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MODEL THEORY OF PROFINITE GROUPS
HAVING THE IWASAWA PROPERTY'

Z0OE CHATZIDAKIS

Introduction

The notion of complete systems of finite groups first appeared in a paper by Cherlin,
Van den Dries and Macintyre [CDM], where it was used to give invariants for the
theory of regularly closed fields (see also the work of Er§ov [E]).

To a profinite group G they associate the complete system S(G), which encodes
the inverse system of all finite (continuous) quotients of G together with the projection
maps. In an appropriate language, the systems S(G) are w-sorted structures and form
an elementary class. The connection with field theory is obtained as follows: for K
a field and G(K) the absolute Galois group of K (i.e., the Galois group of K in its
separable closure), the theory of the system S(G(K)) is interpretable in Th(K), and
is in some sense the strongest such theory.

Besides field theory, complete systems can also be used to study profinite groups.
Their main advantage is that one replaces the study of a group together with its
topology, by the study of a fairly simple algebraic system. An other advantage is that
by dualizing, one works with embeddings of complete systems instead of continuous
epimorphisms of profinite groups.

The profinite groups we are interested in are the profinite groups having the Iwa-
sawa property (IP). This property was first discovered by Iwasawa [I], who used it to
characterize countably generated free profinite groups. This property was then con-
sidered by Cherlin, Van den Dries and Macintyre [CDM], and by Haran and Lubotzky
[HL], among others.

The main result concerning the Iwasawa property given in [CDM], is that Th(S(G))
is Np-categorical when G has the Iwasawa property. It turns out that the types are
easy to describe, and that Th(S(G)) is w-stable. This allows one to use all the existing
stability theoretic machinery in the study of these groups.

Besides characterizations of some model-theoretic properties, the main algebraic
results obtained in this paper are:

THEOREM 2.6. Let H be a profinite group. Then H has a universal IP-cover G,
which is unique up to isomorphism over H.

Received January 16, 1997.
1991 Mathematics Subject Classification. Primary 03C60, 20E18; Secondary 03C45.
'Most of this work is part of the author’s Ph. D. thesis, Yale University, 1984.

© 1998 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

70



MODEL THEORY OF PROFINITE GROUPS 71

The definition of universal IP-covers is analogous to the one of projective covers.
The case when H is finitely generated was obtained by Haran and Lubotzky [HL],
using algebraic methods. The use of Shelah’s theorem on the uniqueness of the prime
model for w-stable theories plays a major part in the proof of Theorem 2.6, and seems
unavoidable, in view of the fact that a universal IP-cover can have proper quotients
which are also universal IP-covers.

We also give a description of saturated models, and derive from it a result originally
obtained by Mel’nikov [Mel] on free pro-C-groups. This also gives an alternate
description of free pro-C-groups, see Corollary 3.2. From this description one obtains:

THEOREM 3.5. Let (K;)ic; be a family of fields with free absolute Galois groups.
Let U be an ultrafilter on I and let K = [];.; Ki/U. Then G(K) is free.

For « an infinite cardinal, we also characterize the profinite groups G having the
following property, which we call k-strong homogeneity: Every isomorphism be-
tween two quotients of G having less than k open subgroups lifts to an automorphism
of G.

THEOREM 6.4. Suppose that G is k-strongly homogeneous. Let N be a normal
subgroup of G such that |S(G/N)| < k and let U be a characteristic subgroup of N.
Then every automorphism of G/ U lifts to an automorphism of G.

This result extends results given by Mel’nikov in [Me2]. The group of automor-
phisms of a strongly homogeneous group has other nice properties; see 6.5. We also
produce an example of a group having the Iwasawa property which is not w-strongly
homogeneous, thus answering by the negative a question posed in [HL].

We conclude this paper with a study of the pro-p-groups having the Iwasawa
property, and show that they are exactly the quotients of free pro- p-groups by charac-
teristic subgroups. The main result (Theorem 7.1) shows that the isomorphism type
of such groups is entirely determined by the set of isomorphism classes of their finite
quotients, and by the size of a minimal set of generators.

From a model-theoretic point of view, the groups with the Iwasawa property pro-
vide an abundant supply of R¢-categorical w-stable theories. In [C], we describe the
groups with the Iwasawa property whose theory is non-multidimensional or has the
NDOP.

1. Profinite groups and their complete systems

(1.1) Conventions. Throughout this paper, all subgroups of profinite groups are
closed, all morphisms between profinite groups are continuous epimorphisms, and
all quotients of profinite groups are continuous quotients.
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(1.2) 'We recall that a profinite group G is a topological group which is compact,
Haussdorff and totally disconnected. The open subgroups of G (which are therefore
of finite index) form a base for the neighbourhoods of 1. Equivalently, a profinite
group is an inverse limit of finite groups. We refer to [Ri] for the properties of profinite
groups.

(1.3) Definition of S(G). Let G be a profinite group, and N € M open normal
subgroups of G. There is a natural epimorphism 7wy y: G/N — G/M, and the system
of all finite quotients of G together with the epimorphisms 77 is a projective system.
Relative to this system one has

G =1im G/N.
(—-

Thus G is completely determined by the projective system of its finite quotients,
and conversely. This leads us to the following definition. Let £ be the language
{<,C, P, 1}.

To G we associate the L£-structure S(G) with universe the set of all cosets gV of
open normal subgroups N of G. The structure on S(G) is defined by:

gN <hM ifandonlyif N C M.

1 =gG.

P(g1Ny, g2N,, g3N3) if and only if Ny = N, = N3 and g182N) = g3Ns.
C(gN,hM) ifandonly if N C M and gM = hM.

Thus, C encodes the group epimorphisms 7y, P the group multiplication on the
finite quotients G/ N, and 1 corresponds to the trivial quotient of G.

It is clear that, as given above, the class of the S(G) is not elementary. To make it
into an elementary class, we will transform S(G) into a many-sorted structure. We
first recall briefly the definition of many-sorted languages and structures.

(1.4) Many-sorted languages. A many-sorted language L is specified by a non-
empty set J of sorts, a set of relations (R;);cs,, @ set of constants (¢;)ie;, and a
set of functions (F;);es,- In addition to these symbols, £ contains infinitely many
variables of each sort; each variable has a sort and variables of distinct sorts are
distinct. Formulas are built in the usual manner, and the classical results (compactness,
completeness, ... ) hold. See [KK] for more details.

An L-structure is a structure M = ((M;)jcys; (Ri)icty» (¢i)ien,» (Fi)ier,) where:

The elements of M; are of sort j, and M; is non-empty. Let M = |J;.; M;.
Each R; is contained in M* for some integer k(i).

Each ¢; is an element of sort £(i) for some £(i) € J, and therefore ¢; € M.
Each F; is a function : My X - -+ X Mj(m) = Mj(ny1) for some integer m and
(m + 1)-tuple (G (1), ..., j(m+ 1)) € JmH!,
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Many-sorted logic usually requires that M; N M, = @ for j # k € J. We will
drop this requirement, by noting that a structure M with non-disjoint sorts can be
made into a structure M’ with disjoint sorts by adding to the language binary relations
RY-k) for each pair (j, k) of distinct elements of J, and using them to identify the
elements of M; N M.

(1.5) The w-sorted structure S(G). We now view L as a many-sorted language
indexed by the positive integers. We assign to the elements of S(G) sorts in the
following manner:

gNisofsortn <= [G: N]<n.
Note that S(G), € S(G),+1 for every n, and that () S(G), = {1}.

We call the w-structure S(G) the complete system associated to G. The theory Ty
of the systems S(G) is then axiomatized as follows:

(1) <isreflexive and transitive, with a unique largest element, 1.

Let ~ denote the equivalence relation induced by the preorder < (i.e., x ~ y if
and only if x < y and y < x), and let [x] denote the ~-equivalence class of x.

(2) P < UIx]? and P N [x]? defines a group law on [x] for every x.

3) C c sty[x] x [y], and for every x < y, C N [x] x [y] is the graph of a
group epimorphism m,,: [x] — [y].

(4) If V is a normal subgroup of [x], there is a unique [y] such that V is the kernel
of 7yy.

(5) If x <y <z, thenmy, o myy = Myy; Mux = id|y.

(6) S(G)/~isalattice. (Notethat[N]V[M] = [NM]and [N]IA[M] = [NNM];
this gives the appropriate bounds on the sorts.)

(7) An element is of sort n if and only if its ~-equivalence class has at most n
elements.

Itisclear thatif G is a profinite group then S(G) satisfies these axioms. Conversely,
let S be amodel of Tp. Then S encodes a projective system {[a]; mqp | @ < B € S} of
finite groups. Let G(S) be the profinite group defined by this system. Then axioms
(4) and (6) ensure that S = S(G(S)). One also has G(S(G)) = G. Fora € S, denote
by 7, the projection G(S) — [«]; then g = mep o, fora < B € S.

Furthermore, let ¢: G — H be an epimorphism. Then ¢ induces an embedding
S(p): S(H) — S(G) defined by S(¢)(gN) = ¢~ '(gN). Conversely, if S, S,
are models of Ty and f: S; — S, is an embedding of L-structures, there is an
epimorphism G(f): G(S2) — G(S)) such that SG(f) = f. The definition of G(f)
follows from the following observations: the restriction of f to [a] is an isomorphism
onto [ f(a)] foreverya € Sy;ifa < B € Sy, thenmggo f~' = f~1oms(a)r(p); hence
we have a system {f~! o Tr@) | o € Si} compatible with the system {[at], mep | @ <
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B € S1}, which gives a morphism G (f): G(S;) = G(S)); the image of G(S,) being
dense in G(S), G(f) is onto.
Note that if f is an inclusion §; € S, then G(f) is the canonical projection

G(52) = G(S52)/N with N = ({Kerm, | a € S1}.
We will often refer to ¢ and S(¢), orto f and G(f), as dual of each other.

P", 1| m,n € N>%); we associate to an L-structure S the £*-structure S*, with the
same universe as S and where, for a, b, ¢ € S we have:

(1.6) Connections with 1-sorted logic. Let L* be the language {S,, <"", C"",

S* k= S,(a) < aisofsortnin$
S*Ea<™b & Sk S, @) ASe(b)andS=a<b
S*E=C"(a,b) < S*E=S.,(a)ASp(b)and S = C(a,b)
S* k= P'(a,b,c) & S*ES,(a)AS,(b)AS,(c)and S = P(a,b,c).

To Ty we associate an L*-theory T in the obvious manner, replacing occurences of
Ix by Ix S,(x)A where x is of sort n, and similarly for Vx. The structures $* are
then precisely the models of T which omit the type X(x) = {=§,(x) | n > 0}.
Conversely, a model of T is of the form §* U S’ with § = T, and S’ the set of
realizations of X (x) (on which there is therefore no structure).

Most of the classical results of 1-sorted logic extend to w-sorted logic. In partic-
ular, all the model-theoretic results involving a “local” behaviour of types, such as
forking and orthogonality, remain unchanged in many-sorted logic; see for example
the treatment of 7¢7. At the “global level”, let us note the following differences:

(1) If a many-sorted structure S is small, i.e., has only finitely many elements of
each sort, then it is the unique model of its theory. Thus small structures are
the analogue of finite structures in the 1-sorted case.

(2) (Ryll-Nardzewsky Theorem) A many-sorted theory T is Ry-categorical if and
only if for every n and n-tuple jj, ..., j, of sorts, there are only finitely many
n-types of sort (ji, ..., ju).

(1.7) Substructures. Let A C S(G) = Tp. Then A = Ty if and only if A satisfies
the following conditions: ¢ < B and @ € A imply B € A; the restriction of < to A
is downward directed. By (1.5), A corresponds to a quotient of G. Since we are only
interested in profinite groups, we will make the following definition:

Definition. Let S = Toand A € S. A is a substructure of S if A satifies the
following:

(1) Forallxand y,ifx <yandx € A,theny € A.
(2) Forall x and y in A, thereis zin Asuchthatz <xandz < y.
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If A C S k& Ty, we denote by (A) the smallest substructure of S containing A.
Note that our notion of substructure is different from the usual one; it can be made to
coincide with the usual one by enlarging appropriately the language.

Remark. 1If A is a finite substructure of S, then A has a minimal element « for <,
which is unique up to ~. Then, as groups, [«] and G (A) are isomorphic. Furthermore,
the elements of A are definable from the elements of [«].

(1.8) We conclude this section with some properties of the systems S(G).

Conventions and notation. We use S(G), S(H) to denote models of Ty, with
associated profinite groups G, H. For «, 8 € S(G) and A a substructure of S(G), we
define a A B to be the greatest lower bound of « and B satifying P(¢ AB, 2 A B, ¢ A B);
thus @ A B is the identity element of [@ A B]. Similarly, we define o Vv B to be the
least upper bound of « and 8 satisfying P(« V B, Vv B8, « Vv B). Finally, we denote
by & Vv A the infimum of the (finite) set {&@ vV y | y € A}.

(1.9)LEMMA. Leta < B,y € S(G) and assume that BV y = 8. Then

(1) Kermggn, = Kermgg N Kermy,.

(2) Kermypy, = Kermyg Kermy,.

3) [BAY] = [B] x5 [y] = ((@.b) € [B] x [¥] | wps(@) = mys(B)).
(4) (Modular equality) x vV (B Ae) = B A (a Ve).

(5) (Symmetry)e Vv (BAYy) <eV Bimpliesy vV (BAg) <y VB

Proof. (1) and (2) are obvious. For (3), by dualizing, it suffices to show that if
N; and N; are normal subgroups of a group G, then the morphism

f: G/N, NNy — G/N; x G/ N,

induced by the canonical projections G/NNN, — G/Nyand G/N|NN, — G/N,,
is an isomorphism onto G/N| Xg/n,n, G/N>. The morphism f is clearly injective
and takes its values in G/N| xg/n,n, G/Na. Let (gNy, AN2) € G/Ni Xgn,n, G/ Na;
there exist n; € N, and n, € N, such that nyn, = g~ 'h; then gn; = hnz‘l is our
desired element.

For (4), let N; € N, and N3 be normal subgroups of G. The inclusion N;(N; N
N3) € (N1 N3) N (N1 N3) (= Ny N (N N3)) always holds. For the reverse inclusion,
let g € Ny and h € N; be such that gh € N,. Then g~'gh € N,, and therefore
h € N N Ns.

For (5), let Nj, N, and N3 be normal subgroups of a group G such that Ny (N, N
N3)& NN, and letn € N, besuchthatng ¢ N,N N3 forevery g € N;. Suppose that
for some g € N3 we haveng € NyNN,. Theng € NoN N3 and (ng)~'n € NN N3,
which is a contradiction. Therefore N3(Ny N N2)G N3Ny

In fact this property holds in all modular lattices.
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(1.10) The length function.

Definition. Leta < B € S(G) =T, andlet A C S(G). We define the length of
o over B, L(a/B), to be the largest integer n such that there exists a chain

= <o <---<aq, =8

Thus, L(a/B8) = 0ifand only if ¢ ~ B; L(«/B) = 1 if and only if « is an immediate
strict predecessor of 8 for < (if and only if Ker .4 is a minimal normal subgroup of
[e]).

Similarly, we define L(a/A) tobe L(a/a Vv (A)). Thus, L(a/A) = 0 if and only
ifa € (A).

Note that because of Jordan-Holder Theorem on principal series, L(«/B) does
not depend on the choice of the sequence «y, . . ., o,. Even though L(c/8) does not
usually coincide with U («/8), the length function shares some of the properties of
ranks. The following is immediate:

LEMMA. Leto, B,y € S(G) withy < B. Then L(y ANa/B Aa) < L(y/B),
and equality holds iff y vV a > B.

2. The Iwasawa property — universal IP-covers
(2.1) Definitions. Let G be a profinite group.

(1) The image of G, Im(G), is the set of isomorphism classes of finite quotients
of G.

(2) G has the Iwasawa property (from now on abbreviated by IP) if for every
epimorphism 6: B — A of finite groups with B € Im(G), and for every
epimorphism ¢: G — A, there is an epimorphism ¥: G — B such that
p=001.

We will denote by T; p the theory obtained by adjoining to Ty the following scheme
of axioms: for every epimorphism 6: B — A of finite groups, a first-order sentence
expressing for all x, if [x] is isomorphic to A by an isomorphism ¢, and if there

exists y such that [y] is isomorphic to B, then there exists y < x and an isomorphism
Y¥: [yl = Bsuchthatpom,, =0 o.

Then, S(G) = T;p whenever G has IP, and conversely, if S = T;p, then G(S)
has IP.

(2.2) The nextresult was proved by Cherlin-Van den Dries-Macintyre in [CDM],
but is to our knowledge unpublished.
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THEOREM. Let G and H be two profinite groups having IP. If|S(G)| = |S(H)| =
Ro and Im(G) = Im(H) then G ~ H.

Proof. The proof is a standard back and forth argument between S(G) and S(H).

Fix enumerations (&,),en and (B,)nen of the elements of S(G) and S(H). The main
step is as follows:

Suppose that we have constructed an isomorphism f between two finite substruc-
tures A and B of S(G) and S(H) respectively, leti € N be minimal such thato; ¢ A,
and let @ € A and 8 € B be minimal (for <). Then (¢) = A and (8) = B, and the
restriction of f to [«] is an isomorphism onto [B]; let [y] = [ A «;]; by IP, there
exist § € S(H) and an isomorphism g: [y] — [8] such that

foﬂya=ﬂ3ﬂ0g.

Since [y] >~ G({A, o;)), g extends uniquely to an isomorphism g’ between (A, ¢;) =
(y) and (8). From the definition of g, it follows that g’ extends f.

This theorem has important corollaries, which we will now list.

(2.3) THEOREM [CDM]. Suppose that G has IP. Then:

(1) Th(S(G)) is axiomatized by T p together with the following axioms, for every
A € Im(G) and B ¢ Im(G): there exists x (of sort |Al|) such that [x] =~ A;
forall x,[x] # B.

(2) Th(S(G)) is Ry-categorical.

(2.4) Another application of Theorem 2.2, or rather of its proof, is a characteri-
zation of the types.

THEOREM. Let A be a substructure of S(G) = T;p, and let o, B € S(G). Then:

(1) t(A/D) is determined by the isomorphism type of A.

) t(@/A) = t(B/A) ifand only if a vV A = BV A = y and there is an
isomorphism f: [a] — [B] such that f(a) = B and 7oy, = 7, 0 f.

(3) Th(S(G)) is w-stable.

Proof. (1) By compactness, it suffices to prove the result for A finite, and we
may assume that S(G) is countable. But this follows immediately from the main step
of Theorem 2.2.

(2) As in (1), we may assume that A is finite and that S(G) is countable. Since
t(a/A) F t(x/({y)), the existence of such an f is necessary. For the converse, let
8 € Abeminimal for <;then G({A, «)) isisomorphic to [a] x{,;[8], and G((A, B)) is
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isomorphic to [8]x,[8]. There is therefore an isomorphism g between G ({8, «)) and
G ({8, B)) which lifts the isomorphisms f and id(s;. The dual of g is an isomorphism
between (A, ) and (A, B) which sends « to 8 and is the identity on A.

(3) We first note that the study of n-types reduces to the study of 1-types: indeed,
let @q,...,0, € S(G),and leta® = a; A ... Aa,. Then o € acl(ay, ..., a,) and
oy, ..., o, € acl(a).

Suppose that A is a countable subset of S(G). Then the substructure generated by
A is also countable and we may therefore assume that A is a substructure of S(G).
By (2), the type of an element ¢ € S(G) is determined by: o vV A — |A| many
possibilities; by the isomorphism type of [¢] — countably many possibilities; and
by the map 7444 — finitely many possibilities. There are therefore only countably
many types over A.

(2.5) Isolated types.

PROPOSITION. Let S(G) = Tp,let AC S(G)and o € S(G). Let B =a Vv (A)
and let B be the set of all elements § € (A) satisfying: there exists an immediate
(strict) predecessor y of B such thata < y and t(y /{B)) = t(6/(B)).

Then t(cc/ A) is isolated if and only if B is finite.

Proof. Suppose that B is finite. Then (a/({A)) is isolated by #(a/(B)) U {x £
8 | 8 € B}. Since (A) is atomic over A, t(«/A) is isolated.

For the converse, we may assume that S(G) is countable. Let ¢(x) be a formula
with parameters in A satisfied by «, let C be the (finite) substructure of (A) generated
by B and the parameters of ¢. If B is infinite, then there exists § € B\ C, and we have
8 v C = B. Let f be an automorphism of S(G) which leaves C fixed and sends § to
an element y with @ < y. Then f~!(«) satisfies ¢(x), but f~! (@) v (4) < 8§ < B.
Hence ¢(x) does not isolate ¢ (c/A).

(2.6) Definition. Let H be a profinite group. A profinite group G, together with
an epimorphism ¢: G — H, is a universal IP-cover of H if G has IP, and for every
profinite group G’ having IP and epimorphism y: G’ — H, there is an epimorphism
0: G’ — G suchthaty = ¢ 0 6.

We are going to prove that every profinite group H has a universal IP-cover, which
furthermore is unique up to isomorphism over H. This result was proved by D. Haran
and A. Lubotzky [HL] in the case of a finitely generated profinite group H. Given
H, they show how to compute effectively the image of the universal IP-cover G, and
show that G has the same rank as H. Their method of proof however cannot be
generalized to the infinite rank case.

(2.7) THEOREM. Let H be a profinite group. Then H has a universal IP-cover
G, which is unique up to isomorphism over H.
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Proof. We will first determine the theory of S(G). If A € Im(H), then A has a
universal IP-cover by results from [HL]. Let I" be the set of isomorphism classes of
finite groups B such that B is a homomorphic image of the universal IP-cover of A
for some A € Im(H). Let T be the theory

T=TpUDiag(S(H)U{Ix[x] A |AeT}U{Vx[x]2A|A¢T}.

We first claim that T is consistent. Let C be a finite substructure of S(H),
Ay,...,A, e T and By,..., B, ¢ I'; choose §,,...,68, € S(H) such that A; is
a homomorphic image of the universal IP-cover of [§;] for every i, and let D =
(C,81,...,8,). Then D is finite, and therefore, if E is the universal IP-cover of
G(D),then Ay, ..., A, €eIm(E) C T and By, ..., B, ¢ Im(E). This shows that T
is finitely consistent, and hence consistent. By Theorem 2.4(1), T is also complete.

The proof of the existence and uniqueness of prime models for w-stable theories
generalises easily to the w-sorted case. Let S(G) be a model of T prime over S(H)
and let m: G — H be the epimorphism dual to the inclusion S(H) € S(G). Then
S(G) is unique up to S(H)-isomorphism. We will show that 7: G — H is the
universal IP-cover of H.

Let S(M) &= T;p, S(H) € S(M). Then Im(M) contains I" because M has
IP. Let F be the set of all substructures A of S(M) containing S(H) and such that
Im(G(A)) C I'. Then F is non-empty and is inductive (for the inclusion). It therefore
has a maximal element, which we will call S(G’). Since Im(G’) C T, it remains
to show that S(G) = T;p. Leta € S(G'), B € I'" and let 6: B — [«] be an
epimorphism. Because S(M) = T;p, there exist 8 € S(M) and an isomorphism
¥ [B]1 = B such that mg, = 6 o y. If B € S(G'), we are done. Suppose therefore
that 8 ¢ S(G').

Let us first assume that L(8/«) = 1. By the definition of S(G), thereis y € S(G’)
such that 8 A y ¢ I'. We may assume y < «, which gives BV y ~ a.

Let S(N) = T and let o/, B’, ¥y’ € S(N) be such that the following diagrams
commute for some isomorphisms ¢y, ¢ and ¢, (the vertical maps being the canonical
epimorphisms encoded by C):

Bl 2 (81 yl 5 [y
| | | |
]l & [« ] 2 [l

Then B/'VvVy’ <a'because B’ <a’andy’ <o’. If B’ vy’ ~ o', then [ Ay'] =
[BAy] ¢ T, acontradiction. Therefore 8’V y’ < o', and because g’ is an immediate
predecessor of o/, we obtain 8’ vy’ ~ f;ie.,y’ < B. Let V = ¢; ' (Kerm, )
and let § be such that V = Kerm,s. Then § € S(G’) and for some isomorphism
¢: [8] &> B, w5 =0 0.

For the general case, find a sequence B = f; < f2... < B, = « such that
L(Bi/Bi+1) = 1 for every i, and use the first case to find § € S(G’) realizing
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t(B/{a)). This shows that S(G") = T;p. Because S(G) is prime over S(H), there
is an embedding f: S(G) — S(G’) which is the identity on S(H). By dualizing we
obtain the result.

Remarks. (1) The universal cover of H is in general not minimal; it may have
proper quotients which are also universal IP-covers of H.

(2) Let G| and G, be profinite groups having IP and suppose that Im(G;) <
Im(G,). Let G be a quotient of G, maximal with the property that Im(G) € Im(G)).
Then G has IP and Im(G) = Im(G/). This is an immediate consequence of the proof
of the theorem.

3. Saturated models and free profinite groups

(3.1) PROPOSITION. Let S(G) = T, p and let k be an infinite cardinal. Then S(G)
is k-saturated if and only if, for every a < B € S(G) with L(a/B) = 1, t(a/(B)) is
realized either finitely many times (i.e., is algebraic), or is realized at least k times.

Proof. The necessity of our condition is obvious. Conversely, suppose that S(G)
satisfies the above condition, and let A be a substructure of S(G) of cardinality < «,
let p be a type over A and let « be an element (in some large extension of S(G))
realizing p. Let 8 = a Vv A. If p is algebraic then p is realized in S(G) because p is
isolated. We may therefore assume that p, and therefore ¢ («/(B)), is not algebraic.
We will first assume that L(ct/B) = 1. The set of realizations of z («/(B8)) has size «,
and is therefore not contained in A. Hence there exists &’ € S(G) \ A which realizes
this type. Then o’ vV A = B because L(a’/B) = l and o’ ¢ A.

For the general case, letae = o) <@y < ... < o, = Bbesuchthat L(«;/ojt1) =
1 forevery i and use the first case to realize successively t (otn—1/A), t (@n—2/(A, 0tn_1)),
o Ha/(A ar)).

(3.2) Free profinite groups. Let C be a class of finite groups which is closed
under subgroups, direct products and homomorphic images. A profinite group G is
a pro-C-group if Im(G) C C.

Definition. Let X be a set, and F(X) the free discrete group on X. The free
pro-C-group on X, F¢(X), is defined as
Fe(X) =lim F(X)/N

where N ranges over all normal subgroups N of F(X) of finite index which contain
all but a finite number of the elements of X and such that F(X)/N € C.

Free pro-C-groups have the usual universal properties, see e.g., [Ril, Proposition
7.3. In particular, one immediately obtains:
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THEOREM. Let X be an infinite set. Then S (ﬁ'c(X )) is a saturated model of Ty p
of cardinality | X|.

Proof. LetT beacofinite subset of X. Then there is a one-to-one correspondence
between the open normal subgroups of I:"C(X ) containing 7" and those of FC(X \T),
and therefore Fc(X) has at most Ro open normal subgroups containing 7. Hence
IS(Fe(X)| = |X].

When X is countable, Fc (X) has IP (e.g., see [Ri], p. 84), and it follows easily
that Fc (X) has IP when X is arbitrary. It suffices to show that, given epimorphisms
@: Fe(X) > Aand@: B — AwithB e C, there are | X | epimorphisms y: Fe(X) >
B such that 6 o ¥ = ¢. Fix such an epimorphism y: Fc (X) > B,andlet Y be a
finite subset of X such that X \ Y C Ker . Let ¢ be a non-identity element of Ker 6.
For each x € X \ Y define amap f,: X — B as follows:

Yo(y) ifyey,
fx(y)=lc ify =x,

1 otherwise,

and extend f to a group morphism : Fe(X) > B using the universal property of
FC(X) Then ¢ = 6 o ¢, forevery x € X \ Y. Since |[X \ Y| = |X]|, S(FC(X)) is
saturated.

COROLLARY. A profinite group G is isomorphic to Fo(X) if and only if, for every
epimorphism 6: B — A with B € C, for every epimorphism ¢: G — A, there are
| X| epimorphisms : G — B such that ¢ =0 o .

(3.3) Theorem 3.2 has been obtained by Mel’nikov in [Me], using different
techniques. He shows indeed that a profinite group G is isomorphic to Fe(X) if and
only if, for any group epimorphisms : B — A and ¢: G — A where B is a pro-C-
group, |S(B)| < |X| and Ker# is finite, there exists : G — B suchthatf oy = ¢.
When dualized, this property is the exact translation of being | X |-saturated.

He also shows that various pro-C-completions of F(X) are in fact free pro-C-
groups. His main result in that line can be stated as follows:

Let T be a topological space with a distinguished point ¢, and define

FY(T) = l(an F(T)/N

where N ranges over all normal subgroups of F(T) of finite index containing ¢ and
such that gN N T is a closed subset of T for every g € F(T'). Then F*(T) is the free
group on the set of closed equivalence relations on T with finite quotient space.

(3.4) Recall that ultraproducts of w-sorted structures are defined in the following
manner:
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Let I be an index set, S; a family of L-structures indexed by I and I/ an ultrafilter
on I. Then [],.; Si/U is obtained by taking the usual ultraproduct and deleting the
elements of “infinite” sort. As an application of Theorem 3.2 we obtain:

THEOREM. LetU be an ultrafilter on I, and for everyi € 1, let G; be the free pro-
C-group on r; generators (r; some cardinal number). Then G = G(]—[,-e 1 S(GH/U)
is a free pro-C-group.

Proof. G is obviously a pro-C-group having IP and with image C. It therefore
suffices to show that S(G) is saturated. .

If for some positive integer r, theset{i € I | r; = r}isinl, then S(G) =~ S(F¢(r))
and G is therefore free. Suppose therefore that there is no such integer r. Let
[¢] = ([eiDuy € S(G), let A € C and let : A — [a] be a group epimorphism.
Because there are only finitely many groups of size |[«]|, we may assume that the
[«;] are chosen so that [«] is naturally isomorphic to [o;] for every i. Letus call p; this
isomorphism, and let B; be the set of all [8] in S(G;) such that wg,, = p; 06 o g for
some isomorphism g: [8] — A. It then suffices to show that | [] B;/U| = |S(G)|.

Firstcase. {i € I | r; > o} € U.

We may then assume that r; > R, for every i € I. Then |S(G;)| = r; = |B;| for
every i, and therefore | [| B; /U| = |S(G)|.
Second case. {i € I | r; < Rg} € U.

Let s be the rank of B. Using the properties of free pro-C-groups, we have

B > 2

for every i such that r; > s. As the set of i’s such that r; > s belongs to I/, we may

assume thatr; > s forevery i € I. M. Hall proved in [Ha] that, if N (n, r) denotes the
number of subgroups of index » in the free group on r generators, then N(1,7) = 1
and N(n,r) = n(n!)~" = 372 ((n — i)’ "' N (i, r). This gives

IS(Gi)nl < n(n)"~!

for every i € I and integer n. Let n = |B| and let @ be such that 2 > n!. Then
n(2152°=1% > p(n!) ! and therefore

2775 < |Bi| < IS(Gi)ln < n(|B;|2°7)*

for every i. Hence

a

[127u < < IS(G)al < n20718

iel

[Bu

iel

[1Bi/u

iel

This shows that [],., B;/U is infinite, of cardinality |S(G),|.
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(3.5) Application to field theory. For a field K we denote by G (K) the absolute
Galois group of K, i.e., the Galois group of K in its separable closure K.

THEOREM. Let (K;)ie; be a family of fields, the absolute Galois groups of which
are free. Let U be an ultrafilter on I and K = [, Ki/U. Then G(K) is free.

Proof.  Any finite Galois extension L of K is of the form [[,., L; /U where L; is
a Galois extension of K; of degree [L : K] over K; for a set of i’s in /. It follows
easily from this observation that

S(G(K)) =[] s(G&)/U.

The result follows then by 3.4.

4. Ranks and forking

In this section, we fix a complete extension T of T;p.

(4.1) PROPOSITION. Let A C B be substructures of S(G) &= T and let o € S(G).
Then

a|B < aVBeal(Ad) < aV B eacl(aV A).
A

Proof. 'We may assume that A and B are algebraically closed, because & | acl(A).

A
LetB=aV A,y =aV B. Then y < 8. Suppose that y < B. Then y ¢ acl(A),
y € acl(a, A) (because y > «) so that o J y, and therefore o[ B. For the converse

A A

of the first implication, note that the type t (o/(B)) U{x vVé =B |8 € B, § < B}
is consistent and complete. Hence it is the unique non-forking extension of #(ct/A)
to B.

The second equivalence is a direct consequence of the following lemma:

LEMMA. Lety < B € S(G), let A be a substructure of S(G) and suppose that
B=yVA.Theny € acl(A) < y € acl(f).

Proof. One direction is clear. Suppose therefore that y € acl(A). Then t(y/A)
is isolated by some formula, and we may therefore assume that A is finite. Let us
first suppose that L(y/B) = 1. If y ¢ acl(B), then t(y/(B)) is realized infinitely
many times in S(G), and is therefore realized infinitely many times outside of A. But
any such realization satisfies 7 (y /A) which is a contradiction. Therefore ¢(y /(8)) is
algebraic.
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IfL(y/B)=n=>1,choose y =y < y1 < ... < ¥, = B; by the previous case,
yi € acl(y; Vv (A, yi41)) forevery i < n. From y; V (A, ¥+1) ~ ¥i+1 We obtain the
result.

(4.2) THEOREM. Leta € S(G) =T, let A C S(G) and let n = L(a/{A)).
Choose a sequence o =g <) < -+ <oy =V (A). Then U(a/A) (the U-rank
of t(a/ A)) equals the number of indices i < n such that o; ¢ acl(jyp).

Proof. Becauseay,...,a, € acl(e),wehaveU(a/A) = U(a, @y, ..., 0y_1/A).
The fundamental rank equality then gives

U/A) =U@/A,ay,...,0,—1) + U1 /A, a2, ...,0,) + -+ U(ay—1/A).

The result follows from «; V (A, otj41) ~ @iy and U(a; /A, ;1) = 1 if and only if
a; ¢ acl(A, ;).

Remark. Since T is Ry-categorical, the U-rank coincides with the Morley rank.
Observe also that U(a/A) < L(a/A). They coincide if a € acl(B) implies 8 < o
for every o, B € S(G). This is the case for example when T is the theory of the
system associated to a free pro-C-group.

(4.3) We conclude this section by a finer study of forking. We start with an easy
lemma.

LEMMA. Let A C B be substructuresof S(G) =T, leta, B € S(G) and suppose
thata vV B <« V A.

(1) There existsy € Bsuchthata <y <aV Aand L(y/A) = 1.

(2) Suppose that B = (A, B). Then there exists § such that B < 8§ < BV A,
L(@/A) =1and (A,8) = (A,y). Ife € B, then L(¢/A) < L(B8/A).

(3) If V is a normal subgroup of [a] which intersects trivially Ker wyyy 4, and
6 € S(G) is suchthat Kermys = V, thena ~ (a vV A) A 6.

Proof. (1) Take any y suchthata VB <y <aV Aand L(y/aV A) = 1. Then
Yy VA =« V A and therefore L(y/A) = 1.

(2) By symmetry (see Lemma 1.9), we have g v (A, y) < B Vv A. Take § such
that BV (A, y) <8 <BVvAand L(§/BV A) = 1;asin (1), L(§/A) = 1. Using
symmetry, we obtain (A, y) = (A, §).

The second assertion follows from Lemma 1.10.

(3) Obvious. Note that this implies that L(§/A) = L(«/A).
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(4.4) Lemma 4.3 allows us to reduce to the following situation:

LEMMA. Let A be a substructure of S(G) =T, let o, B,v,8 € S(G) be such
thata <aVA=y,BVA=348and (A, a) = (A, B). Suppose furthermore that
Ker rty, is the unique minimal normal subgroup of [«].

(1) Ifa~ BAeforsomee e A, then B ~aande > y.

2) If B~a ANeforsomee € A,thend ~e ANy and B~ a AS.

) IfB #*andthen B Ay # aAbandKerny, is abelian; there is € € A with
e <yASandL(e/y AN8) = 1,and suchthatane = a A = BAe; Kermg, s
and Kermgs are abelian, and isomorphic to Kerm,,; as [y A 8]-modules,
Ker mynsyns, Kerme,ns and Kermgayyns are isomorphic, and Ker mw,psyvs
acts on them trivially.

Proof. (1)If a ~ B A e then Ker mog N Kermye = (1); since € € A, Kermy, is
non-trivial and therefore contains Ker m,,, which gives & > y. Then Ker m,g must
be trivial, which gives o ~ 8.

(2)From L(a Ane/y Ane) =1 = L(exAe/A), wededuce that (@ Ae) VA =y As,
which implies § ~ y A e.

B BAY ~a A, then BAy < a; using the modular equality we obtain
a~aV(BAy)=yA(aVvB);henceaV B ¢ Aand (A,a) = (A,a V B); by (1),
aV B ~ «a, and therefore 8 < o and B A § ~ B, contradicting our hypothesis and
showing that 8 A y # a A 8.

By Lemma 4.3, there exists ¢ € A suchthat e Ae < BAyande < y AS;
we may choose it so that L(e/y A §) = 1. By the above we have o A e < B A y.
Leta' =a AS, B =B Ay, letU = Kermyaep and let p = Toynear, § = Tance-
Then p(U) is a non-trivial normal subgroup of [«'] contained in Kermy, s and
therefore p(U) = Ker 7y, ns; similarly, g(U) = Kerm,y, os. We identify [a A €] with
[a'] Xyns) [€), and from L(e/y A8) = L(a'/y A8) =1 and B’ # &, B’ # o', we
obtain

UnNKermgyas X (1)) =UN (1) x Kermgyas) = (1).

Hence p and g define group isomorphisms from U onto Ker m,, 15 and Ker gy 153
furthermore,a Ae =B Ane =a A B.

Let (a,b) € U, ¢ € Kermgyns. Then (a, b)) = (a¢,b) € U, so that a° = a;
hence Kerm,, A5 is abelian; similarly, Kerm,, »s is abelian. Let (c,d) € [a A €].
Then (a, b)©? = (a¢, b?), so that p and g are isomorphisms of [y A 8]-modules.
Furthermore, Ker w1, 15 X (1) forms a set of representatives for Ker 74, .5 modulo U,
and therefore Ker g, o5 and U are isomorphic [y A §]-modules. From o =aAS,
we obtain Kerm,,rs = Kermy, and Kerm, 55 acts trivially on Kermyyns > U;
similarly, Ker g, ns = Ker mgs and Ker 7, 15, acts trivially on U, which finishes the
proof.
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5. Rudin-Keisler ordering and orthogonality

We fix a complete theory T extending T} p; all models will be models of T.

In this section we will study the Rudin-Keisler ordering <z on types and the
notion of orthogonality. Recall that if p and g are types defined over a model S(G),
p <rk q if every model containing S(G) and realizing g also realizes p. If p and q
are stationary types defined over a set A, we will say that p <gg ¢ if the non-forking
extensions p’ and g’ of p and g to amodel of T satify p’ <gg q’. Recall that, because
T is Ry-categorical, all types defined over an algebraically closed set of parameters
are stationary.

The notion of RK-ordering is closely related to the one of domination, and for
strongly regular types corresponds to non-orthogonality. Let us first start with an
easy observation:

(5.1) PROPOSITION. Let o, B € S(G) &= T, and let A, B be substructures of
S(G). Let P(x/A) denote the set {y | @ <y < a Vv acl(A), L(y/acl(A)) = 1}.

(1) Then t(a/A) L t(B/B) < Vy € P(a/A), V86 € P(B/B), t(y/A) L
t(8/B).

(2) t(y/acl(A)) is strongly regular and RK-minimal (i.e., minimal non-algebraic
for <grg) foreveryy € P(a/A).

(3) Let {y1, ..., Yn} be a subset of P(x/A) which is maximal independent over
A. Then

t(a/acl(A)) ~gk t(y1/acl(A)) x --- X t(ya/acl(A)).

(4) Suppose that A = acl(A) = B. Thent(a/A) <gk t(B/A) if and only if there
isamap f: P(a/A) — P(B/B) which preserves independence over A and
is such that t(y /A) ~rg t(f(y)/A) for every y € P(a/A).

Proof. (1) We may assume that A and B are algebraically closed. Observe that,
for any algebraically closed C containing A U B and such thata V C = o VvV A and
BV C = BV B we have

alf = aVv{(,B)<aVvC
c

<= 3dy € P(a/C)N{(C, B)
< 3y e P/C), § € P(B/C), (C,y) = (C,$) (by Lemma 4.3),

which gives the result.

(2) Let ¢(x) be the formula isolating #(y/{« V acl(A))), and let S(H) be any
model containing S(G). If y’ € S(H) \ S(G) satisfies ¢, then y’' < y’ Vv §(G) <
a V acl(A), and therefore ¥’ v S(G) = « V acl(A). Since y’ has the same type as
y over (& V acl(A)), it follows that y’ is a realization of the non-forking extension
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of t (y /acl(A)) to S(G). This shows that ¢ («/acl(A)) is strongly regular; since it has
U-rank 1, it is RK-minimal.
(3) Without loss of generality, we may suppose that A isamodel. Clearly ¢ (y,/A) x

-+« X t(Yn/A) <grk t(a/A). Let S(H) be amodel of T containing y, ..., ¥, and let
o’ € S(H) realize t(a/{y1, ..., ¥n)). Thena’ v A = a Vv A and therefore o’ realizes
t(e/A).

(4) We may suppose that A is amodel of 7. Assume that ¢ (a/A) <gg t(B/A), let
S(H) be the prime model over A U B and let o’ € S(H) be a realization of # («/A).
Then ¢t (’/A U B) is isolated because S(H) is prime over AU B. Lete = o'V (A, B)
and suppose that ¢ £ y for some y € P(a’/A). Then y v (A, B) = y V A, and
t(y/{y Vv A)) has infinitely many realizations in A. This contradicts the fact that
t(a'/(A, B)) is isolated (Proposition 2.5). Hence ¢ < y forevery y € P(«/A). By
Lemma 4.3, for every y € P(a’/A) there exists § € P(8/A) such that (A, y) =
(A, 8). This gives us the desired map f.

(5.2) The previous result makes it clear that we can restrict our attention to types
of length 1 over an algebraically closed set of parameters. Since RK-minimal types
are RK-equivalent if and only if their non-forking extensions to a model are non-
orthogonal, we will study more in detail the conditions under which two types are
orthogonal. Let us first make a simple observation.

Let A =T, «, B such that L(«/A) = L(B/A) = 1. Then t(a/A) L t(B/A) if
and only if (A, «) contains a realization of ¢ (8/A).

(5.3) Before coming to our main result on orthogonality, we need one more
lemma:

LEMMA. Let A C S(G) &= T be algebraically closed, let «, y, n € S(G) be
such thata vV A =y, Kermy, is abelian and Ker ny,, is the centralizer Cio Ker g,
of Kermy,, in [a]. Then there is ¢ < n = & VvV A such that L(¢/A) = L(a/A),
Kerm,, = Ci Kermg,, and t(e/A) L t(a/A).

Proof. Without loss of generality, we may assume that A is a model of 7. Let
B € Arealize t(a/(y)) and let f: [a] — [B] be a group isomorphism inducing the
identity on [y].

We identify [a A B] with [a] x{,; [8] and let p = 74, g = 7g,,. Define

U = {(a, f(a)) | a € Kermy,}. We claim that U is normal: if (¢, d) € [a A B],
- then

@, f@)“? = @, f@"
= (a9, f(a)??) (because Kermy, € Ciq1 Kermyy)
— (ap("), f(ap(c'))) cU.

Let ¢ < n be such that Kermyage = U. From U N Kermyaps = (1) we obtain
a A B =B Ae. Since Kermy, x (1) forms a set of coset representatives for Ker



88 ZOE CHATZIDAKIS

modulo U, they are isomorphic as [n]-modules, which gives Kern,, = Ci;) Kerm,
and L(a/y) = L(g/n).

Remark. [e] is isomorphic to the semi-direct product Ker 7,4 X [1], and the map
¢y is the natural projection onto [n].

(5.4) Definition. Leta < 8 € S(G) be such that L(x/B) = 1 and « ¢ acl(B).

(1) We say that ¢ (a/(B)) is minimal modular if « is the identity element of [«]
and satisfies:

(a) If Ker 7o is non-abelian then Ciq) Kermyp = (1).

(b) If Ker m,p is abelian, then the extension [a] — [B] is split and [8] acts
faithfully on Ker m,g.

(2) Let n be defined by Ker 7y, = Ker m43Cio) Ker mog. By Lemmas 4.3 and 5.3,
there is a unique minimal modular type defined on (1) and non-orthogonal
to t(a/(B)). We will call this type the minimal modular type associated to

t(@/(B)).

This reduces the study of non-orthogonality of types to the ones which are minimal
modular. But, in the case of minimal modular types, the result is particularly simple:

THEOREM. Let A C S(G) = T be a substructure, let a, B, y and 8 be such that
L(x/acl(A)) = L(B/acl(A)) = 1 and o Vv acl(A) = y, B Vv acl(A) = 8. Suppose
that t («/(y)) and t(B/(8)) are minimal modular. Then

t(a/A) Lt(B/A) < t(a/A) =1(B/A).

Proof. The sufficiency is clear. For the other direction, we will first suppose that
A is algebraically closed. By assumption, there is a model S(H) of T containing
A and independent from «, 8 over A such that t («/S(H)) L? t(8/S(H)). Lemma
4.4 and 5.2 allow us to conclude that y = § and t(a/(y)) = t(B/(5)), i.e., that
t(@/A) = 1(B/A).

Suppose now that A is arbitrary. The extensions of 7(«/A) to acl(A) determine
the non-forking extensions of #(«/A) to any model containing A. Furthermore,
these types are conjugate by A-automorphisms of acl(A). Hence, t(a/A) L t(8/A)
implies that for some A-automorphism f of acl(A), we have f(¢t(x/acl(A)) L
t(B/acl(A)). By the above, this implies f(t(x/acl(A)) = t(B/acl(A)), and therefore
t(a/A) =t(B/A).

(5.5) COROLLARY. Let A, B be substructures of S(G) =T, let a, y € S(G)
be such that y = o Vv acl(A) and L(a/y) = 1; let n be such that Kerm,, =
Ker mogCio1 Ker myy, . Then

t(@/A) L B < 7 ¢ acl(B).
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Proof. Let t(¢/(n)) be the minimal modular type associated to t(a/(8)). If
n € acl(B), then the non-forking extension of #(¢/(n)) to (B, y) is non-orthogonal
to itself, and therefore ¢ (a/A) X B (by transitivity of non-orthogonality of regular
types).

The reverse implication follows from Theorem 5.4.

6. Strongly homogeneous models and automorphisms

We call amodel « -strongly homogeneous if every partial isomorphism between two
substructures of size < « extends to an automorphism of the model. In [HL], Haran
and Lubotsky asked the following question: let G be a profinite group having IP; is it
true that every isomorphism between two finite quotients of G lifts to an automorphism
of G? When dualized, this question reduces to the question of whether every model of
T;p is w-strongly homogeneous. Note that this is always true for countable models.
" In this section we will characterize the strongly homogeneous models, from which
it will follow that the question of Haran and Lubotsky has a negative answer. We
will then study the automorphism group of such models and show some extension
properties. All our results follow from the next proposition.

(6.1) PROPOSITION. Let A C B, A’ C B’ be substructures of S(G) and S(H)
respectively, with S(G) = S(H) &= T;p. Suppose that B is normal over A (i.e., if
a € B, then the set t (o) A)S@D of all realisations of t (a/ A) in S(G) is contained in
B), B’ is normal over A’ and that ¢: B — B’ is an isomorphism satisfying:

(@) p(A) = A",

(b) For every a, B € S(G) such thatx < B < aV A and L(a/B) = 1, for
every o', B’ € S(H) realizing ¢(t(a, B/A)), the sets t(a/{A, B))5C and
t@' /(A', B)SH) have the same dimension over (A, B) and (A', B') respec-
tively.

Then ¢ can be extended to an isomorphism from S(G) onto S(H).

Proof. We may assume that B and B’ are algebraically closed. By a standard
argument, it suffices to extend ¢ to a set C U B where C is the set of realizations of
the restriction to A of a type of U-rank 1 over B.

Let « € S(G) be maximal (for <) such that « ¢ B, let 8 = « v B. Then
t(a/(B)) is not'algebraic, and using the maximality of & and Lemma 4.3 one obtains
L(a/B) = 1, Ker myg is the unique minimal normal subgroup of [«]; this implies that
oV A= BV A,since otherwise we would have ¢ ~ B A (a V A).

Let C = 1(a/A)5@), C’' = (t(a/A))*"", and let (C)); < be a partition of C into
non-empty subsets normal over B and realizing a single 1-type over B. For A < «,
@, € Cy, define B, = a, v B and C, = ¢(1(,/B))*™, B = 0(By).
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By assumption, for every A < p < k we have
dims g,)Cx = dima,4,)Cy = dima ;) C;.

Assume that we have already extended ¢ from B, = (B,|J,., Cy) onto B; =
(B’, Uu<x C;). To extend ¢ from B, . onto B,  ,, it suffices to show that dimp, C; =
dimp C;. There are two cases to consider:

Case 1. « can be chosen so that ¢ («/(8)) is minimal modular.

Then for every u # A we have t(a,/(B,)) L t(a./(B)). By regularity and
RK-minimality of #(a,/(B1)), it follows that for any y1,..., ¥, € < Cu Which
are independent over B, t(«,/(Br)) L t(¥1, ..., ¥»/B). This implies that

dimBAC)‘ = dil'n(,q'ﬁ)‘)C)~ = dlmB;Ci

Case 2. Not case 1.
Then Kerm,g is abelian. Let t(¢/(n)) and t(e,/(n,)) be the minimal modular
types associated to # (/(B)) and (a; /(B,)) respectively.

Claim. dimBCA = 1.

Suppose that dim4 g2 (@/(A, ))5@ > 1, and let &’ € t(a/(A, B))5@ be in-
dependent from « over (A, 8). By Lemma 5.3, (o, «’) contains a realization &’ of
t(e/(n)), and by independence of « and o’ over (A, B), &’ ¢ (A, B). Hence, because
Ker 7., is the unique minimal normal subgroup of [¢], &’ V A = n v A. By assump-
tion, the realizations of the non-forking extensions of £ (¢/(n)) to (A, n) are in B, and
therefore ¢’ € B.

Similarly, any element «; of Cy independent from o, over (A, B,) yields a realiza-
tion &) of a non-forking extension of #(&,/(n,)) to B. Since 7, and n have the same
type over A, t(e)/A) = t(¢'/A), and therefore ¢, € B. This gives dimpC, = 1.
Since B’ contains ¢((¢'/ A))S(H), we obtain dimp C} = 1.

Furthermore, since C; C (B, «;), we have either By N Cy, = @, or C C B,. If
Cy € B, then ¢(ay) realizes ¢(t(./(By.))); since Ker mog is the unique minimal
normal subgroup of [«], ¢(c,) realizes (p(t(a,\/B)), i, a; € C;. Hence C; C B;.

By symmetry, C; C By implies C). C B,, and therefore dimp, Cy = dimp, C;j,
which finishes the proof.

(6.2) 'We will now prove two results which will allow us to verify that structures
we are interested in satisfy the hypotheses of the proposition.

LEMMA. Let A be a small substructure of S(G) and let « € S(G). Then (A, «)
is small.
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Proof. Let B = a Vv A; we may suppose that Kerm,g is the unique minimal
normal subgroup of [«]. Lety € (A,a)\ Abeofsortn,letd§ =y vAandlete € A
be maximal suchthate < BAdanda Ae < y. Ifa A e ~ y then ¢ is of sort n.
If o A8 # y, then, by Lemma 4.4, Ker mog = Kerm,, Ap and therefore ¢ is of sort
m = n|[a]|. Thus |(A, @),| < |An|, which gives the result.

COROLLARY. Let A be a substructure of S(G) = T;p, and let a, B € S(G) be
suchthata < 8 <a Vv Aand L(a/B) = 1 = U(a/B). Suppose that A is small or
that S(G) is |A|* -saturated. Then dim 4 gt (a/(A, B)5@ = |t(a/(A, B))SO|.

Proof. When t(a/(B)) has at least [A|* realizations in S(G), this is clear. When
A is small and r(«/(B)) has only countably many realizations, observe that a small
substructure of S(G) contains only finitely many realizations of ¢ («/(8)) and build
a countably infinite sequence of realizations of #(«/(A, B)) which are independent
over (A, B).

(6.3) THEOREM. Let S(G) k= T;p, let k be a cardinal. The following conditions
are equivalent.

(1) S(G) is k-strongly homogeneous.
(2) S(G) is k-saturated, and for every o, 8 with o < B and L(a/B) = 1, for
every ', B' realizing t(a, B/9), |t (@/(B))5D| = |t(@'/{8)%P|.

Proof. (1) = (2) is obvious, and (2) = (1) follows from Proposition 6.1 and
Corollary 6.2.

Remarks. (1) By Corollary 6.2, w-strong homogeneity implies the following
stronger property:

If A and A’ are small substructures of S(G) and ¢ is an isomorphism between A and
A’, then ¢ extends to an automorphism of S(G).

(2) «-strong homogeneity is equivalent to w-strong homogeneity together with
Kk-saturation.

(3) The proof of 6.1 allows one to give invariants for w-strongly homogeneous
models of a theory T: consider the set G of types p(x, y) over the empty set such
that, whenever «, B realizes p(x, y) then #(«/(B8)) is minimal modular and B is the
identity element of [8]. Then each w-strongly homogeneous model of T gives rise to
a function from G to the class of infinite cardinals. Conversely, since distinct 2-types
over the empty set give rise to orthogonal types, every such function originates from
an w-strongly homogeneous model of T'.

(4) The proof of 6.1 shows that if S(G) is w-strongly homogeneous and N is a
normal subgroup of G, then

N is characteristic <= S(G/N) is normal over .
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(6.4) THEOREM. Suppose that S(G) = T;p is k-strongly homogeneous, and let
A be a substructure of S(G) of size < k. Let N be the closed normal subgroup of G
kernel of the natural projection G — G(A), and let U be a characteristic subgroup
of N. Then every automorphism of G /U lifts to an automorphism of G.

Proof. Let B = S(G/U); by dualizing it suffices to show that every automor-
phism ¢ of B extends to an automorphism of S(G). Let ¢ be an automorphism of B.
By Proposition 6.1 and Corollary 6.2, it suffices to show that B is normal over A and
@(A).

Take o, &’ € S(G) having the same type over A and assume that @ € B. Because
o and o’ have the same type over A, (A, &) and (A, «') are isomorphic, and have size
less than «. Let f: (A, @) — (A, ') be an isomorphism which is the identity on
A and sends « to o’. By «-strong homogeneity, f extends to an automorphism g of
S(G). If ¢ denotes the dual of g, then ¥(N) = N because g is the identity on A,
and therefore ¥ (U) = U. Furthermore, if N| and N, are the kernels of the canonical
projections 1, and m,, then g(a) = o’ implies ¥ (N;) = N,. Since N} 2 U, we
have N, D U and therefore o' € B.

Take «, o’ realizing the same type over ¢(A) and suppose that « € B. Consider
the type o~ ' (t(a'/(A, ©(A)))). Itis clearly consistent, and since |(A, ¢(A))| < «, it
is realized by some element 8 € S(G). Then B realizes t (¢~ () / A), and therefore
B € B since ™! () € B (using the normality of B over A). Also, ¢(B8) realizes
t(a’/A), which implies that o’ € B.

Remarks. (1) This result was obtained by Mel’nikov [Me2] for U a characteristic
subgroup of a free pro-C-group.

(2) When « = Ry, the proof as given does not carry through to the case where A
is small. Indeed, one can construct examples of two small isomorphic substructures
generating a non-small substructure.

(6.5) As another application of Proposition 6.1, we show that substructures of
w-strongly homogeneous models have closed automorphism groups. The motivation
behind this result was a question posed in Kueker-Steitz [KS]. Subsequently, Bous-
caren and Laskowski [BL] showed that the result holds for superstable theories which
are locally modular of finite rank. According to Laskowski, the proof given here
generalizes in a straightforward manner to w-stable Ro-categorical theories, using the
machinery developed these past years.

THEOREM. Suppose that S(G) = T;p is w-strongly homogeneous. Let A C
S(G), ¢ € Aut(A) and suppose that every restriction of ¢ to a finite subset of A
extends to an automorphism of S(G) sending A onto A. Then ¢ extends to an
automorphism of S(G).
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Proof. A routine argument (due to D. Macpherson) shows that A may be assumed
algebraically closed: consider the family F of all partial isomorphisms v extending
¢ such that:

(a) dom ¢y C acl(A).
(b) Every restriction of ¢ to a finite subset of dom v extends to an automorphism
of S(G) sending A onto A.

Under the natural ordering, this family is non-empty and inductive, and hence has
a maximal element . Suppose that dom ¢ # acl(A), and let o € acl(A) \ dom .
Let Ag € A be finite such that « € acl(Ag), and let 8y, ..., B, be the realizations of
(p(t (o/ Ao)). For every finite subset B of dom y containing Ao, ¥|, extends to an
automorphism 6 of S(G) sending A onto A, and 6(«) € {B4, ..., Bn}. It follows that
for some i, ¥ U {(«, B;)} must have property (b). This contradicts the maximality
of ¢, and therefore dom y = acl(A); since every automorphism of S(G) sending A
onto A sends acl(A) onto acl(A), ¢ satisfies the hypothesis of the theorem.

We will therefore assume that A = acl(A). Lete < B < a VvV A be such that
L(a/B) = U(a/B) = 1, and let o', B’ realize ¢(t(a, B8/A)). By Proposition 6.1, it
suffices to show that

() dima gyt (@/(A, B)5© = dim4 gyt (@'/(A, B')5©.

First, suppose that 7 (c/(8)) is minimal modular. If 8 € A, then L(«/A) = 1 and
¢(B) = B’. By assumption, there is an automorphism ¥ of S(G) which sends A to
A and agrees with ¢ on (). Then ¥/ (t(a/{B))5@) = t(a’/(8))5® and ' respects
independence over A. Thus «, B, @’ and B’ satisfy ().

If B ¢ A, then realizations of ¢ («/(8)) which are independent over () remain
independent over (A, B) (by 5.5), and therefore

dima gyt (@/ (BN = dimgt (a/ ()5 .

Similarly, 8’ ¢ A implies that dim 4 gyt (//(8')5© = dimyt(a’/('))5©. By
w-strong homogeneity, dim g (a/(B)) = dimgyt (' /{B’)), which gives (x).

If t(x/(B)) is not minimal modular, we let #(¢/(n)) be the minimal modu-
lar type associated to it. If Kerm,g is non-abelian, or if ¢(c/(B)) is realized in
(A, B), thendim4 gyt (e/(A, B)5@ = dima gyt (e/(A, n))5©; if Ker o4 is abelian
and ¢ (a/(B)) is not realized in (A, B), then dima gyt (¢/(A, B))5© = 1 + dim4 g,
t(e/(A,n)5@ . Note that t(a/(B)) is realized in (A, ) if and only if ¢(a’/(B))
is realized in (A, B'), because ¢(A) = A and (¢, B') realises ¢(¢(a, 8/A)). Thus,
since

dima gyt (e/{A, 1)@ = dimea pt (/(A, 7)5@ = dimq 2 (e/ (A, )P,

anddima ,t(e/(A, n))4*#) only depends on?(8/A), the minimal modular case gives
us the result.
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(6.6) DUALIZATION OF THEOREM 6.5. Let G be a profinite group having the prop-
erty that any isomorphism between two of its finite quotients lifts to an automorphism
of G. Let N be a closed normal subgroup of G and ¢ an automorphism of G/N
having the following property:

If U is an open normal subgroup of G containing N, and ¢: G/U — (G/N)/¢
(U/N) is the isomorphism induced by @, then ¢ lifts to an automorphism of G which
sends N onto N.

Then ¢ can be lifted to an automorphism of G.

(6.7) We end this section with an example of a model of Th(S(I:"w)) which is
not w-strongly homogeneous. This is part of a more general phenomenon: every
multi-dimensional theory has such models; see [C] for more examples.

Choose any @ € S (ﬁw) such for some B8 > o, Kermyy is the unique minimal
normal subgroup of [«] and is non-abelian. Choose 8’ * B and o’ € S(I:“a,) re-
alizing ¢t (8, a/@). By Theorem 5.4, t(a/{B8)) L t(a’/(B’)), and therefore there is
a model S(G) of the elementary theory of S(ﬁw) which realizes R; times #(¢/{8))
but only countably many times ¢ («'/(8)). Then [8] and [8'] are isomorphic, but no
automorphism of S(G) sends [8] to [B'].

7. Pro-p-groups and characteristic subgroups

Serre proved that projective pro- p-groups are free, and thus a projective pro-p-
group is completely determined by its number of generators. In this section we prove
an analogous result for pro- p-groups having IP.

(7.1) THEOREM. Let G be a pro-p-group having IP. Then Th(S(G)) is totally
categorical.

Proof. 1If G is finitely generated, then S(G) is small and the result holds. Sup-
pose therefore that G is not finitely generated, and let @ < B and y € S(G) be
such that L(a/B) = 1 and [y] = Z/pZ. Since Ker m,g is a minimal normal sub-
group of the finite p-group [«], Ker 7,4 is central and isomorphic to Z/pZ. By 5.3,
t(ee/{B))S @) = |t(y/9)5©|, which implies that S(G) is saturated.

(7.2) THEOREM. Let G and H be two pro-p-groups having IP, H # (1), and let
¢: G — H be an epimorphism. Then Ker ¢ is a characteristic subgroup of G if and
only if o~ (®(H)) = ®(G) (®(G) denotes the Frattini subgroup G?[G, G] of G).

Proof. By duality, we obtain an embedding S¢: S(H) — S(G), and we will
identify S(H) with its image by S¢ in S(G), thus viewing ¢ as the canonical projec-
tion. Then

¢ (P(H)) = (G) = Ya € S(G), (0] = Z/pZ = a € S(H)).
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Suppose first that Ker ¢ is a characteristic subgroup. Since H is non-trivial, there is
o € S(H) such that [@] >~ Z/pZ. By Remark 6.3 (4), S(G) contains all realisations
of ¢ (a/@), which gives the result.

Suppose now that ¢~ (& (H)) = ®(G). We will show that S(H) is normal over .
Leta € S(H), o' € S(G) such that [¢] >~ [&'], and suppose that we have proved the
result for the types of elements which are > «. Let 8 > « be such that L(a/8) = 1,
and let B8’ be such that ¢ («, 8/0) = ¢ (', B'/@). By induction hypothesis, 8’ € S(H);
since S(H) = T;p, there is a realization «” € S(H) of t(¢'/(B’)). By the proof of
Lemma 5.3, there is ¢ such that «” A ¢ = o’ A @” and [¢] >~ Z/ pZ. By hypothesis
& € S(H), which implies that o’ € S(H).

COROLLARY. Let G be a pro-p-group having IP. Then H is isomorphic to the
quotient of a free group by a characteristic subgroup.

Proof. Since G/®(G) is isomorphic to a product of copies of Z/ pZ, there exists
a free pro-p-group F together with an epimorphism ¢: F — G/®(G) with kernel
@ (F). From the universal properties of F, ¢ can be lifted to an epimorphism ¢: F —
G. By the above, Ker ¢ is characteristic.

This result provides a partial converse to a result of Haran and Lubotzky: they
proved in [HL] that the quotient of a profinite group having IP by a characteristic
subgroup has IP.

The fact that G is a pro- p-group plays an important role in the proof of Corollary
7.2. For a generalization to a non pro-p-group G, one needs to assume that S(G) is
saturated and that o € acl(8) implies B < « for every «, B € S(G).
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