REGULARITY OF PAIRS OF POSITIVE OPERATORS

Shangquan Bu, Philippe Clément and Sylvie Guerre-Delabrière

0. Introduction

In this paper, we consider a pair (A, B) of closed operators on a Banach space X with domain $D(A)$ and $D(B)$. The pair (A, B) is called regular if for every $f \in X$, the problem $A u+B u=f$ possesses one and only one solution.

Related to the notion of coercively positive pair of operators, introduced in [S], we also consider the existence of a solution to the problem $\lambda A u+B u=f$ for all $\lambda>0$, with some uniformity in λ. This stronger property is called λ-regularity.

These notions of regularity and λ-regularity naturally arise in vector-valued Cauchy problems; see [G], [DG], [S] and also [CD]. The uniformity in λ, given by the λ regularity, is often useful in certain applications to partial differential equations.

In [G], under the hypothesis that $0 \in \rho(B)$ and in [DG], some sufficient conditions are given to ensure the regularity of a pair (A, B) on certain subspaces of X, related to the operator B. These subspaces, denoted by $D_{B}(\theta, p)$, are real interpolation spaces between $D(B)$ and X (Theorem 1.2).

It was observed in [S] that if $0 \in \rho(A) \cap \rho(B)$, then the pair is λ-regular on $D_{B}(\theta, p)$.

In this paper, we prove the λ-regularity of this pair (A, B), considered in [G], on $D_{B}(\theta, p)$ under the weaker assumption that $0 \in \rho(B)$ only (Theorem 2.1). Note that if B is bounded, then the pair is λ-regular on X.

We construct an example of a regular pair (A, B) of operators in a Hilbert space, with B bounded, satisfying the assumptions of the theorem of Grisvard [G], which is not λ-regular (Example 2.2).

1. Preliminaries

In this section we give precise definitions of regularity and λ-regularity of a pair of operators. Then, for the sake of completeness, we recall a result of Da Prato and Grisvard [DG] (see also [CD]), which is the starting point of our results.

Let X be a Banach space and A and B be two closed operators in X.
Definition 1. The pair (A, B) is called regular, if for all $f \in X$, there exists a unique $u \in D(A) \cap D(B)$ such that $A u+B u=f$.

If the pair (A, B) is regular, it follows from the Banach theorem that

$$
\begin{equation*}
\|u\|+\|A u\|+\|B u\| \leq M\|A u+B u\| \tag{1.0}
\end{equation*}
$$

for some $M \geq 1$ and for all $u \in D(A) \cap D(B)$.
It is easy to verify the following lemma.
Lemma 1.0. Let A and B be two closed operators in X. Then the pair (A, B) is regular if and only if
(1) (1.0) holds and
(2) $R(A+B)$ is dense in X.

Moreover, if $0 \in \rho(A)$ or $\rho(B)$ (where $\rho($.$) denotes the resolvent set of an operator),$ then (1.0) is equivalent to

$$
\begin{equation*}
\|A u\|+\|B u\| \leq M\|A u+B u\| \tag{1.1}
\end{equation*}
$$

for some $M \geq 1$ and for all $u \in D(A) \cap D(B)$.

Remark 1. The operator $A+B$ is closed if and only if

$$
\|u\|+\|A u\|+\|B u\| \leq M(\|A u+B u\|+\|u\|)
$$

for some $M \geq 1$ and for all $u \in D(A) \cap D(B)$.
In particular, if the pair (A, B) is regular, $A+B$ has to be closed.
A regular pair of operators (A, B) is called coercive in $[\mathrm{S}]$.
Also, the stronger notion of coercively positive pair is introduced in [S], which motivates our Definition 2.

Definition 2. The pair (A, B) is called λ-regular in X, if for all $f \in X$ and for all $\lambda>0$, there exists a unique $u \in D(A) \cap D(B)$ such that $\lambda A u+B u=f$ and moreover, for all $\lambda>0$,

$$
\begin{equation*}
\|\lambda A u\|+\|B u\| \leq M\|\lambda A u+B u\| \tag{1.1}
\end{equation*}
$$

for some $M \geq 1$, independent of λ and for all $u \in D(A) \cap D(B)$.
Remark 2. Clearly if $(1.1)_{\lambda}$ holds, then the inequality

$$
\lambda\|A u\|+\mu\|B u\| \leq M\|\lambda A u+\mu B u\|
$$

holds for some $M \geq 1$, for all $\lambda, \mu>0$ and $u \in D(A) \cap D(B)$, which shows that the definition of λ-regularity is symmetric in A and B.

It is also clear that this inequality is equivalent to the following ones:

$$
\|A u\| \leq M\|A u+\lambda B u\|,
$$

for some $M \geq 1$ and all $\lambda>0$ and $u \in D(A) \cap D(B)$, and

$$
\lambda\|B u\| \leq M\|A u+\lambda B u\|
$$

for some $M \geq 1$ and all $\lambda>0$ and $u \in D(A) \cap D(B)$.
Lemma 1.0. λ. Let A and B be two closed operators in X (not necessarily densely defined). If $0 \in \rho(A)$, then the pair (A, B) is λ-regular if and only if:
(1) $(1.1)_{\lambda}$ holds for all $\lambda>0$;
(2) There exists $\lambda_{0}>0$ such that $R\left(\lambda_{0} A+B\right)$ is dense in X.

Proof. Clearly, it is enough to prove that conditions (1) and (2) imply that the pair (A, B) is λ-regular.

First observe that conditions (1) and (2) together with Lemma 1.0 , where A is replaced by $\lambda_{0} A$, and the fact that $0 \in \rho(A)$, imply that the pair $\left(\lambda_{0} A, B\right)$ is regular. Thus, in particular, $0 \in \rho\left(\lambda_{0} A+B\right)$.

Next we show that if $0 \in \rho\left(\lambda_{1} A+B\right)$ for some $\lambda_{1}>0$, then $0 \in \rho(\lambda A+B)$ for all $\lambda>0$ such that

$$
\begin{equation*}
\frac{\lambda}{\lambda_{1}} \in\left(\frac{M}{M+1}, \frac{M}{M-1}\right) \text { if } M>1 \text { and }\left(\frac{M}{M+1}, \infty\right) \text { if } M=1 . \tag{*}
\end{equation*}
$$

Indeed, problem $\lambda A u+B u=f$ is equivalent to

$$
\lambda_{1} A u+B u=\left(1-\frac{\lambda_{1}}{\lambda}\right) B u+\frac{\lambda_{1}}{\lambda} f .
$$

Setting $v=\lambda_{1} A u+B u$, we have

$$
\begin{equation*}
v=\left(1-\frac{\lambda_{1}}{\lambda}\right) B\left(\lambda_{1} A+B\right)^{-1} v+\frac{\lambda_{1}}{\lambda} f \tag{**}
\end{equation*}
$$

From (1.1) $)_{\lambda}$, it follows that

$$
\left\|B\left(\lambda_{1} A+B\right)^{-1}\right\| \leq M .
$$

Under assumption (*), by the Banach fixed point theorem, it is clear that there exists one and only one $v \in X$ satisfying $(* *)$ and hence $(\lambda A, B)$ is a regular pair for such λ. Noting that $\left\|B(\lambda A u+B)^{-1}\right\| \leq M$ also holds for λ in this interval, we can repeat this argument and, since $\frac{M}{M+1}<1$ and $\frac{M}{M-1}>1$, show by induction that the pair $(\lambda A, B)$ is regular for all $\lambda>0$, which together with $(1.1)_{\lambda}$ implies that the pair (A, B) is λ-regular. This finishes the proof of Lemma 1.0. λ.

Let us recall classical definitions on closed operators: A closed linear operator $A: D(A) \subset X \rightarrow X$ (not necessarily densely defined) is called positive in $(X,\|\cdot\|)$ [Tr] if there exists $C>0$ such that

$$
\begin{equation*}
\|u\| \leq C\|u+\lambda A u\|, \text { for every } \lambda>0 \text { and } u \in D(A) \tag{1.2}
\end{equation*}
$$

and if $R(I+\lambda A)=X$ for some $\lambda>0$, equivalently for all $\lambda>0$.
Remark 3. In [Tr], an operator A is called positive if it is positive and satisfies the additional assumption that $0 \in \rho(A)$. In this paper, it is convenient to relax this extra condition.

Observe also that A is positive if and only if the pair (A, I) is λ-regular.
If A is positive, injective and densely defined, it is easy to prove that A^{-1} is also positive.

If X is reflexive and A is positive, then A is densely defined [K].
Let $\Sigma_{\sigma}:=\{\lambda \in \mathbb{C} \backslash\{0\} ;|\arg \lambda| \leq \sigma\} \cup\{0\}$, for $\sigma \in[0, \pi)$. If A is positive, there exists $\theta \in[0, \pi)$ such that (1.3) holds, [K p. 288]:
(1.3) (i) $\sigma(A) \subseteq \Sigma_{\theta}$ and
(ii) for each $\theta^{\prime} \in(\theta, \pi]$, there exists $M\left(\theta^{\prime}\right) \geq 1$ such that $\left\|\lambda(\lambda I-A)^{-1}\right\| \leq$ $M\left(\theta^{\prime}\right)$, for every $\lambda \in \mathbb{C} \backslash\{0\}$ with $|\arg \lambda| \geq \theta^{\prime}$
where $\sigma(A)$ denotes the spectrum of A.
The number $\omega_{A}:=\inf \{\theta \in[0, \pi) ;(1.3)$ holds $\}$ is called the spectral angle of the operator A. Clearly $\omega_{A} \in[0, \pi)$.

An operator A is said to be of type (ω, M) [Tan], if A is positive, ω is the spectral angle of A and

$$
M:=\inf \{C \geq 0 ;(1.2) \text { holds }\}=\min \{C \geq 0 ;(1.2) \text { holds }\}
$$

Note that M is also the smallest constant in (1.3) ii) for $\theta^{\prime}=\pi$.
Two positive operators A and B in X are said to be (resolvent) commuting if the bounded operators $(I+\lambda A)^{-1}$ and $(I+\mu B)^{-1}$ commute for some $\lambda, \mu>0$, equivalently for all $\lambda, \mu>0$.

If A and B are commuting positive operators then $A+B$ (with domain $D(A) \cap$ $D(B)$) is closable [DG].

The following theorem, which is a consequence of a theorem of Da Prato-Grisvard [DG] and of Grisvard [G] will be essential in the sequel.

Theorem 1.1. Let A and B be two commuting positive operators in X such that
(i) $D(A)+D(B)$ is dense in X,
(ii) $\omega_{A}+\omega_{B}<\pi$.

Then the closure of $A+B$ is of type (ω, M) with $\omega \leq \max \left(\omega_{A}, \omega_{B}\right)$.
If moreover
(iii) $0 \in \rho(A)$ or $\rho(B)$ (resolvent set of A or B), then
(a) there exists $M \geq 1$ such that

$$
\begin{equation*}
\|u\| \leq M\|A u+B u\|, \quad \text { for all } u \in D(A) \cap D(B) \tag{1.4}
\end{equation*}
$$

and $0 \in \rho(\overline{A+B})$,
(b) $R(A+B) \supseteq D(A)+D(B)$,
(c) $A+B$ is closed if and only if $R(A+B)=X$ if and only if (1.1) holds,
(d) the inverse of $\overline{A+B}$ is given by

$$
\begin{equation*}
(\overline{A+B})^{-1} x=\frac{1}{2 \pi i} \int_{\gamma}(A+z)^{-1}(B-z)^{-1} x d z \tag{*}
\end{equation*}
$$

where γ is any simple curve in $\rho(B) \cap \rho(-A)$ from $\infty e^{-i \theta_{0}}$ to $\infty e^{i \theta_{0}}$, with $\omega_{B}<\theta_{0}<\pi-\omega_{A}$.

Remark 4. (1) Under hypotheses (i)-(iii) of Theorem 1.1, assumption 2) of Lemma 1.0 is always satisfied. Therefore, in order to prove the regularity of a pair (A, B), it is sufficient to verify inequality (1.1), which means that $A(\overline{A+B})^{-1}$ is a bounded operator.
(2) Similarly, under hypotheses (i)-(iii) of Theorem 1.1, assumption (2) of Lemma 1.0. λ is always satisfied. Therefore, in order to prove the λ-regularity of a pair (A, B), it is sufficient to verify inequality $(1.1)_{\lambda}$, which means that $\lambda A(\overline{\lambda A+B})^{-1}$ is a uniformly bounded operator for all $\lambda>0$.

In this paper, we shall always be in the situation of (i)-(ii) of Theorem 1.1, which means that we will consider the following three hypotheses for a pair of positive operators A and B in X of type respectively $\left(\omega_{A}, M_{A}\right)$ and $\left(\omega_{B}, M_{B}\right)$:

$$
\begin{aligned}
& H_{0}: D(A)+D(B) \text { is dense in } X . \\
& H_{1}: A \text { and } B \text { are resolvent commuting. } \\
& H_{2}: \omega_{A}+\omega_{B}<\pi .
\end{aligned}
$$

In order to obtain results on the regularity and the λ-regularity of a pair of operators, we need to introduce the interpolation spaces $D_{A}(\theta, p)$, associated with a closed operator A, for $\theta \in(0,1)$ and $p \in[1,+\infty]$. These spaces are subspaces of X which are dense in X for the norm $\|$.$\| whenever A$ is densely defined.

For $\theta \in(0,1)$ and $p \in[1,+\infty), D_{A}(\theta, p)$ is the subspace of X consisting of all x such that

$$
\left\|t^{\theta} A(A+t)^{-1} x\right\| \in L_{*}^{p}
$$

where L_{*}^{p} is the space of p-integrable Borel functions on $(0,+\infty)$ equipped with its invariant measure $d t / t$.

For $\theta \in] 0,1\left[, D_{A}(\theta, \infty)\right.$ is the subspace of X consisting of all $x \in X$ such that

$$
\sup \left\{\left\|t^{\theta} A(A+t)^{-1} x\right\| \mid t \in(0,+\infty)\right\}<+\infty
$$

When 0 belongs to $\rho(A), D_{A}(\theta, p)$ equipped with the norm

$$
\|x\|_{D_{A}(\theta, p)}=\left\|t^{\theta} A(A+t)^{-1} x\right\|_{L_{*}^{p}}
$$

becomes a Banach space.
When $0 \in \rho(A)$ and A is bounded, $\|\cdot\|_{D_{A}(\theta, p)}$ is equivalent to the norm of X.
The following fundamental result, due to Grisvard (Theorem 2.7 of [G]) is the starting point of this paper.

THEOREM 1.2. Let X be a complex Banach space, and let A and B be two positive operators in X, of type $\left(\omega_{A}, M_{A}\right)$ and $\left(\omega_{B}, M_{B}\right)$ respectively, satisfying hypotheses H_{0}, H_{1}, H_{2}.

If $0 \in \rho(B)$, the pair (A, B) is regular in $D_{B}(\theta, p)$.

2. Results

The first result of this paper is the following theorem which is an extension of Theorem 1.2 to the case of λ-regularity.

Theorem 2.1. Let X be a complex Banach space, and let A and B be two positive operators in X, of type $\left(\omega_{A}, M_{A}\right)$ and $\left(\omega_{B}, M_{B}\right)$ respectively, satisfying hypotheses H_{0}, H_{1}, H_{2}. If $0 \in \rho(B)$, the pair (A, B) is λ-regular in $D_{B}(\theta, p)$ for every $0<\theta<1$ and $1 \leq p \leq \infty$.

Remark 5. If moreover B is bounded, it is clear that the pair (A, B) is λ-regular in X.

The next example shows that in particular, even if X is a Hilbert space, the hypothesis $0 \in \rho(B)$ cannot be omitted in Theorem 2.1.

Example 2.2. There exists a Hilbert space G and there exist two positive operators A and B in G satisfying hypotheses H_{0}, H_{1} and H_{2}, with B bounded, such that the pair (A, B) is regular, but not λ-regular in G.

Remark 6. In [L, Theorem 2.4] (see also [CD]), another example is given, where A is the derivative acting on $L^{p}([0, T] ; Y)$ for some non reflexive space Y, such that the pair (A, B) is not λ-regular in $D_{A}(\theta, p)$.

Proof of Theorem 2.1. Fix $\lambda>0$. By Theorem 1.2, we know that the pair $(A, \lambda B)$ is regular in $D_{B}(\theta, p)$. In particular, for all $x \in D_{B}(\theta, p)$,

$$
y_{\lambda}=(\overline{A+\lambda B})^{-1} x \in D(A) \cap D(B)
$$

and we have $B y_{\lambda} \in D_{B}(\theta, p)$ together with the inequality

$$
\left\|\lambda B y_{\lambda}\right\|_{D_{B}(\theta, p)} \leq C\|x\|_{D_{B}(\theta, p)}
$$

We shall show that C is independent of λ. For this, we are going to use equality $(*)$ of Theorem 1.1, applied to A and λB. Without loss of generality, since $0 \in \rho(B)$, we can suppose that γ consists of the half line ($\left.\infty e^{-i \theta_{0}}, \varepsilon e^{-i \theta_{0}}\right]$, the arc of the circle $C_{\varepsilon}=\left\{z:|z|=\varepsilon,|\arg (z)| \leq \theta_{0}\right\}$ and the half line $\left[\varepsilon e^{i \theta_{0}}, \infty e^{i \theta_{0}}\right)$, for some fixed $\theta_{0}, \omega_{B}<\theta_{0}<\pi-\omega_{A}$ and for sufficiently small ε in order to insure that γ is in $\rho(-A) \cap \rho(\lambda B)$. Since A is of type $\left(\omega_{A}, M_{A}\right)$, by (1.3) there exists M_{A}^{\prime} such that for all z such that $|\arg z| \leq \theta_{0}$,

$$
\left\|(A+z)^{-1}\right\| \leq \frac{M_{A}^{\prime}}{|z|}
$$

As in the proof of Theorem 3.11 of [DG], for every $t>0$ we can write

$$
\begin{aligned}
(\lambda B+t)^{-1} y_{\lambda}= & (\lambda B+t)^{-1}(\overline{A+\lambda B})^{-1} x \\
= & \frac{1}{2 \pi i} \int_{\gamma}(A+z)^{-1}(\lambda B+t)^{-1}(\lambda B-z)^{-1} x d z \\
= & \frac{1}{2 \pi i} \int_{\gamma}(A+z)^{-1}(\lambda B-z)^{-1} x \frac{d z}{t+z} \\
& -\frac{1}{2 \pi i} \int_{\gamma}(A+z)^{-1}(\lambda B+t)^{-1} x \frac{d z}{t+z} \\
= & \frac{1}{2 \pi i} \int_{\gamma}(A+z)^{-1}(\lambda B-z)^{-1} x \frac{d z}{t+z} \\
& -(\lambda B+t)^{-1} \frac{1}{2 \pi i} \int_{\gamma}(A+z)^{-1} x \frac{d z}{t+z} \\
= & \frac{1}{2 \pi i} \int_{\gamma}(A+z)^{-1}(\lambda B-z)^{-1} x \frac{d z}{t+z}
\end{aligned}
$$

by analyticity of the function $\frac{(A+z)^{-1}}{t+z}$ and the fact that $\left\|\frac{(A+z)^{-1}}{t+z}\right\| \leq \frac{M_{A}^{\prime}}{|z(z+t)|}$ for $|\arg z|$ $\leq \theta_{0}$.

Hence

$$
\begin{aligned}
\lambda B(\lambda B+t)^{-1} y_{\lambda} & =y_{\lambda}-t(\lambda B+t)^{-1} y_{\lambda} \\
& =(\overline{A+\lambda B})^{-1} x-t(\lambda B+t)^{-1}(\overline{A+\lambda B})^{-1} x
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2 \pi i} \int_{\gamma}(A+z)^{-1}(\lambda B-z)^{-1} x d z \\
& -\frac{1}{2 \pi i} \int_{\gamma} \frac{t}{t+z}(A+z)^{-1}(\lambda B-z)^{-1} x d z \\
= & \frac{1}{2 \pi i} \int_{\gamma} \frac{z}{t+z}(A+z)^{-1}(\lambda B-z)^{-1} x d z
\end{aligned}
$$

Then

$$
\lambda B(\lambda B+t)^{-1} y_{\lambda}=\frac{1}{2 \pi i} \int_{\gamma} \frac{z}{z+t}(A+z)^{-1}(\lambda B-z)^{-1} x d z .
$$

First, we claim that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{C_{\varepsilon}} \frac{z}{z+t}(A+z)^{-1}(\lambda B-z)^{-1} x d z=0
$$

Since B is invertible, $\left\|(\lambda B-z)^{-1}\right\|$ is uniformly bounded with respect to z in a neighborhood of the origin. So there exists ε_{0} such that $\left\|(\lambda B-z)^{-1}\right\| \leq 2\left\|(\lambda B)^{-1}\right\|$ for $|z| \leq \varepsilon_{0}$. We can suppose that $\varepsilon_{0} \leq \frac{t}{2}$. Then, for $\varepsilon \leq \varepsilon_{0}$ we have

$$
\begin{aligned}
& \left\|\int_{C_{e}} \frac{z}{z+t}(A+z)^{-1}(\lambda B-z)^{-1} x d z\right\| \\
& \quad \leq \int_{C_{e}} \frac{|z|}{|z+t|}\left\|(A+z)^{-1}\right\|\left\|(\lambda B-z)^{-1}\right\|\|x\||d z| \\
& \quad \leq 2 M_{A}^{\prime}\left\|(\lambda B)^{-1}\right\|\|x\| \varepsilon \int_{-\theta_{0}}^{\theta_{\theta}} \frac{d \theta}{t+\varepsilon \cos \theta} \leq \frac{8 M_{A}^{\prime}\left\|(\lambda B)^{-1}\right\|\|x\| \varepsilon \theta_{0}}{t}
\end{aligned}
$$

which tends to zero when $\varepsilon \rightarrow 0^{+}$. The claim is proved; hence we have

$$
\lambda B(\lambda B+t)^{-1} y_{\lambda}=\frac{1}{2 \pi i} \int_{\gamma_{0}} \frac{z}{z+t}(A+z)^{-1}(\lambda B-z)^{-1} x d z
$$

where γ_{0} consists of the half-lines $\left\{z: \arg (z)=-\theta_{0}\right\}$ and $\left\{z: \arg (z)=\theta_{0}\right\}$.
By hypotheses H_{1} and H_{2},

$$
\lambda B(\lambda B+t)^{-1} \lambda B y_{\lambda}=\frac{1}{2 \pi i} \int_{\gamma_{0}} \frac{z}{z+t}(A+z)^{-1} \lambda B(\lambda B-z)^{-1} x d z
$$

and so

$$
\begin{aligned}
& \left\|\lambda B(\lambda B+t)^{-1} \lambda B y_{\lambda}\right\| \\
& \quad \leq \frac{1}{2 \pi} \int_{\gamma_{0}} \frac{|z|}{|z+t|}\left\|(A+z)^{-1}\right\|\left\|\lambda B(\lambda B-z)^{-1} x\right\||d z| \\
& \quad \leq K \int_{0}^{+\infty} \frac{r}{\sqrt{t^{2}+r^{2}+2 \operatorname{trcos} \theta_{0}}} \phi_{\lambda}(r) \frac{d r}{r}
\end{aligned}
$$

where K is a constant depending only on A and B, and

$$
\phi_{\lambda}(r)=\max \left\{\left\|\lambda B\left(\lambda B-r e^{i \theta_{0}}\right)^{-1} x\right\|,\left\|\lambda B\left(\lambda B-r e^{-i \theta_{0}}\right)^{-1} x\right\|\right\}=\phi_{1}\left(\frac{r}{\lambda}\right)
$$

The hypothesis $x \in D_{B}(\theta, p)$ means that $r^{\theta} \phi_{1}(r) \in L_{*}^{p}\left(\mathbf{R}^{+}\right)$(see [DG]); thus we have

$$
\begin{aligned}
& t^{\theta}\left\|\lambda B(\lambda B+t)^{-1} \lambda B y_{\lambda}\right\| \\
& \leq K \int_{0}^{+\infty} \frac{r t^{\theta}}{\sqrt{t^{2}+r^{2}+2 t r \cos \theta_{0}}} \phi_{\lambda}(r) \frac{d r}{r} \\
& =K \int_{0}^{+\infty} \frac{\left(r t^{-1}\right)^{1-\theta}}{\sqrt{1+\left(r t^{-1}\right)^{2}+2 r t^{-1} \cos \theta_{0}}} r^{\theta} \phi_{\lambda}(r) \frac{d r}{r} \\
& =K f * g(t)
\end{aligned}
$$

where

$$
\begin{aligned}
& f(t)=\frac{t^{1-\theta}}{\sqrt{1+t^{2}+2 t \cos \theta_{0}}} \in L_{*}^{1}\left(\mathbf{R}^{+}\right) \\
& g(t)=t^{\theta} \phi_{\lambda}(t) \in L_{*}^{p}\left(\mathbf{R}^{+}\right)
\end{aligned}
$$

By Young's theorem, we can write

$$
\begin{aligned}
\| t^{\theta} \lambda B(& \lambda B+t)^{-1} \lambda B y_{\lambda} \|_{L_{*}^{p}\left(\mathbf{R}^{+}\right)} \\
& \leq K\|f\|_{L_{*}^{1}\left(\mathbf{R}^{+}\right)}\|g\|_{L_{*}^{p}\left(\mathbf{R}^{+}\right)} \\
& \leq K^{\prime}\left(\int_{0}^{+\infty}\left(r^{\theta} \phi_{\lambda}(r)\right)^{p} \frac{d r}{r}\right)^{1 / p} \\
& =K^{\prime} \lambda^{\theta}\left(\int_{0}^{+\infty}\left(r^{\theta} \phi_{1}(r)\right)^{p} \frac{d r}{r}\right)^{1 / p} \\
& \leq K^{\prime \prime} \lambda^{\theta}\|x\|_{D_{B}(\theta, p)}
\end{aligned}
$$

where $K^{\prime \prime}$ is a constant depending only on A and B, see [DG]. On the other hand,

$$
\begin{aligned}
& \left\|t^{\theta} \lambda B(\lambda B+t)^{-1} \lambda B y_{\lambda}\right\|_{L_{*}^{p}\left(\mathbf{R}^{+}\right)} \\
& =\left(\int_{0}^{+\infty}\left(t^{\theta}\left\|\lambda B(\lambda B+t)^{-1} \lambda B y_{\lambda}\right\|\right)^{p} \frac{d t}{t}\right)^{1 / p} \\
& =\lambda^{1+\theta}\left(\int_{0}^{+\infty}\left(t^{\theta}\left\|B(B+t)^{-1} B y_{\lambda}\right\|\right)^{p} \frac{d t}{t}\right)^{1 / p} \\
& =\lambda^{1+\theta}\left\|B y_{\lambda}\right\|_{D_{B}(\theta, p)}
\end{aligned}
$$

hence

$$
\lambda^{\theta}\left\|\lambda B y_{\lambda}\right\|_{D_{B}(\theta, p)} \leq K^{\prime \prime} \lambda^{\theta}\|x\|_{D_{B}(\theta, p)}
$$

or

$$
\left\|\lambda B(\overline{A+\lambda B})^{-1} x\right\|_{D_{B}(\theta, p)} \leq K^{\prime \prime}\|x\|_{D_{B}(\theta, p)}
$$

This is the inequality that we wanted. It implies that

$$
\left\|\lambda B(\overline{A+\lambda B})^{-1}\right\|_{D_{B}(\theta, p)} \leq K^{\prime \prime}
$$

which shows the λ-regularity of the pair (A, B) on $D_{B}(\theta, p)$ by Remark 4.2.

Let us mention another case of λ-regularity which is a consequence of Theorem 1.2 applied in the context of [DV], namely when $B^{i s}$ is bounded for all $s \in[-1,+1]$:

Corollary 2.3. Let H be a Hilbert space and let A and B be two positive operators in H satisfying H_{0}, H_{1} and H_{2}. If $0 \in \rho(B)$ and $\sup \left\{\left\|B^{i s}\right\|||s| \leq 1\}<\right.$ $+\infty$, then the pair (A, B) is λ-regular in H.

Proof of Corollary 2.3. As mentioned in [DV], under the hypothesis that $\sup \left\{\left\|B^{i s}\right\|||s| \leq 1\}<+\infty, D_{B}(\theta, 2)=D\left(B^{\theta}\right)\right.$. Thus Theorem 2.1 implies that (A, B) is a λ-regular pair in $D\left(B^{\theta}\right)$. Then Dore and Venni show that, under the hypothesis of Corollary $2.3,(A, B)$ is a regular pair in H. An adaptation of their proof can be done to prove that in fact, the pair is λ-regular. Indeed, for $x \in H$, by Theorem 2.1, observing that $B^{-\theta} x \in D_{B}(\theta, 2)$, we have

$$
\begin{aligned}
\left\|\lambda B(A+\lambda B)^{-1} x\right\| & =\left\|B^{\theta} \lambda B(A+\lambda B)^{-1} B^{-\theta} x\right\| \\
& \leq C\left\|B^{\theta} B^{-\theta} x\right\|=C\|x\|
\end{aligned}
$$

where $C>0$ is independent of $\lambda>0$.

Construction of Example 2.2. Let G be a complex Hilbert space and let A and B be two positive operators with B bounded, satisfying hypotheses H_{1} and H_{2}. Observe that since B is bounded, H_{0} is also satisfied. If moreover $0 \in \rho(A)$, then by Theorem 1.1, the pair (A, B) is regular and $G=D_{B}(\theta, p)$ for every $\theta \in(0,1)$ and $p \in[1, \infty]$. Hence if the pair (A, B) is not λ-regular, we are done.

In order to construct such a pair, we consider, as in [BC], the space

$$
G=\ell_{2}(H)=\left\{x=\left(x_{k}\right)_{k \in \mathbf{N}}, x_{k} \in H \text { and }\|x\|^{2}=\sum_{k=1}^{+\infty}\left\|x_{k}\right\|^{2}<+\infty\right\}
$$

where $(H,\|\cdot\|)$ is a complex Hilbert space. A family $\left(A_{k}\right)_{k \in \mathbf{N}}$ of bounded operators on H defines the following closed densely defined operator A on G :

$$
\left\{\begin{array}{l}
D(A):=\left\{x=\left(x_{k}\right)_{k \in \mathbf{N}}, x_{k} \in H, \sum_{k \in \mathbf{N}}\left\|A_{k} x_{k}\right\|^{2}<\infty\right\} \tag{2.1}\\
(A x)_{k}:=A_{k} x_{k}, k \in \mathbf{N} \text { for } x=\left(x_{k}\right)_{k \in \mathbf{N}} \in D(A)
\end{array}\right.
$$

Moreover A is bounded if and only if $\sup _{k \in \mathbf{N}}\left\|A_{k}\right\|<\infty$ and if this is the case, we have $\|A\|=\sup _{k \in \mathbf{N}}\left\|A_{k}\right\|$.

If $0 \in \rho\left(A_{k}\right)$ for all $k \in \mathbf{N}$ and $\sup _{k \in \mathbf{N}}\left\|A_{k}^{-1}\right\|<\infty$, then $0 \in \rho(A)$. As in [BC], we shall say that the family of positive operators $\left(A_{k}\right)_{k \in \mathbf{N}}$ of type $\left(0, M_{k}\right)$ satisfies property (P) if for every $k \in \mathbf{N}$,
(i) $\sigma\left(A_{k}\right) \subset[0, \infty)$ and
(ii) for every $\theta \in\left[0, \pi\left[\right.\right.$, there is $M(\theta)$, independent of k, such that $\left\|\left(I+z A_{k}\right)^{-1}\right\| \leq$ $M(\theta)$, for every $z \in \Sigma_{\theta}$.

We will need the following slight extension of Lemma 4.1 of [BC], which we state without proof.

LEMMA 2.4. Let $\left(A_{k}\right)_{k \in \mathbf{N}},\left(B_{k}\right)_{k \in \mathbf{N}}$ be two families of bounded positive operators on H, satisfying property (P) and such that $A_{k} B_{k}=B_{k} A_{k}$ for all $k \in \mathbf{N}$. Then the operators A and B defined by (2.1) are densely defined and of type $\left(0, M_{A}\right)$ and $\left(0, M_{B}\right)$ respectively. Moreover, the pair (A, B) satisfies hypotheses H_{0}, H_{1}, H_{2}.

Now suppose that $\left(A_{k}\right)_{k \in \mathbf{N}}$ and $\left(\tilde{B}_{k}\right)_{k \in \mathbf{N}}$ are two families of operators in H as in Lemma 2.4 satisfying (2.2) and (2.3):

$$
\begin{equation*}
0 \in \rho\left(A_{k}\right) \text { for every } k \in \mathbf{N} \text { and } \sup _{k \in \mathbf{N}}\left\|A_{k}^{-1}\right\|<\infty \tag{2.2}
\end{equation*}
$$

(2.3) $\quad \forall l \geq 1, \exists x_{l} \in H,\left\|x_{l}\right\|=1$, such that $l\left\|A_{l} x_{l}+\tilde{B}_{l} x_{l}\right\| \leq\left\|A_{l} x_{l}\right\|$.

Set $B_{k}=\mu_{k} \tilde{B}_{k}$, with $\mu_{k}>0, k \in \mathbf{N}$ such that $\left\|B_{k}\right\| \leq 1$ for all $k \in \mathbf{N}$. Then the families $\left(A_{k}\right)_{k \in \mathbf{N}}$ and $\left(B_{k}\right)_{k \in \mathbf{N}}$ also satisfy the assumptions of Lemma 2.4. The pair (A, B) defined by (2.1) satisfies H_{0}, H_{1}, H_{2}. Moreover $0 \in \rho(A)$ by (2.2) and B is bounded with $\|B\| \leq 1$.

We claim that the regular pair (A, B) is not λ-regular. Clearly for every $\lambda>0$, the pair $(A, \lambda B)$ is regular and if (A, B) is λ-regular, then there exists $M \geq 1$, independent of λ such that for all $y \in G$,

$$
\begin{equation*}
\left\|A(A+\lambda B)^{-1} y\right\| \leq M\|y\| \tag{2.4}
\end{equation*}
$$

Choose $y=y^{(l)}=\left(y_{k}^{(l)}\right)_{k \in \mathbf{N}}$ with

$$
\begin{aligned}
& y_{k}^{(l)}=0 \text { for } k \neq l \\
& y_{l}^{(l)}=\left(A_{l}+\tilde{B}_{l}\right) x_{l}, l \in \mathbf{N}
\end{aligned}
$$

Hence with $\lambda=\mu_{l}^{-1}$, from (2.4) we obtain

$$
\begin{equation*}
M\left\|\left(A_{l}+\tilde{B}_{l}\right) x_{l}\right\| \geq\left\|A_{l} x_{l}\right\| \geq l\left\|\left(A_{l}+\tilde{B}_{l}\right) x_{l}\right\| \tag{2.5}
\end{equation*}
$$

for every $l \in \mathbf{N}$, a contradiction since $\left\|\left(A_{l}+\tilde{B}_{l}\right) x_{l}\right\| \neq 0$.
It remains to construct the operators A_{l} and \tilde{B}_{l}. For this purpose, we shall need the following lemma, which can be essentially found in [BC].

Lemma 2.5. Let H be a complex separable Hilbert space with a Schauder basis $\left(e_{n}\right)_{n \in \mathbf{N}}$ and let $\left(e_{n}^{*}\right)_{n \in \mathbf{N}}$ be the corresponding coordinate functionals. Let $\left(c_{n}\right)_{n \in \mathbf{N}}$ be a nondecreasing sequence of positive real numbers and let C_{k} be the linear operators defined by

$$
\begin{equation*}
C_{k} x:=\sum_{l=0}^{N_{k}} c_{l} e_{l}^{*}(x) e_{k} \tag{2.6}
\end{equation*}
$$

where $N_{k} \in \mathbf{N}$ for all $k \in \mathbf{N}$.
Then the operators C_{k} are bounded positive operators of type $\left(0, M_{k}\right)$ satisfying property (P). Moreover, $0 \in \rho\left(C_{k}\right)$ for all $k \in \mathbf{N}$ and $\sup _{k \in \mathbf{N}}\left\|C_{k}^{-1}\right\|<\infty$.

In view of this lemma, if $\left(a_{n}\right)_{n \in \mathbf{N}}$ and $\left(b_{n}\right)_{n \in \mathbf{N}}$ are two nondecreasing sequences of positive numbers and A_{k}, \tilde{B}_{k} are defined by (2.6) where $\left(N_{k}\right)_{k \in \mathbf{N}}$ is an arbitrary sequence of natural numbers, then the operators A_{k}, \tilde{B}_{k} satisfy all required properties except (2.3). In order to satisfy this condition, we choose for $\left(e_{n}\right)_{n \in \mathbf{N}}$ a conditional basis of ℓ_{2} as in [BC] and we choose for $\left(a_{n}\right)_{n \in \mathbf{N}},\left(b_{n}\right)_{n \in \mathbf{N}}$ the sequences denoted by $f(n)$ and $g(n)$ in [BC], having the property that

$$
\sup _{x \in G_{0},\|x\|=1}\left\|\sum_{k=0}^{\infty} \frac{a_{k}}{a_{k}+b_{k}} e_{k}^{*}(x) e_{k}\right\|=\infty
$$

where $G_{0}=\operatorname{span}\left\{e_{n}, n \in \mathbf{N}\right\}$. It follows that for every $l \in \mathbf{N}$, there exists $N_{l} \in \mathbf{N}$ and $\alpha_{k, l} \in \mathbf{C}$ for $0 \leq k \leq l$ such that

$$
\left\|\sum_{k=0}^{N_{l}} \frac{a_{k}}{a_{k}+b_{k}} e_{k}^{*}\left(y^{(l)}\right) e_{k}\right\| \geq l
$$

where $y^{(l)}=\sum_{k=0}^{N_{l}} \alpha_{k, l} e_{l}, 0<\left\|y^{(l)}\right\| \leq 1$. Setting

$$
\left\{\begin{array}{l}
A_{k} x=\sum_{m=0}^{N_{k}} a_{m} e_{m}^{*}(x) e_{m} \\
\tilde{B}_{k} x=\sum_{m=0}^{N_{k}} b_{m} e_{m}^{*}(x) e_{m}
\end{array}\right.
$$

we obtain

$$
\left\|A_{l}\left(A_{l}+\tilde{B}_{l}\right)^{-1} y^{(l)}\right\| \geq l\left\|y^{(l)}\right\|
$$

or equivalently

$$
\left\|A_{l} \tilde{x}^{(l)}\right\| \geq l\left\|\left(A_{l}+\tilde{B}_{l}\right) \tilde{x}^{(l)}\right\|
$$

where $\tilde{x}^{(l)}=\left(A_{l}+\tilde{B}_{l}\right)^{-1} y^{(l)} \neq 0$. Setting

$$
x^{(l)}=\frac{\tilde{x}^{(l)}}{\left\|\tilde{x}^{(l)}\right\|}
$$

we obtain (2.3). This concludes the construction of Example 2.2.
Remark 7. In this construction, we can obtain a bounded operator A^{\prime} by defining

$$
A_{k}^{\prime}=v_{k} A_{k} \text { with } v_{k}>0, k \in \mathbf{N}
$$

in order to ensure that $\left\|A_{k}^{\prime}\right\| \leq 1$. Then, similar arguments show that the pair (A^{\prime}, B) does not satisfy (1.1) λ_{λ} although it satisfies (1.1).

It follows from Theorem 2.1 that $0 \notin \rho\left(A^{\prime}\right) \cup \rho(B)$. Hence one cannot assert as in Example 2.2 that the pair $\left(A^{\prime}, B\right)$ is regular.

References

[BC] J. B. Baillon and Ph. Clément, Examples of unbounded imaginary powers of operators, J. Funct. Anal. 100, (1991), 419-434.
[CD] Ph. Clément and S. Guerre-Delabrière, On the regularity of abstract Cauchy problems of order one and boundary value problems of order two, Publ. Math. de Univ. P. et M. Curie 119 (1997), 1-44.
[DG] G. Da Prato et P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures et Appl. 54 (1975), 305-387.
[DV] G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Zeitschr. 196 (1987), 189-201.
[G] P. Grisvard, Equations différentielles abstraites, Ann. Sci. École Norm. Sup. (1969), 311-395.
[K] H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346.
[L] Ch. Lemerdy, Counterexamples on L^{P}-maximal regularity, preprint.
[S] P. E. Sobolevski, Fractional powers of coercively positive sums of operators, Dokl. Akad. Nauk SSSR 225 (1975), 6, 1638-1641.
[Tan] H. Tanabe, Equations of evolution, Pitman, San Francisco, 1979.
[Tr] H. Triebel, Interpolation theory, function spaces, differential operators, North Holland, 1978.

Shangquan Bu, Department of Mathematics, University of Tsinghua, Beijing 100084, China
Equipe d'Analyse, Case 186, Université Paris 6, 4 Place Jussieu, 75252 Paris, Cedex 05, France
sbu@math.tsinghua.edu.cn
Philippe Clément, Department of Technical Mathematics and Informatics, Delft University of Technology, P. O. Box 5031, 2600 GA Delft, The Netherlands clement@twi.tudelft.nl

Sylvie Guerre-Delabrière, Equipe d'Analyse, Case 186, Université Paris 6, 4 Place Jussieu, 75252 Paris, Cedex 05, France
syg@ccr.jussieu.fr

