F,X is orthogonal to H and a for all
X H, we conclude that F is contained in an affine subspace orthogonal to L, and
the proof follows.

The basic equality

In this section we deal with nonminimal submanifolds satisfying the basic equality.

THEOREM 7. Let f: Mn n+p, n > 4, be a connected submanifold satisfying
everywhere the basic equality which is nowhere trivial or minimal. Then f is any
rotation submanifold with profile k: L2 p+2 whose mean curvature vector H
satisfies the condition

e V99 299H, (20)

where o (k, e) is the highfunction ofk with respect to a constant vector e ll;p+2

of unit length and L2 is endowed with the metric induced by k.

First, we give the general analytic conditions for a rotation submanifold to satisfy
the basic equality.
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S-2 n+pPROPOSITION 8. Let f Mn L2 Xe be a rotation submanifold.
Then f(x, y) (h(x), go(x) y) satisfies the basic equality ifand only ifgo is a solution
on L2 of the second order quasilinear elliptical differential equation

go tr(R Hesse) + 0,

and the secondfundamentalform ofh: L2 Np+l satisfies

(21)

tr(R B) 0, 6 T-L. (22)

Proof We have

T+/-M TL 3+/-

Moreover,

rl(x, y)
v/-1 + IlVq9112

(vqg,-y).

f,(X, O) (X, <Vgo, X)y) and f.(0, v) go(0, v). (23)

In particular,

#- gov/l + IIVll 2. (24)

Now take ( O) 6 T+/-M where 6 TL Then, ,(X, O) (-BX + Vx, O) We
have

AX -,X + (,X)r + (e,X,

BX IBEX, Vgo)(Vgo,-y)
+ IIVoll 2

(RBX, .).

From (23),it follows that A{ and R Bff have the same eigenvalues. Thus,

trA{=0 == trRBff=0.
Also,

AX -rI,X + (r/,X)rl{/ (-(r/,X)r/, ,)

(Hesse X, Vgo)Vgo
(1 + IlVgoll2)3/2

Hesse X )V/I + IlVoll 2’

-1

v/1 + IlVcpll 2
(R Hesse X, ,).
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From (23) and (24), it follows that

trA (n l)/z == -1

x//1 -!-IlVqgll 2
tr R Hesse0 =/z

tr R Hess -1/o,

and this concludes the proof, rl

ProofofTheorem 7. By Lemmas 3.2 and 3.3 of [Ch and our assumptions there
are two possibilities along each connected component of an open dense subset.
Namely, f is either (n 1)-umbilic or is (n 2)-umbilic. Moreover, in both situations
r/is in the direction of the mean curvature vector and trA (n 1)#. Then f is
trivial in the first case and, in the second case, it follows from Theorems 2 and 5 that

f is a rotation submanifold.
We use Proposition 8 to conclude the proof. A straightforward computation of

the mean curvature vector of the profile k yields that condition (20) is equivalent to
equations (21) and (22). [21

We now extend a result in [CY] to arbitrary codimension.

COROLLARY 9. Let f" Mn - n+p, n >_ 4, be a connected submanifold with
constant mean curvature satisfying the basic equality. Then f is either a minimal

submanifold or an open subset ofa riemannian product x nc- C ]n+l.

Proof.
and (24),

Suppose that f is a rotation submanifold over a surface. By assumption

q92(1 + IlVtPll 2) --r > 0 (25)

is constant in Mn. Let {XI, X2} be a local orthonormal frame such that X2(q9 0.
Notice that q9 cannot be constant on an open subset by (21). Taking the derivative of
(25) in direction X2 we get X2X(tp) 0. From XX(o) 0 it follows that

[Xl, X2] E (X2). (26)

Hence, there exists Z E C(L2) so that {XI, X2} are the coordinate fields of a
coordinate system (u, v) and tp tp(u). The derivative of (25) gives

tp" --rtp-3. (27)

On the other hand, a straightforward computation of (21) yields

ti92q9’t + rqg(Vx2Xl, X2) - ro- 0. (28)
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From (27) and (28) we obtain Vx2X 0. We conclude from this and (26) that L2 is
flat. Notice that {X, X2 are coordinates fields for a euclidean system of coordinates.
We have

RX (1 + (9’)2)-1X and RX2 X2.
We easily obtain from this, (22) and the Gauss equation that h is totally geodesic.
On the other hand, we have from (25) that o(u) /r u2, and this concludes the
proof. El

Remark 10. (1) Notice that Theorem 7 and Corollary 9 hold for submanifolds in
the sphere.

(2) For hypersurfaces, the second condition in Proposition 8 is trivially satisfied
since g parametrizes an affine plane.

(3) Theorems 3.1 and 3.2 in [Ch2] and Theorems 3 and 4 in [CY] for n > 4 follow
immediately from our results.
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