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MODEL THEORY OF PROFINITE GROUPS
HAVING THE IWASAWA PROPERTY

ZOl CHATZIDAKIS

Introduction

The notion ofcomplete systems offinite groups first appeared in a paper by Cherlin,
Van den Dries and Macintyre [CDM], where it was used to give invariants for the
theory of regularly closed fields (see also the work of Ergov [E]).

To a profinite group G they associate the complete system S(G), which encodes
the inverse system of all finite (continuous) quotients of G together with the projection
maps. In an appropriate language, the systems S(G) are co-sorted structures and form
an elementary class. The connection with field theory is obtained as follows: for K
a field and G(K) the absolute Galois group of K (i.e., the Galois group of K in its
separable closure), the theory of the system S(G(K)) is interpretable in Th(K), and
is in some sense the strongest such theory.

Besides field theory, complete systems can also be used to study profinite groups.
Their main advantage is that one replaces the study of a group together with its
topology, by the study of a fairly simple algebraic system. An other advantage is that
by dualizing, one works with embeddings of complete systems instead of continuous
epimorphisms of profinite groups.

The profinite groups we are interested in are the profinite groups having the Iwa-
sawa property (IP). This property was first discovered by Iwasawa [I], who used it to
characterize countably generated free profinite groups. This property was then con-
sidered by Cherlin, Van den Dries and Macintyre [CDM], and by Haran and Lubotzky
[HL], among others.

The main result concerning the Iwasawa property given in [CDM], is that Th(S(G))
is bo-categorical when G has the Iwasawa property. It turns out that the types are
easy to describe, and that Th(S(G)) is co-stable. This allows one to use all the existing
stability theoretic machinery in the study of these groups.

Besides characterizations of some model-theoretic properties, the main algebraic
results obtained in this paper are:

THEOREM 2.6. Let H be a profinite group. Then H has a universal IP-cover G,
which is unique up to isomorphism over H.
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The definition of universal IP-covers is analogous to the one of projective covers.
The case when H is finitely generated was obtained by Haran and Lubotzky [HL],
using algebraic methods. The use of Shelah’s theorem on the uniqueness of the prime
model for co-stable theories plays a major part in the proof of Theorem 2.6, and seems
unavoidable, in view of the fact that a universal IP-cover can have proper quotients
which are also universal IP-covers.
We also give a description of saturated models, and derive from it a result originally

Obtained by Mel’nikov [Me l] on free pro-C-groups. This also gives an alternate
description offree pro-C-groups, see Corollary 3.2. From this description one obtains:

THEOREM 3.5. Let (Ki)il be afamily offields withfree absolute Galois groups.
Let lg be an ultrafilter on I and let K I-Iiel Ki /lg. Then G(K) isfree.

For tc an infinite cardinal, we also characterize the profinite groups G having the
following property, which we call to-strong homogeneity: Every isomorphism be-
tween two quotients of G having less than tc open subgroups lifts to an automorphism
of G.

THEOREM 6.4. Suppose that G is x-strongly homogeneous. Let N be a normal
subgroup ofG such that IS(G/N)I < tc and let U be a characteristic subgroup ofN.
Then every automorphism ofGU lifts to an automorphism of G.

This result extends results given by Mel’nikov in [Me2]. The group of automor-

phisms of a strongly homogeneous group has other nice properties; see 6.5. We also
produce an example of a group having the Iwasawa property which is not co-strongly
homogeneous, thus answering by the negative a question posed in [HL].
We conclude this paper with a study of the pro-p-groups having the Iwasawa

property, and show that they are exactly the quotients of free pro-p-groups by charac-
teristic subgroups. The main result (Theorem 7.1) shows that the isomorphism type
of such groups is entirely determined by the set of isomorphism classes of their finite
quotients, and by the size of a minimal set of generators.

From a model-theoretic point of view, the groups with the Iwasawa property pro-
vide an abundant supply of R0-categorical co-stable theories. In [C], we describe the
groups with the Iwasawa property whose theory is non-multidimensional or has the
NDOP.

1. Profinite groups and their complete systems

(1.1) Conventions. Throughout this paper, all subgroups of profinite groups are
closed, all morphisms between profinite groups are continuous epimorphisms, and
all quotients of profinite groups are continuous quotients.
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(1.2) We recall that a profinite group G is a topological group which is compact,
Haussdorff and totally disconnected. The open subgroups of G (which are therefore
of finite index) form a base for the neighbourhoods of 1. Equivalently, a profinite
group is an inverse limit of finite groups. We refer to [Ri] for the properties ofprofinite
groups.

(1.3) Definition of S(G). Let G be a profinite group, and N

___
M open normal

subgroups of G. There is a natural epimorphism rrMN" G/N G/M, and the system
of all finite quotients of G together with the epimorphisms 7rMN is a projective system.
Relative to this system one has

G lim GIN.

Thus G is completely determined by the projective system of its finite quotients,
and conversely. This leads us to the following definition. Let Z3 be the language
{_<, C, P, l}.

To G we associate the E-structure S(G) with universe the set of all cosets gN of
open normal subgroups N of G. The structure on S(G) is defined by:

gN < hM if and only if N c_ M.
l=gG.
P(gIN, g2N2, g3N3) if and only if N1 N2 N3 and gg2N g3N3.
C(gN, hM) if and only if N c__ M and gM hM.

Thus, C encodes the group epimorphisms ZrMN, P the group multiplication on the
finite quotients G/N, and corresponds to the trivial quotient of G.

It is clear that, as given above, the class of the S(G) is not elementary. To make it
into an elementary class, we will transform S(G) into a many-sorted structure. We
first recall briefly the definition of many-sorted languages and structures.

(1.4) Many-sorted languages. A many-sorted language E is specified by a non-
empty set J of sorts, a set of relations (Ri)ilo, a set of constants (i)il and a
set of functions (Fi)ii2. In addition to these symbols, contains infinitely many
variables of each sort; each variable has a sort and variables of distinct sorts are
distinct. Formulas are built in the usual manner, and the classical results (compactness,
completeness hold. See [KK] for more details.

An E-structure is a structure M ((Mj)jj; (Ri)ilo, (ci)il, (Fi)i12) where:

The elements of Mj are of sort j, and Mj is non-empty. Let M Uj6j Mj.
Each Ri is contained in Mk(i) for some integer k(i).
Each ci is an element of sort e(i) for some (i) 6 J, and therefore ci Me,i).
Each Fi is a function" Mj) x x Mj(m) Mj(m+l) for some integer rn and
(m + 1)-tuple (j (1) j (m + 1)) jm+l.
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Many-sorted logic usually requires that Mj N Mk 0 for j - k J. We will
drop this requirement, by noting that a structure M with non-disjoint sorts can be
made into a structure M’ with disjoint sorts by adding to the language binary relations
R(j’k) for each pair (j, k) of distinct elements of J, and using them to identify the
elements of M N Mk.

(1.5) The co-sorted structure S(G). We now view as a many-sorted language
indexed by the positive integers. We assign to the elements of S(G) sorts in the
following manner:

gN is of sort n ==: [G’N]<n.

Note that S(G)n S(G),+ for every n, and that ["] S(G)n }.
We call the w-structure S(G) the complete system associated to G. The theory To

of the systems S(G) is then axiomatized as follows"

(1) < is reflexive and transitive, with a unique largest element, 1.

Let denote the equivalence relation induced by the preorder < (i.e., x y if
and only if x < y and y < x), and let [x denote the "-equivalence class of x.

(2) P

_
I,_J[x] and P [x] defines a group law on Ix] for every x.

(3) C

_
[._Jx<_y[X] x [y], and for every x < y, C q [x] x [y] is the graph of a

group epimorphism Zrxy: [x] [y].
(4) If V is a normal subgroup of [x], there is a unique [y] such that V is the kernel

of 7t’xy.
(5) If x < y < z, then ryz o 7xy 7t’xz; 7xx idt1.
(6) S(G)/"-, is a lattice. (Note that [N]v[M] [NM] and [N]A[M] [NM];

this gives the appropriate bounds on the sorts.)
(7) An element is of sort n if and only if its -equivalence class has at most n

elements.

It is clear that if G is a profinite group then S(G) satisfies these axioms. Conversely,
let S be a model of To. Then S encodes a projective system {[t]; zr t </3 6 S} of
finite groups. Let G(S) be the profinite group defined by this system. Then axioms
(4) and (6) ensure that S S(G(S)). One also has G(S(G)) G. For ct 6 S, denote
by 7r the projection G (S) --+ [ct]; then 7r rr o zr for ot </ 6 S.

Furthermore, let tp: G H be an epimorphism. Then tp induces an embedding
S(tp)" S(H) S(G) defined by S(o)(gN) tp-(gN). Conversely, if S, $2
are models of To and f" S1 $2 is an embedding of E-structures, there is an
epimorphism G(f): G(S2) G(SI) such that SG(f) f. The definition of G(f)
follows from the following observations: the restriction of f to [ct] is an isomorphism
onto [f(ct)] foreveryct 6 Sl; ifc _</ 6 S,thenzraf cf- f-I zr.f().f(/); hence
we have a system {f- zr.f() ot SI} compatible with the system {[c], zrf Iot _<
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/3 S }, which gives a morphism G(f): G(S2) -- G(S); the image of G(S2) being
dense in G(S), G(f) is onto.

Note that if f is an inclusion Sl _c $2 then G(f) is the canonical projection
G(S2) -- G(S2)/N with N ["){Kern: lot S}.
We will often refer to 99 and S(o), or to f and G(f), as dual of each other.

(1.6) Connections with 1-sorted logic. Let * be the language {Sn, nm, cnm,
pn, m, n 6 N>}; we associate to an Z-structure S the/2*-structure S*, with the
same universe as S and where, for a, b, c 6 S we have:

S* Sn(a) == a is of sort n in S
S* a nm b == S* Sn (a) m Sm(b) and S a < b

S* Cm (a, b) == S* S (a) /x Sm (b) and S C(a, b)
S* pn(a, b, c) == S* Sn(a) A Sn(b) m Sn(c) and S P(a, b, c).

To To we associate an *-theory To* in the obvious manner, replacing occurences of
:Ix by :Ix Sn (x)/x where x is of sort n, and similarly for Yx. The structures S* are
then precisely the models of To* which omit the type E(x) {--,S,,(x) n > 0}.
Conversely, a model of To* is of the form S* t3 S’ with S To and S’ the set of
realizations of E(x) (on which there is therefore no structure).

Most of the classical results of 1-sorted logic extend to to-sorted logic. In partic-
ular, all the model-theoretic results involving a "local" behaviour of types, such as
forking and orthogonality, remain unchanged in many-sorted logic; see for example
the treatment of Teq At the "global level", let us note the following differences:

(1) If a many-sorted structure S is small, i.e., has only finitely many elements of
each sort, then it is the unique model of its theory. Thus small structures are
the analogue of finite structures in the l-sorted case.

(2) (Ryll-Nardzewsky Theorem) A many-sorted theory T is N0-categorical if and
only if for every n and n-tuple j j of sorts, there are only finitely many
n-types of sort (jl jn).

(1.7) Substructures. Let A S(G) To. Then A To if andonlyifA satisfies
the following conditions: ot < fl and ot e A imply fl e A; the restriction of < to A
is downward directed. By (1.5), A corresponds to a quotient of G. Since we are only
interested in profinite groups, we will make the following definition:

Definition.
following:

Let S To and A c__ S. A is a substructure of S if A satifies the

(1) For all x and y, if x < y and x 6 A, then y 6 A.
(2) For all x and y in A, there is z in A such that z < x and z < y.
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If A

_
S To, we denote by (A) the smallest substructure of S containing A.

Note that our notion of substructure is different from the usual one; it can be made to
coincide with the usual one by enlarging appropriately the language.

Remark. If A is a finite substructure of S, then A has a minimal element ot for <,
which is unique up to -. Then, as groups, [or and G (A) are isomorphic. Furthermore,
the elements of A are definable from the elements of [or].

(1.8) We conclude this section with some properties of the systems S(G).

Conventions and notation. We use S(G), S(H) to denote models of To, with
associated profinite groups G, H. For u,/ E S(G) and A a substructure of S(G), we
define ot/x/ to be the greatest lower bound of ot and/ satifying P (or/x/3, c//3, ot/x/);
thus c/x/3 is the identity element of [or/x/3]. Similarly, we define ot v/3 to be the
least upper bound of c and/ satisfying P (or v/, ot v/3, c v/3). Finally, we denote
by ot v A the infimum of the (finite) set {or v y Y E A}.

(1.9) LEMMA. Let ot < , y S(G) and assume that v 9/-- 3. Then

(1) Kerr/ Ker7r f-) Ker
(2) Ker zr,v Ker 7r, Kerr.
(3) [/3 A y]

_
[/3] xt, [y] {(a, b) e [#] x [y] r(a) zr(b)}.

(4) (Modular equality)ot v (13/x e) /x (or v e).
(5) (Symmetry)e v (1 /x y) < e v implies y v ( /x e) < y v .
Proof. (1) and (2) are obvious. For (3), by dualizing, it suffices to show that if

N1 and N2 are normal subgroups of a group G, then the morphism

f: G/NI n N2 G/NI x GIN:z,

induced by the canonical projections G/N1 n Ne G/NI and G/N1 nN -- G/N2,
is an isomorphism onto G/N1 XG/N, N2 G/N2. The morphism f is clearly injective
and takes its values in G/N1 X6/N, N2 G/N2. Let (gNu, hN2) G/NI XG/NN G/N2;
there exist n 6 N and n2 E N2 such that nln2 g-h; then gnl hn is our
desired element.

For (4), let NI

___
N2 and N3 be normal subgroups of G. The inclusion NI (N2 n

N3)

___
(NN2) n (NIN3) (= N2 n (NN3)) always holds. For the reverse inclusion,

letg 6 N andh 6 N3 be such that gh N2. Theng-gh N2, and therefore
h E N2 f-) N3.

For (5), let N, N2 and N3 be normal subgroups of a group G such that Nl (N2
N3)NiN2, and letn N2 besuchthatng N2N3 forevery g Nl. Supposethat
for some g N3 we have ng NI n N2. Then g E N20 N3 and (ng)-n N2 n N3,
which is a contradiction. Therefore N3(N n N2)N3N2.

In fact this property holds in all modular lattices.
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1.1 O) The lengthfunction.

Definition. Let ot </3 6 S(G) T, and let A c__ S(G). We define the length of
over/3, L(ot//3), to be the largest integer n such that there exists a chain

O/ ---0/0 < O/1

Thus, L(c//) 0 if and only if ot /3; L (or//3) if and only if ot is an immediate
strict predecessor of/ for < (if and only if Kerzr is a minimal normal subgroup of
[]).

Similarly, we define L(/A) to be L(c/ v (A)). Thus, L(/A) 0 if and only
if or (A).

Note that because of Jordan-H61der Theorem on principal series, L(/) does
not depend on the choice of the sequence or0 Otn. Even though L(ot/) does not
usually coincide with U(/13), the length function shares some of the properties of
ranks. The following is immediate:

LEMMA. Let or, fl, y S(G) with y < . Then L(y A/ A t) < L(y/),
and equality holds iff y v t > .

2. The lwasawa property- universal IP-covers

(2.1) Definitions. Let G be a profinite group.

(1) The image of G, Im(G), is the set of isomorphism classes of finite quotients
of G.

(2) G has the Iwasawa property (from now on abbreviated by IP) if for every
epimorphism 0: B A of finite groups with B Im(G), and for every
epimorphism o: G A, there is an epimorphism p: G -- B such that

=0o.

We will denote by TI p the theory obtained by adjoining to To the following scheme
of axioms: for every epimorphism 0: B A of finite groups, a first-order sentence
expressing for all x, if [x] is isomorphic to A by an isomorphism 99, and if there

exists y such that [y] is isomorphic to B, then there exists y < x and an isomorphism
: [y] B such that tp o Tryx 0 0 f.

Then, S(G) TIp whenever G has IP, and conversely, if S Tip, then G(S)
has IE

(2.2) The next result was proved by Cherlin-Van den Dries-Macintyre in [CDM],
but is to our knowledge unpublished.
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THEOREM. Let G and H be twoprofinite groups having IP. IflS(G)I IS(H)I
and Im(G) Im(H) then G H.

Proof. The proof is a standard back and forth argument between S(G) and S(H).
Fix enumerations (Oln)nEN and (fln)nEr of the elements of S(G) and S(H). The main
step is as follows:

Suppose that we have constructed an isomorphism f between two finite substruc-
tures A and B of S(G) and S(H) respectively, let 6 N be minimal such that O/i A,
and let ot A and fl B be minimal (for <). Then (or) A and (fl) B, and the
restriction of f to [ot] is an isomorphism onto [fl]; let [?,] [or A oti]; by IP, there
exist 6 S(H) and an isomorphism g: [?,] [8] such that

f o zr zr o g.

Since [?’]
_

G((A, 0/i)), g extends uniquely to an isomorphism g’ between (A, Cti)
(?,) and (3). From the definition of g, it follows that g’ extends f.

This theorem has important corollaries, which we will now list.

(2.3) THEOREM [CDM]. Suppose that G has IP. Then"

(1) Th(S(G)) is axiomatized by TI t, together with thefollowing axioms,for every
A Im(G) and B q Im(G): there exists x (of sort IAI) such that [x]

_
A;

for all x, [x] : B.
(2) Th(S(G)) is Ro-categorical.

(2.4) Another application of Theorem 2.2, or rather of its proof, is a characteri-
zation of the types.

THEOREM. Let A be a substructure of S(G) Tip, and let (, S(G). Then:

(1) t(A/O) is determined by the isomorphism type of A.
(2) t(ot/A) t(/A) if and only if or v A v A ?’ and there is an

isomorphism f" [or] -- [3] such that f (or) 13 and rca zr o f
(3) Th(S(G)) is w-stable.

Proof (1) By compactness, it suffices to prove the result for A finite, and we
may assume that S(G) is countable. But this follows immediately from the main step
of Theorem 2.2.

(2) As in (1), we may assume that A is finite and that S(G) is countable. Since
(or/A) (or/(?,)), the existence of such an f is necessary. For the converse, let

A be minimal for <; then G((A, ct)) is isomorphic to [or] xt [], and G((A,/3)) is
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isomorphic to [/3 x I1 3]. There is therefore an isomorphism g between G (3, ct and
G((3, fl)) which lifts the isomorphisms f and idla1. The dual of g is an isomorphism
between (A, c) and (A,/3) which sends ot to/3 and is the identity on A.

(3) We first note that the study of n-types reduces to the study of 1-types: indeed,
let Oln S(G), and let ot ct /x .../ otn. Then ot 6 acl(ot otn) and
ot cn acl(ot).

Suppose that A is a countable subset of S(G). Then the substructure generated by
A is also countable and we may therefore assume that A is a substructure of S(G).
By (2), the type of an element ot 6 S(G) is determined by: c v A IA] many
possibilities; by the isomorphism type of [or] countably many possibilities; and
by the map zrva finitely many possibilities. There are therefore only countably
many types over A.

(2.5) Isolated types.

PROPOSITION. Let S(G) Tit,, let A c_ S(G) and ot S(G). Let ot

and let B be the set of all elements 3 (A) satisfying: there exists an immediate
(strict) predecessor y of such that < y and (//{)) (3/(6)).

Then (a/A) is isolated ifand only if B is finite.

Proof. Suppose that B is finite. Then t(t/(A)) is isolated by t(ct/()) t_J {x :
3 3 6 B}. Since (A) is atomic over A, t(t/A) is isolated.

For the converse, we may assume that S(G) is countable. Let tp(x) be a formula
with parameters in A satisfied by c, let C be the (finite) substructure of (A) generated
by/3 and the parameters of qg. If B is infinite, then there exists 3 6 B \ C, and we have
3 v C =/3. Let f be an automorphism of S(G) which leaves C fixed and sends 3 to
an element , with ot _< ,. Then f- (or) satisfies qg(x), but f- (or) v (A) _< 3 </3.
Hence tp (x) does not isolate (or /A).

(2.6) Definition. Let H be a profinite group. A profinite group G, together with
an epimorphism tp: G -- H, is a universal IP-cover of H if G has IP, and for every
profinite group G’ having IP and epimorphism : G’ H, there is an epimorphism
0: G’ G such that p q9 o 0.
We are going to prove that every profinite group H has a universal IP-cover, which

furthermore is unique up to isomorphism over H. This result was proved by D. Haran
and A. Lubotzky [HL] in the case of a finitely generated profinite group H. Given
H, they show how to compute effectively the image of the universal IP-cover G, and
show that G has the same rank as H. Their method of proof however cannot be
generalized to the infinite rank case.

(2.7) THEOREM. Let H be a profinite group. Then H has a universal IP-cover
G, which is unique up to isomorphism over H.



MODEL THEORY OF PROFINITE GROUPS 79

Proof. We will first determine the theory of S(G). If A Im(H), then A has a
universal IP-cover by results from [HL]. Let F be the set of isomorphism classes of
finite groups B such that B is a homomorphic image of the universal IP-cover of A
for some A Im(H). Let T be the theory

T Tip t.J Diag(S(H)) CI {:Ix [x] A A F} U {x [x] A A F}.

We first claim that T is consistent. Let C be a finite substructure of S(H),
Al An F and B Bm F; choose n S(H) such that Ai is
a homomorphic image of the universal IP-cover of [i] for every i, and let D
(C, 81 n). Then D is finite, and therefore, if E is the universal IP-cover of
G(D), then A1 An Im(E) c_ F and B Bm Im(E). This shows that T
is finitely consistent, and hence consistent. By Theorem 2.4(1), T is also complete.

The proof of the existence and uniqueness of prime models for o-stable theories
generalises easily to the o9-sorted case. Let S(G) be a model of T prime over S(H)
and let zr: G H be the epimorphism dual to the inclusion S(H) c_ S(G). Then
S(G) is unique up to S(H)-isomorphism. We will show that zr: G --> H is the
universal IP-cover of H.

Let S(M) Tip S(H) c_ S(M). Then Im(M) contains F because M has
IP. Let .f" be the set of all substructures A of S(M) containing S(H) and such that
Im(G (A))

_
F. Then .f" is non-empty and is inductive (for the inclusion). It therefore

has a maximal element, which we will call S(G’). Since Im(G’)

_
F, it remains

to show thatS(G’) Te. Letot S(G’), B F and let0: B [or]bean
epimorphism. Because S(M) Tie, there exist/ 6 S(M) and an isomorphism
gr: [/] ---> B such that zr/ 0 o ft. If/ 6 S(G’), we are done. Suppose therefore
that/ S(G’).

Let us first assume that L(l/cr) 1. By the definition of S(G’), there is , 6 S(G’)
such that// ?, F. We may assume , _< c, which gives

Let S(N) T and let or’, /’, ?,’ 6 S(N) be such that the following diagrams
commute for some isomorphisms P0, Pl and P2 (the vertical maps being the canonical
epimorphisms encoded by C):

[/] _% [,] [] _E_> [,]

[c] - [c’] [c] - [c’].

Then/3’ v ,’ _< or’ because fl’ _< ct’ and ?,’ _< ct’. If/3’ v ?,’ c’, then [/3’ A ,’]
[/3/ ,] F, a contradiction. Therefore/3’ v ,’ < ct’, and because/’ is an immediate
predecessor of or’, we obtain/3’ v ?,’ /3’; i.e., ?,’ _< /3’. Let V tp-l(Kerrr,,)
and let be such that V Kerrra. Then 6 S(G’) and for some isomorphism
o" [3]- B rra O o o

For the general case, find a sequence/3 jl /2... n O/ such that
L(i/i+l) for every i, and use the first case to find 6 S(G’) realizing
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t(/(ot)). This shows that S(G’) TIp. Because S(G) is prime over S(H), there
is an embedding f: S(G) S(G’) which is the identity on S(H). By dualizing we
obtain the result.

Remarks. (1) The universal cover of H is in general not minimal; it may have
proper quotients which are also universal IP-covers of H.

(2) Let G and G2 be profinite groups having IP and suppose that Im(G) c_
Im(G2). Let G be a quotient of G2 maximal with the property that Im(G) c_ Im(G).
Then G has IP and Im(G) Im(Gl). This is an immediate consequence of the proof
of the theorem.

3. Saturated models and free profinite groups

(3.1) PROPOSITION. Let S(G) Tt and let tc be an infinite cardinal. Then S(G)
is x-saturated ifand only if, for every < S(G) with L(c/) 1, t(/()) is
realized eitherfinitely many times (i.e., is algebraic), or is realized at least tc times.

Proof The necessity of our condition is obvious. Conversely, suppose that S(G)
satisfies the above condition, and let A be a substructure of S(G) of cardinality < x,
let p be a type over A and let ot be an element (in some large extension of S(G))
realizing p. Let/3 ot x/A. If p is algebraic then p is realized in S(G) because p is
isolated. We may therefore assume that p, and therefore t(ot/()), is not algebraic.
We will first assume that L (or//3) 1. The set of realizations of (or/(/)) has size to,

and is therefore not contained in A. Hence there exists or’ 6 S(G) \ A which realizes
this type. Then or’ v A =/3 because L (or’//3) and or’ A.

For the general case, let c c < O2 < < Ot fl be such that L(oti/Oti+l)
for every and use the first case to realize successively (cn- /A), (cn-2/ (A, cn- ),

t(ot/(a, ot2)).

(3.2) Free profinite groups. Let C be a class of finite groups which is closed
under subgroups, direct products and homomorphic images. A profinite group G is
a pro-C-group if Im(G)

___
C.

Definition. Let X be a set, and F(X) the free discrete group on X. The free
pro-C-group on X, c(X), is defined as

’c(X) lim F(X)/N

where N ranges over all normal subgroups N of F(X) of finite index which contain
all but a finite number of the elements of X and such that F(X)/N C.

Free pro-C-groups have the usual universal properties, see e.g., [Ri], Proposition
7.3. In particular, one immediately obtains:
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THEOREM. Let X be an infinite set. Then S(c(X)) is a saturated model of Tip
ofcardinality IX I,

Proof. Let T be a cofinite subset of X. Then there is a one-to-one correspondence
between the open normal subgroups of c(X) containing T and those of Fc(X \ T),
and therefore Fc(X) has at most b0 open normal subgroups containing T. Hence
IS(Pc(X))l IXl.
When X is countable, rc(X) has IP (e.g., see [Ri], p. 84), and it follows easily

that rc(X) has IP when X is arbitrary. It suffices to show that, given epimorphisms
o" c(X) A and0" B -- A with B C, there are IXI eimorphisms ap" Fc(X)
B such that 0 o ap 99. Fix such an epimorphism P0" Fc(X) B, and let Y be a
finite subset of X such that X \ Y

_
Ker P0. Let c be a non-identity element of Ker 0.

For each x X \ Y define a map fx" X B as follows"

0(Y) ify Y,
fx(Y) c ify=x,

otherwise,

and extend f to a group morphism " c(X) B using the universal property of
c(X). Then 99 0 o p for every x X \ Y. Since IX \ YI IXl, S(Fc(X)) is
saturated.

COROLLARY. A profinite group G is isomorphic to c(X) ifand only if, for every
epimorphism O" B -+ A with B C, for every epimorphism tp: G -- A, there are

XI epimorphisms " G -- B such that tp 0 .
(3.3) Theorem 3.2 has been obtained by Mel’nikov in [Me], using different

techniques. He shows indeed that a profinite group G is isomorphic to Fc(X) if and
only if, for any group epimorphisms 0: B A and tp: G A where B is a pro-C-
group, S(B)I < XI and Ker 0 is finite, there exists p: G B such that 0 ap 99.
When dualized, this property is the exact translation of being IX I-saturated.

He also shows that various pro-C-completions of F(X) are in fact free pro-C-
groups. His main result in that line can be stated as follows:

Let T be a topological space with a distinguished point t, and define

F* (T) lim F(T)/N

where N ranges over all normal subgroups of F(T) of finite index containing and
such that gN fq T is a closed subset of T for every g F(T). Then F*(T) is the free
group on the set of closed equivalence relations on T with finite quotient space.

(3.4) Recall that ultraproducts of w-sorted structures are defined in the following
manner:
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Let I be an index set, Si a family of -structures indexed by I and/g an ultrafilter
on I. Then -Iil Si/l,t is obtained by taking the usual ultraproduct and deleting the
elements of "infinite" sort. As an application of Theorem 3.2 we obtain:

THEOREM. Letlg beanultrafilteron I, andforeveryi I, letGi bethefreepro-
C-group on ri generators (ri some cardinal number). Then G G(l"Iil S(Gi)/)
is afree pro-C-group.

Proof. G is obviously a pro-C-group having IP and with image C. It therefore
suffices to show that S(G) is saturated.

Iffor some positive integer r, the set {i I ri r} isinL/, then S(G)
_

S(lc(r))
and G is therefore free. Suppose therefore that there is no such integer r. Let
[Ct] ([Cti])b S(G), let A 6 C and let 0: A [or] be a group epimorphism.
Because there are only finitely many groups of size I[c]l, we may assume that the
[cti are chosen so that [ot] is naturally isomorphic to [oti for every i. Let us call Pi this
isomorphism, and let ni be the set of all [/3] in S(Gi) such that zrt, Pi o 0 o g for
some isomorphism g: [3] -- A. It then suffices to show that I-I Bi/bll IS(G)I.

First case. 1 ri >_ b0} L/.
We may then assume that ri > 0 for every 6 I. Then S(Gi)I ri Bi] for

every i, and therefore I-I Bi/btl S(G)I.

Second case. {i I ri < b0} b/.
Let s be the rank of B. Using the properties of free pro-C-groups, we have

IBil > 2ri-s

for every such that ri > s. As the set of i’s such that ri >_ s belongs to L/, we may
assume that ri > s for every 6 I. M. Hall proved in [Ha] that, if N(n, r) denotes the
number of subgroups of index n in the free group on r generators, then N(1, r)
and N(n r) n(n)r-I n-I !)r--1’i=1 ((n i) N(i, r). This gives

IS(Gi)nl < n(n!)r’-

for every I and integer n. Let n BI and let a be such that 2a >_ n!. Then
n(2r’-’2’-) >_ n(n!)r- and therefore

2r’-s <_ ]Bil <_ IS(Gi)ln <_ n(IBil2’-)

for every i. Hence

I-I 2ri -s ILl <
i6l

<_ IS(G)nl <_ n2(s-l)a

This shows that Hiel Bi/l/[ is infinite, of cardinality IS(G)n I.
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(3.5) Application tofield theory. For a field K we denote by G(K) the absolute
Galois group of K, i.e., the Galois group of K in its separable closure K..

THEOREM. Let (Ki)iI be afamily offields, the absolute Galois groups ofwhich
arefree. Let H be an ultrafilter on I and K Hi6l Ki /lg. Then G(K) isfree.

Proof. Any finite Galois extension L of K is of the form I-Iit Li/lg where Li is
a Galois extension of Ki of degree [L K] over Ki for a set of i’s in H. It follows
easily from this observation that

S(G(K)) H S(G(Ki))/Lt.

The result follows then by 3.4.

4. Ranks and forking

In this section, we fix a complete extension T of TIp.

(4.1) PROPOSITION.
Then

Let A c__ B be substructures ofS(G) T and let or S(G).

ot,,L,B = ot v B 6 acl(A) == c v B 6 acl(ot v A).
A

Proof. We may assume that A and B are algebraically closed, because ot+acl(A).
A

Let/3 ot v A, ?, ot v B. Then ?, </3. Suppose that ?, </3. Then ?, acl(A),
F 6 acl(ot, A) (because ?’ > c) so that or,L?,, and therefore or,LB. For the converse

A A
of the first implication, note that the type (c/(/3)) tO x v 3 =/3 6 6 B, 3 < /3}
is consistent and complete. Hence it is the unique non-forking extension of (a/A)
to B.

The second equivalence is a direct consequence of the following lemma:

LEMMA. Let y < 3 S(G), let A be a substructure of S(G) and suppose that

3 y v A. Then y acl(A) y acl(3).

Proof. One direction is clear. Suppose therefore that ?’ 6 acl(A). Then t(y/A)
is isolated by some formula, and we may therefore assume that A is finite. Let us
first suppose that L(?,/) 1. If F acl(3), then t(?’/()) is realized infinitely
many times in S(G), and is therefore realized infinitely many times outside of A. But
any such realization satisfies t(F/A) which is a contradiction. Therefore t(?,/(3)) is
algebraic.
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If L(V/3) n > 1, choose ?’ ?’0 < ?’1 < < ?’n 3; by the previous case,

Yi 6 acl(?’i v (A, ’i+)) for every < n. From 9/i v (A, ?’i+l) Yi+l we obtain the
result.

(4.2) THEOREM. Let ot S(G) T, let A c_ S(G)and let n L(ot/(A)).
Choose a sequence cz czo < Ul < < an c v (A). Then U(cr/A) (the U-rank
oft(c/A)) equals the number of indices < n such that ui acl(ci+l).

Proof. Because o/1 Ctn 6 acl (or), we have U (or/A) U (ct, O/1 O/n-l /A).
The fundamental rank equality then gives

U(ot/A) U(ot/A, t Otn-) q- U(I/A, or2 Oln) +""-}- U(oen-l/A).

The result follows from O / (A, cti+) oti+ and U(ci/A, Oti+l) if and only if
O/i acl(A, oti+l).

Remark. Since T is b0-categorical, the U-rank coincides with the Morley rank.
Observe also that U(ot/A) < L(ot/A). They coincide if ot 6 acl(/3) implies/3 < ot

for every t, fl S(G). This is the case for example when T is the theory of the
system associated to a free pro-C-group.

(4.3) We conclude this section by a finer study of forking. We start with an easy
lemma.

LEMMA. Let A c_ B be substructures ofS(G) T, let or, 3 S(G) and suppose
that ot / B < ot v A.

(1) There exists y B such that et < , < et / A and L(,/A) 1.
(2) Suppose that B (A, 13). Then there exists 6 such that < 6 < v A,

L(g/A) and (a, 6) (a, y). If e B, then L(e/a) <_ L(3/A).
(3) If V is a normal subgroup of [or] which intersects trivially KerrGva, and

6 S(G) is such that Kerzr V, then c (c v A)/x 6.

Proof (1) Take any y such that o v B _< y < et v A and L(?’/a v A) 1. Then
y v A ctv A and therefore L(y/A) 1.

(2) By symmetry (see Lemma 1.9), we have/3 v (A, ?,) < /3 v A. Take 6 such
that/3 v (A, y) _< 6 < /3 /A and L(6/I v A) 1; as in (1), L(6/A) I. Using
symmetry, we obtain (A, ?,) (A, 6).

The second assertion follows from Lemma I. 10.
(3) Obvious. Note that this implies that L(g/A) L(ot/A).
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(4.4) Lemma 4.3 allows us to reduce to the following situation:

LEMMA. Let A be a substructure of S(G) T, let ct, , y, 6 S(G) be such
that ot < ot v A y, v A and (A, or) (A, 8). Suppose furthermore that
Kerrr is the unique minimal normal subgroup of [c].

(1) Ifor A for some e A, then ot and e > y.
(2) If6 A e for some e 6 A, then 3 e A y and A S.
(3) If A 6 then A A and Ker is abelian; there is e A with

e A6andL(e/A6) 1,andsuchthate A Ae;Ker
and Kera are abelian, and isomorphic to Kerv; as [V 6]-modules,
Keraea, Kerva and Kervea are isomorphic, and Kereev
acts on them trivially.

Proof. (1) If ot /3 A e then Kerrr N Kerzr (1); since e 6 A, Kerzr is
non-trivial and therefore contains Kerv, which gives e V. Then Kerr must
be trivial, which gives .

(2) From L( e/y e) L( e/A), we deduce that ( A e) v A V A e,
which implies 6 A e.

(3) If A V A 6, then A 5 ; using the modular equality we obtain
v ( A ) A ( v ); hence v A and (A, ) (A, v ); by (1),

v , and therefore and 3 , contradicting our hypothesis and
showing that V .

By Lemma 4.3, there exists e 6 A such that A e fl A V and e 5 V A 6;
we may choose it so that L(e/V 6) 1. By the above we have e < y.
Let ’ A , ’ A y, let U Ker, and let p ,, q .
Then p(U) is a non-trivial normal subgroup of [’] contained in Kerr,va and
therefore p(U) Ker,va; similarly, q(U) Kerea. We identify [ A e] with
[’] xt [e], and from L(e/y A ) L(’/y A ) and ’ e, ’ ’, we
obtain

U n (Kerzr,/ x (1)) U n ((1) x Kerzr/a) (1).

Hence p and q define group isomorphisms from U onto Ker 7r,/ and Ker
furthermore, t A e =/3 A e ct A/.

Let (a, b) 6 U, c 6 Kerrr,,xa. Then (a, b) (t’) (at’,b) U, so that a a;
hence Kerrr,/ is abelian; similarly, Kerzr/ is abelian. Let (c, d) 6 [or A e].
Then (a, b) (t’d) (at, bd), so that p and q are isomorphisms of [?, A 3]-modules.
Furthermore, Ker 7r,A x (1) forms a set of representatives for Ker zr,m modulo U,
and therefore Kerrr,/, and U are isomorphic [y A 6]-modules. From t’ ot A

we obtain KerTr,/
_

Kerrr and Kerzr,xa acts trivially on Kerrr,m
_

U;
similarly, Ker zr,/a

_
Ker7r and Ker 7r/a acts trivially on U, which finishes the

proof.
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5. Rudin-Keisler ordering and orthogonality

We fix a complete theory T extending TI p; all models will be models of T.
In this section we will study the Rudin-Keisler ordering <Rr on types and the

notion of orthogonality. Recall that if p and q are types defined over a model S(G),
p <R/ q if every model containing S(G) and realizing q also realizes p. If p and q
are stationary types defined over a set A, we will say that p <t q if the non-forking
extensions p’ and q’ of p and q to a model of T satify p’ <r q’. Recall that, because
T is R0-categorical, all types defined over an algebraically closed set of parameters
are stationary.

The notion of RK-ordering is closely related to the one of domination, and for
strongly regular types corresponds to non-orthogonality. Let us first start with an
easy observation:

(5.1) PROPOSITION. Let ot, fl S(G) T, and let A, B be substructures of
S(G). Let P(ot/A) denote the set {?’ lot < F’ < ot v acl(A), L(y/acl(A)) 1}.

(1) Then t(ot/A) _L t(t3/B) = Vy E P(ot/A), V3 P(/B), t(y/A) _L

t(8/B).
(2) (?’/acl(A)) is strongly regular and RK-minimal (i.e., minimal non-algebraic

for <let)for every F’ P(ot/A).
(3) Let {q ?’n} be a subset of P(ot/A) which is maximal independent over

A. Then

t(ot/acl(A)) RK t(q/acl(A)) x... x t(yn/acl(A)).

(4) Suppose that A acl(A) B. Then t(ot/A) <gr t(/A) ifand only ifthere
is a map f: P (ot/A) P(/B) which preserves independence over A and
is such that t(?’/A) "Rt: t(f (?’)/A) for every ?’ P(ot/A).

Proof (1) We may assume that A and B are algebraically closed. Observe that,
for any algebraically closed C containing A U B and such that ot v C ot v A and
/ v C =/3 v B we have

(by Lemma 4.3),

which gives the result.
(2) Let tp(x) be the formula isolating t(y/(ot v acl(A))), and let S(H) be any

model containing S(G). If ,’ E S(H) \ S(G) satisfies o, then ?,’ < ,’v S(G) <
ot v acl(A), and therefore ?" v S(G) ot v acl(A). Since ,’ has the same type as
?, over (ot v acl(A)), it follows that ?,’ is a realization of the non-forking extension
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of t(,/acl(A)) to S(G). This shows that t(u/acl(A)) is strongly regular; since it has
U-rank 1, it is RK-minimal.

(3) Without loss ofgenerality, we may suppose that A is a model. Clearly (q/A)
x t(?’n/A) <ICr t(u/A). Let S(H) be a model of T containing ?, ?’n, and let

t’ S(H) realize t(ot/(?q ?’n)). Then or’ v A ot v A and therefore ct’ realizes
t(ot/A).

(4) We may suppose that A is a model ofT. Assume thatt(ot/A) <Rr t(/A), let
S(H) be the prime model over A U/3 and let or’ 6 S(H) be a realization of t(ot/A).
Then t(ot’/A U 1) is isolated because S(H) is prime over A U/3. Let e or’ v (A, 1)
and suppose that e 2 ?’ for some , 6 P (ot’/A). Then ?, v (A,/3) ?’ v A, and
t(,/(?’ v A)) has infinitely many realizations in A. This contradicts the fact that
t(t’/(A,/)) is isolated (Proposition 2.5). Hence e _< , for every , 6 P(ot/A). By
Lemma 4.3, for every ?, 6 P (ot’/A) there exists 3 6 P (/3/A) such that (A, y
(A, ). This gives us the desired map f.

(5.2) The previous result makes it clear that we can restrict our attention to types
of length over an algebraically closed set of parameters. Since RK-minimal types
are RK-equivalent if and only if their non-forking extensions to a model are non-
orthogonal, we will study more in detail the conditions under which two types are
orthogonal. Let us first make a simple observation.

Let A T, or,/3 such that L(/A) L(/A) 1. Then t(/A)

_
t(/A) if

and only if (A, or) contains a realization of (/3/A).

(5.3) Before coming to our main result on orthogonality, we need one more
lemma:

LEMMA. Let A S(G) T be algebraically closed, let or, ?,, S(G) be
such that ot v A , Kerzr is abelian and Ker 7r0 is the centralizer C[ Ker zr,
of Kerzr in [c]. Then there is e < rl e v A such that L(e/A) L(/A),
Ker zr0 CM Ker zro, and (e /A)

_
(or /A).

Proof. Without loss of generality, we may assume that A is a model of T. Let
/3 6 A realize t(c/(),)) and let f: [or] [/3] be a group isomorphism inducing the
identity on [?’].
We identify [or/x/3] with [c] xt [/3] and let p zr, q zr. Define
U {(a, f(a)) a Kerzro}. We claim that U is normal: if (c, d) 6 [or/x/3],

then

(a, f (a)) (’’d) (a t’, f (a)d)
(ap(C), f (a)q(d))
(a p(c), f(ap(C))) U.

(because Ker zr c_ C Kerzr)

Let e < r/be such that Kerzr/ U. From U f3 Ker zr/x (1) we obtain
ot/x/3 fl/x e. Since Kerzr x (1) forms a set of coset representatives for Ker zro
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modulo U, they are isomorphic as [r/]-modules, which gives Ker zr0 CE1Ker zr0
and L(u/,) L(e/O).

Remark. [e] is isomorphic to the semi-direct product Ker rr/ > [0], and the map
o is the natural projection onto [0].

(5.4) Definition. Let ot </3 6 S(G) be such that L(a/) and t acl(/).

(1) We say that (or! (/)) is minimal modular if ot is the identity element of [t]
and satisfies:

(a) If Ker zr is non-abelian then CEI Kerzr (1).
(b) If Kerzr is abelian, then the extension [or] [/3] is split and [/3] acts

faithfully on Ker

(2) Let r/be defined by Ker zr KerrrCt Ker rr. By Lemmas 4.3 and 5.3,
there is a unique minimal modular type defined on (r/) and non-orthogonal
to (or/(/3)). We will call this type the minimal modular type associated to

t(l()).

This reduces the study of non-orthogonality of types to the ones which are minimal
modular. But, in the case of minimal modular types, the result is particularly simple:

THEOREM. Let A c_ S(G) T be a substructure, let or, , y and be such that
L(ot/acl(A)) L(l/acl(A)) and ot v acl(A) V,/3 v acl(A) 3. Suppose
that (or/ (,) and (6/ ()) are minimal modular. Then

t(t/A) _)L t(/A) = t(c/A) t(/A).

Proof The sufficiency is clear. For the other direction, we will first suppose that
A is algebraically closed. By assumption, there is a model S(H) of T containing
A and independent from c,/3 over A such that t(a/S(H)) _a t(/S(H)). Lemma
4.4 and 5.2 allow us to conclude that , and t(ot/(,)) t(/(6)), i.e., that
t(u/a) t(13/a).

Suppose now that A is arbitrary. The extensions of t(ot/A) to acl(A) determine
the non-forking extensions of t(t/A) to any model containing A. Furthermore,
these types are conjugate by a-automorphisms of acl(A). Hence, t(/a) .)L t(/a)
implies that for some A-automorphism f of acl(a), we have f(t(ct/acl(A))
t(/acl(A)). By the above, this implies f(t(u/acl(a)) t(/acl(a)), and therefore
t(ot/a) t(/a).

(5.5) COROLLARY. Let A, B be substructures of S(G) T, let a, y S(G)
be such that ?’ ot v acl(A) and L(ot/,) l; let rl be such that Kerzro
KerzrCtl Ker rr. Then

t(ot/A) _1_ B rl q acl(B).
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Proof. Let t(e/(rl)) be the minimal modular type associated to t(c/(fl)). If
r/ acl(B), then the non-forking extension of t(e/(tl)) to (B, y) is non-orthogonal
to itself, and therefore (a/A) ,f_ B (by transitivity of non-orthogonality of regular
types).

The reverse implication follows from Theorem 5.4.

6. Strongly homogeneous models and automorphisms

We call a model x-strongly homogeneous ifevery partial isomorphism between two
substructures of size < x extends to an automorphism of the model. In [HL], Haran
and Lubotsky asked the following question: let G be a profinite group having IP; is it
true that every isomorphism between two finite quotients ofG lifts to an automorphism
of G? When dualized, this question reduces to the question ofwhether every model of
TIP is w-strongly homogeneous. Note that this is always true for countable models.
In this section we will characterize the strongly homogeneous models, from which
it will follow that the question of Haran and Lubotsky has a negative answer. We
will then study the automorphism group of such models and show some extension
properties. All our results follow from the next proposition.

(6.1) PROPOSITION. Let A c_C_ B, A’ c_C_ B’ be substructures of S(G) and S(H)
respectively, with S(G) =- S(H) TI p. Suppose that B is normal over A (i.e., if
ot B, then the set t(ot/A)s(6) of all realisations oft(or/A) in S(G) is contained in
B), B’ is normal over A’ and that tp: B -- B’ is an isomorphism satisfying:

(a) qg(A) A’.
(b) For every , S(G) such that ot < 13 < ot v A and L(ot/fl) 1, for

every or’, ’ S(H) realizing qg(t(t, /A)), the sets t(ot/(A, ))s() and
t(u’/(A’, ,))s<n) have the same dimension over (A, ) and (A’, ’) respec-
tively.

Then q9 can be extended to an isomorphismfrom S(G) onto S(H).

Proof. We may assume that B and B’ are algebraically closed. By a standard
argument, it suffices to extend tp to a set C U B where C is the set of realizations of
the restriction to A of a type of U-rank over B.

Lett S(G) be maximal (for <) such thatct B, let/3 ctvB. Then
t(ot/(fl)) is notalgebraic, and using the maximality of ot and Lemma 4.3 one obtains
L (or//3) 1, Kerrr is the unique minimal normal subgroup of [or]; this implies that
ot v A =/3 v A, since otherwise we would have ot /3/x (ctv A).

Let C t(c/A)s(a), C’ q)(t(t/A)) s(14), and let (Cz)z<x be a partition of C into
non-empty subsets normal over B and realizing a single l-type over B. For ,k < x,

c C, define fl ot v B and C q)(t(t/B)) s(t4), fl’x q)(fl).
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By assumption, for every ) < # < tc we have

dim(A,&) Cx dim(A,tj,)Cv dim(A,,#,) C.
Assume that we have already extended o from Bx (B, [,.J,<x cu) onto B

it suffices to show that dimB Cx(B’, [,.J,<x C,). To extend tp from Bx+l onto Bx+ l,

dimB; C,. There are two cases to consider:

Case 1. oe can be chosen so that (or/(/5)) is minimal modular.
Then for every/z 76 . we have t(a./(.)) t t(otx/(x)). By regularity and

RK-minimality of t(otx/(/z)), it follows that for any ?’l ?,,. [..J.<x cu which
are independent over B, t(az/(x)) _1_ t(’l ]/n/B). This implies that

dimBx Cx dim(A,/x)Cz dimB[ C.

Case 2. Not case 1.
Then Kerzr,, is abelian. Let t(e/(rl)) and t(ex/(rlx)) be the minimal modular

types associated to (ct/(/)) and (otx/(/5)) respectively.

Claim. dimBCx 1.
Suppose that dimla,>t(ot/(A, ))S(G) > 1, and let or’ t(u/(A, ))s(a be in-

dependent from a over (A,/5). By Lemma 5.3, (or, c’) contains a realization e’ of
t(e/(tl)), and by independence ofo and or’ over (A,/5), e’ 6 (A,/). Hence, because
Ker zro is the unique minimal normal subgroup of [e], e’ v A r/v A. By assump-
tion, the realizations of the non-forking extensions of t(e/(r/)) to (A, r/) are in B, and
therefore e’ B.

Similarly, any element ot of Cx independent from ux over (A, lx) yields a realiza-
tion e, of a non-forking extension of t(ex/(rlz)) to B. Since r/x and r/have the same
type over A, t(e/A) t(e’/A), and therefore ex e B. This gives dimnCx 1.

Since B’ contains tp(t(e’/A)) s(n, we obtain dim,C 1.

Furthermore, since Cx

_
(B, ctx), we have either Bx N Cz 0, or Cx c_ Bz. If

Cx c_ Bx, then 9(otx) realizes 9(t(otx/(/Sx))); since Kerrr# is the unique minimal
normal subgroup of [or], qg(cx) realizes o(t(otx/B)), i.e., ot 6 C. Hence C c_ B.

By symmetry, C c_ B implies Cx c_ Bx, and therefore dimnx Cx dimnC,
which finishes the proof.

(6.2) We will now prove two results which will allow us to verify that structures
we are interested in satisfy the hypotheses of the proposition.

LEMMA. Let A be a small substructure of S(G) and let t S(G). Then (A.
is small.
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Proof. Let fl ot v A; we may suppose that Kerrr is the unique minimal
normal subgroup of [a]. Let ?, (A, a) \ A be of sort n, let 8 , v A and let e A
be maximal such that e < fl A 8 and ot/ e < ?’. If ot/ e ?’ then e is of sort n.
If c A 8 ?c y, then, by Lemma 4.4, Kerrr Kerzry/ and therefore e is of sort
m n l[et][. Thus [(A, ot)n < [Am 1, which gives the result.

COROLLARY. Let A be a substructure of S(G) Tip, and let , 13 S(G) be
such that ot < t3 < ot v A and L (ot/) U (ot/). Suppose that A is small or
that S(G) is [Al+-saturated. Then dimlz,/lt(ot/ (A, ))s() [t(a/ (A,

Proof When t(u/()) has at least IAI+ realizations in S(G), this is clear. When
A is small and t(t/(/3)) has only countably many realizations, observe that a small
substructure of S(G) contains only finitely many realizations of t(t/()) and build
a countably infinite sequence of realizations of (ct/(A,/3)) which are independent
over (A,/3).

(6.3) THEOREM.
are equivalent.

Let S(G) Tip, let x be a cardinal. Thefollowing conditions

(1) S(G) is x-strongly homogeneous.
(2) S(G) is x-saturated, and for every c, with ot < and L(t/) 1, for

every or’, ’ realizing t(, /), It(/())s)l It(’/(’))s)l.

Proof. (1) = (2) is obvious, and (2) := (1) follows from Proposition 6.1 and
Corollary 6.2.

Remarks. (1) By Corollary 6.2, co-strong homogeneity implies the following
stronger property:
If A and A’ are small substructures of S(G) and 99 is an isomorphism between A and
A’, then 99 extends to an automorphism of S(G).

(2) x-strong homogeneity is equivalent to co-strong homogeneity together with
x-saturation.

(3) The proof of 6.1 allows one to give invariants for co-strongly homogeneous
models of a theory T: consider the set of types p(x, y) over the empty set such
that, whenever c,/3 realizes p(x, y) then t(a/(/)) is minimal modular and/3 is the
identity element of [/]. Then each co-strongly homogeneous model of T gives rise to
a function from to the class of infinite cardinals. Conversely, since distinct 2-types
over the empty set give rise’ to orthogonal types, every such function originates from
an co-strongly homogeneous model of T.

(4) The proof of 6.1 shows that if S(G) is co-strongly homogeneous and N is a
normal subgroup of G, then

N is characteristic = S(G/N) is normal over 0.



92 zo CHATZIDAKIS

(6.4) THEOREM. Suppose that S(G) Tip is x-strongly homogeneous, and let
A be a substructure of S(G) ofsize < x. Let N be the closed normal subgroup ofG
kernel of the natural projection G G(A), and let U be a characteristic subgroup
ofN. Then every automorphism ofG/ U lifts to an automorphism of G.

Proof Let B S(G/U); by dualizing it suffices to show that every automor-
phism p of B extends to an automorphism of S(G). Let p be an automorphism of B.
By Proposition 6.1 and Corollary 6.2, it suffices to show that B is normal over A and
tp(A).

Take or, or’ 6 S(G) having the same type over A and assume that ot 6 B. Because
ot and or’ have the same type over A, (A, c) and (A, c’) are isomorphic, and have size
less than x. Let f: (A, or) (A, u’) be an isomorphism which is the identity on
A and sends a to a’. By K-strong homogeneity, f extends to an automorphism g of
S(G). If p denotes the dual of g, then (N) N because g is the identity on A,
and therefore p(U) U. Furthermore, if NI and N2 are the kernels of the canonical
projections zr and zr,, then g(c) t’ implies (N) N2. Since N1 U, we
have N2

_
U and therefore c’ 6 B.

Take or, ct’ realizing the same type over tp(A) and suppose that t 6 B. Consider
the type o-(t(t’/(a, tp(A)))). It is clearly consistent, and since ](A, tp(A)) < x, it
is realized by some element/ 6 S(G). Then ]3 realizes t(q)- (ct)/A), and therefore
/ 6 B since o-1 (ct) 6 B (using the normality of B over A). Also, p(/3) realizes
(c’/A), which implies that a’ 6 B.

Remarks. (1) This result was obtained by Mel’nikov [Me2] for U a characteristic
subgroup of a free pro-C-group.

(2) When x b0, the proof as given does not carry through to the case where A
is small. Indeed, one can construct examples of two small isomorphic substructures
generating a non-small substructure.

(6.5) As another application of Proposition 6.1, we show that substructures of
w-strongly homogeneous models have closed automorphism groups. The motivation
behind this result was a question posed in Kueker-Steitz [KS]. Subsequently, Bous-
caren and Laskowski [BL] showed that the result holds for superstable theories which
are locally modular of finite rank. According to Laskowski, the proof given here
generalizes in a straightforward manner to o-stable b0-categorical theories, using the
machinery developed these past years.

THEOREM. Suppose that S(G) Tip is w-strongly homogeneous. Let A c_
S(G), tp Aut(A) and suppose that every restriction of q9 to a finite subset of A
extends to an automorphism of S(G) sending A onto A. Then tp extends to an
automorphism of S(G).
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Proof. A routine argument (due to D. Macpherson) shows that A may be assumed
algebraically closed: consider the family .T" of all partial isomorphisms ap extending
p such that:

(a) dom p
___

acl(A).
(b) Every restriction of ap to a finite subset of dom gr extends to an automorphism

of S(G) sending A onto A.

Under the natural ordering, this family is non-empty and inductive, and hence has
a maximal element gr. Suppose that dom gr :/: acl(A), and let ct acl(A) \ dom ap.
Let A0 c_ A be finite such that ct e acl(A0), and let/l /n be the realizations of
tp(t(u/Ao)). For every finite subset B of dom gr containing A0, grlB extends to an
automorphism 0 of S(G) sending A onto A, and 0(c) {/ /n}. It follows that
for some i, gr t_J {(or,/i)} must have property (b). This contradicts the maximality
of gr, and therefore dom gr acl(A); since every automorphism of S(G) sending A
onto A sends acl(A) onto acl(A), gr satisfies the hypothesis of the theorem.
We will therefore assume that A acl(A). Let c < / < ot w A be such that

L(/) U(u/) 1, and let or’,/’ realize p(t(ct, /A)). By Proposition 6.1, it
suffices to show that

(,) dimla,llt(t/ (A ))s(6 dimla,t,)t(ot,/ (A, fl,))S(G.
First, suppose that (or/(/)) is minimal modular. If/ A, then L (or/A) and

tp(/) =/’. By assumption, there is an automorphism p of S(G) which sends A to
A and agrees with tp on (/). Then gr(t(a/())s(G) t(a’/(’))sG and gr respects
independence over A. Thus or,/, a’ and/’ satisfy (,).

If/ A, then realizations of (or/(/)) which are independent over (/) remain
independent over (A,/) (by 5.5), and therefore

dimla,/lt(Ot/(/))SG dim///t (ct/(/))s.

Similarly,/’ A implies that dimla,/,lt(t’/(’))sG diml,lt(ot’/(’))stG. By
o9-strong homogeneity, dim//t (ct/ (/)) dim/,>t (or’/ (/’)), which gives (,).

If t(a/()) is not minimal modular, we let t(e/(O)) be the minimal modu-
lar type associated to it. If Kerzr is non-abelian, or if t(a/()) is realized in
(A, ), then dimla,lt (/ (A, ))s dimla,t (e/ (A rl))s; ifKerzr is abelian
and t(ot/()) is not realized in (A,/), then dimla,lt(u/(A,/))sG + dim/a,
t(e/(A, rl))s6. Note that t(u/()) is realized in (A,/) if and only if t(u’/(’))
is realized in (A,/’), because tp(A) A and (or’,/’) realises p(t(c, /A)). Thus,
since

dim(A,#)t(e/(A, r/>) s(G) dim(A,o)t (e/ (A, r/>) s(G) dim(A,o)t(e/(A, ))(A,/),

and dim<a, o> (e/ A, r/) )/a,,> only depends on (//A), the minimal modular case gives
us the result.
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(6.6) DUALIZATION OF THEOREM 6.5. Let G be aprofinite group having theprop-
erty that any isomorphism between two ofitsfinite quotients lifts to an automorphism
of G. Let N be a closed normal subgroup of G and 99 an autornorphism of G/N
having thefollowing property:

If U is an open normal subgroup ofG containing N, and : G/U -- (G/N)/o
(U/N) is the isomorphism induced by qg, then lifts to an automorphism ofG which
sends N onto N.

Then tp can be lifted to an automorphism of G.

(6.7) We end this section with an example of a model of Th(S(/o)) which is
not o-strongly homogeneous. This is part of a more general phenomenon: every
multi-dimensional theo has such models; see [C] for more examples.

Choose any et 6 S(Fo) such for some/3 > et, Kerzr is the unique minimal
normal subgroup of [et] and is non-abelian. Choose/5’ c /3 and et’ 6 S(/,o) re-
alizing t(/3, et/0). By Theorem 5.4, t(et/()) _1_ t(et’/(’)), and therefore there is
a model S(G) of the elementary theory of S(/,o) which realizes Rl times t(et/())
but only countably many times t(et’/(/’)). Then [/] and [/5’] are isomorphic, but no
automorphism of S(G) sends [/3] to [/’].

7. Pro-p-groups and characteristic subgroups

Serre proved that projective pro-p-groups are free, and thus a projective pro-p-
group is completely determined by its number of generators. In this section we prove
an analogous result for pro-p-groups having IP.

(7.1) THEOREM.
categorical.

Let G be a pro-p-group having IP. Then Th(S(G)) is totally

Proof. If G is finitely generated, then S(G) is small and the result holds. Sup-
pose therefore that G is not finitely generated, and let et < /3 and y 6 S(G) be
such that L(et/) and [?’]

_
Z/pZ. Since Kerzr is a minimal normal sub-

group of the finite p-group [et], Kerzr is central and isomorphic to Z/pZ. By 5.3,
It(et/())SG)l It(’/o)SG)l, which implies that S(G) is saturated.

(7.2) THEOREM. Let G and H be two pro-p-groups having IP, H # (1), and let
tp: G -- H be an epimorphism. Then Kero is a characteristic subgroup ofG ifand
only if qg-l (do(H)) dO(G) (dO(G) denotes the Frattini subgroup GP[G, G] of G).

Proof. By duality, we obtain an embedding So: S(H) S(G), and we will
identify S(H) with its image by S0 in S(G), thus viewing tp as the canonical projec-
tion. Then

(dO(H)) dO(G) ==a Vet S(G), ([et] Z/pZ = et S(H)).
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Suppose first that Ker 99 is a characteristic subgroup. Since H is non-trivial, there is
ot S(H) such that [or] Z/pZ. By Remark 6.3 (4), S(G) contains all realisations
of t(a/O), which gives the result.

Suppose now that 99
-2 ((H)) (G). We will show that S(H) is normal over 0.

Let ot 6 S(H), or’ S(G) such that [or]
_

[or’], and suppose that we have proved the
result for the types of elements which are > or. Let fl > c be such that L(a/) 1,
and let/3’ be such that t(ot, fl/O) t(a’, fl’/O). By induction hypothesis,/3’ 6 S(H);
since S(H) Tie, there is a realization or" 6 S(H) of t(ot’/(’)). By the proof of
Lemma 5.3, there is e such that or"/x e c’/x or" and [e]

_
Z/pZ. By hypothesis

e 6 S(H), which implies that or’ 6 S(H).

COROLLARY. Let G be a pro-p-group having IP. Then H is isomorphic to the
quotient ofa free group by a characteristic subgroup.

Proof. Since G! (G) is isomorphic to a product of copies of Z!pZ, there exists
a free pro-p-group F together with an epimorphism 99: F G/(G) with kernel

(F). From the universal properties of F, 99 can be lifted to an epimorphism : F
G. By the above, Ker p is characteristic.

This result provides a partial converse to a result of Haran and Lubotzky: they
proved in [HL] that the quotient of a profinite group having IP by a characteristic
subgroup has IP.

The fact that G is a pro-p-group plays an important role in the proof of Corollary
7.2. For a generalization to a non pro-p-group G, one needs to assume that S(G) is
saturated and that ot 6 acl(fl) implies/3 < ot for every or,/3 6 S(G).
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