ADDENDUM TO OUR PAPER
 "CONFORMAL MOTION OF CONTACT MANIFOLDS WITH CHARACTERISTIC VECTOR FIELD IN THE k-NULLITY DISTRIBUTION"

Ramesh Sharma

In [4], Okumura proved that if a Sasakian manifold M of dimension >3, admits a non-isometric conformal motion ν, then v is special concircular and hence, if, in addition, M is complete and connected, then it is isometric to a unit sphere. The last part of this result follows from Obata's theorem [3]: A complete connected Riemannian manifold (M, g) of dimension >1, admits a non-trivial solution ρ of partial differential equations $\nabla \nabla \rho=-c^{2} \rho g$ (for $c=$ a constant >0), if and only if M is isometric to a Euclidean sphere of radius 1/c. Recently, Sharma and Blair [5] extended Okumura's result to dimension 3 assuming constant scalar curvature and proved the following: Let v be a non-isometric conformal motion on a 3-dimensional Sasakian manifold. If the scalar curvature of M is constant, then M is of constant curvature and v is special concircular. Generalizing this result we prove:

THEOREM. Let v be a non-isometric conformal motion on a 3-dimensional Sasakian manifold M such that v leaves the scalar curvature of M invariant. Then M is of constant curvature 1 and v is special concircular. Hence, if, in addition, M is complete and connected, then M is isometric to a unit sphere.

COROLLARY. Among all complete and simply connected 3-dimensional Sasakian manifolds only the unit 3-sphere admits a non-isometric conformal motion that leaves the scalar curvature invariant.

For a $(2 n+1)$-dimensional contact metric manifold $M(\eta, \xi, \phi, g)$ we know [1] that

$$
\begin{gather*}
\eta(\xi)=1,(d \eta)(X, Y)=g(X, \phi Y), \eta(X)=g(X, \xi), \phi^{2}=-I+\eta \otimes \xi \tag{1}\\
\phi \xi=0, \eta \circ \phi=0, g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \operatorname{rank} \phi=2 n . \tag{2}
\end{gather*}
$$

[^0]A contact metric manifold is said to be K-contact if ξ is Killing. For a K-contact manifold,

$$
\begin{align*}
\nabla_{X} \xi & =-\phi X \tag{3}\\
Q \xi & =2 n \xi \tag{4}
\end{align*}
$$

A Sasakian (normal contact metric) manifold is a contact metric manifold satisfying either one of the following:

$$
\begin{gather*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{5}\\
\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X \tag{6}
\end{gather*}
$$

A Sasakian manifold is K-contact. A 3-dimensional contact manifold is Sasakian. The Ricci tensor of a 3-dimensional Sasakian manifold [2] is given by

$$
\begin{equation*}
S(X, Y)=\frac{1}{2}\{(r-2) g(X, Y)+(6-r) \eta(X) \eta(Y)\} \tag{7}
\end{equation*}
$$

where r denotes the scalar curvature.
A vector field v on a Riemannian manifold (M, g) is a conformal motion if there is a smooth scalar function ρ on M such that

$$
\begin{equation*}
\mathfrak{£}_{\nu} g=2 \rho g . \tag{8}
\end{equation*}
$$

If ρ is constant, v is homothetic, and for $\rho=0, v$ is Killing. We say that a conformal motion is non-isometric if it is not Killing on any open neighborhood in M. A conformal motion v defined by (8) satisfies the following (see [5]):

$$
\begin{gather*}
\left(£_{v} S\right)(X, Y)=-(m-2)\left(\nabla_{X} d \rho\right) Y+(\Delta \rho) g(X, Y) \tag{9}\\
£_{v} r=-2 \rho r+2(m-1) \Delta \rho \tag{10}
\end{gather*}
$$

where m is the dimension of M and $\Delta=-\operatorname{div}(D), D$ being the gradient operator. A conformal motion is called an infinitesimal special concircular transformation if the associated function ρ satisfies $\nabla \nabla \rho=\left(-c_{1} \rho+c_{2}\right) g$ for some constants c_{1} and c_{2}.

In order to prove the theorem we need this result:
LEMMA. A homothetic vector field on a K-contact manifold is Killing.
Proof. As v is homothetic ($£_{v} g=c g$ for a constant c), $£_{v} S=0$. Writing equation (4) as $S(\xi, X)=2 n g(\xi, X)$ and Lie-differentiating it along v we get

$$
S([v, \xi], X)=2 n c g(\xi, X)+2 n g([v, \xi], X)
$$

Substituting ξ for X and using (4) yields $c=0$, proving the lemma.

Proof of the theorem. Since ξ is Killing, $\xi r=0$ and hence $£_{\xi} d r=d £_{\xi} r=0$ and $£_{\xi} D r=0$. Thus

$$
\begin{equation*}
\nabla_{\xi} D r=-\phi D r \tag{11}
\end{equation*}
$$

From (8) and the fact that ξ is unit it follows that

$$
\begin{equation*}
\left(\mathfrak{£}_{\nu} \eta\right) \xi=-\eta\left(\mathfrak{£}_{\nu} \xi\right)=\rho \tag{12}
\end{equation*}
$$

By hypothesis, $v r=0$ and hence $£_{v} d r=0$. From (10) we also have

$$
\begin{equation*}
2 \Delta \rho=r \rho \tag{13}
\end{equation*}
$$

Lie-differentiating (7) along v and using (9) and (13), we have

$$
\begin{equation*}
g\left(\nabla_{X} D \rho, Y\right)=\frac{1}{2}\left[(4-r) \rho g(X, Y)+(r-6)\left\{\left(£_{\nu} \eta\right)(X) \eta(Y)+\left(£_{v} \eta\right)(Y) \eta(X)\right\}\right] \tag{14}
\end{equation*}
$$

Substituting ξ for Y and using (12) we get

$$
\begin{equation*}
\frac{1}{2}(r-6)\left(£_{\nu} \eta\right) X=\rho \eta(X)+g\left(\nabla_{\xi} D \rho, X\right) \tag{15}
\end{equation*}
$$

The equation (15) transforms (14) into

$$
\begin{equation*}
\nabla_{Y} D \rho=\frac{1}{2}(4-r) \rho Y+\eta(Y)\left(2 \rho \xi+\nabla_{\xi} D \rho\right)+g\left(\nabla_{\xi} D \rho, Y\right) \xi \tag{16}
\end{equation*}
$$

Substituting $Y=\xi$ in (16) and taking inner product with ξ, we have

$$
\begin{equation*}
g\left(\nabla_{\xi} D \rho, \xi\right)=\frac{1}{2} \rho(r-8) \tag{17}
\end{equation*}
$$

Through (16) we compute $R(X, Y) D \rho=\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) D \rho$ and contract it as $g\left(R\left(e_{i}, Y\right) D \rho, e_{i}\right)$ with respect to an orthonormal basis $\left(e_{i}\right)$ and obtain

$$
\begin{align*}
S(Y, D \rho)=(r-6) Y \rho+\rho Y r & +3 g\left(\nabla_{\xi} D \rho, \phi Y\right)+\left(2 \xi \rho+\operatorname{div} \nabla_{\xi} D \rho\right) \eta(Y) \\
& -2 g\left(\nabla_{Y} \nabla_{\xi} D \rho, \xi\right)+g\left(\nabla_{\xi} \nabla_{\xi} D \rho, Y\right) \tag{18}
\end{align*}
$$

Replacing Y by ϕY and using (7) gives

$$
\begin{align*}
\frac{1}{2}(2-r) g(Y, \phi D \rho)= & (r-6) g(\phi Y, D \rho)+\rho g(\phi Y, D r)-3 g\left(\nabla_{\xi} D \rho, Y\right) \\
& +3 \eta(Y) g\left(\nabla_{\xi} D \rho, \xi\right) \\
& -2 g\left(\nabla_{\phi Y} \nabla_{\xi} D \rho, \xi\right)+g\left(\nabla_{\xi} \nabla_{\phi Y} D \rho, \xi\right) \\
& -g\left(\nabla_{\xi} D \rho, \phi \nabla_{\xi} Y\right) \tag{19}
\end{align*}
$$

where we used the equation

$$
g\left(\nabla_{\xi} \nabla_{\xi} D \rho, \phi Y\right)=g\left(\nabla_{\xi} \nabla_{\phi Y} D \rho, \xi\right)-g\left(\nabla_{\xi} D \rho, \nabla_{\xi} \phi Y\right)
$$

that can be obtained by differentiating the symmetry identity $g\left(\nabla_{\xi} D \rho, \phi Y\right)=$ $g\left(\nabla_{\phi Y} D \rho, \xi\right)$ (this follows from Poincare lemma: $d^{2}=0$), along ξ. We now use (16) and (3) to rearrange the last three terms of (19) as

$$
\begin{aligned}
g(R & \left.(\xi, \phi Y) D \rho+\nabla_{[\xi, \phi Y]} D \rho, \xi\right)-g\left(\nabla_{\xi} D \rho, \nabla_{\xi} \phi Y\right)-g\left(\nabla_{\phi Y} \nabla_{\xi} D \rho, \xi\right) \\
\quad & =-g(Y, \phi D \rho)+g\left(\nabla_{\xi} D \rho, \phi^{2} Y\right)-g\left(\nabla_{\phi Y} \nabla_{\xi} D \rho, \xi\right)(\operatorname{using}(3.12)) \\
& =-g(Y, \phi D \rho)+g\left(\nabla_{\xi} D \rho, \phi^{2} Y\right)-(\phi Y) g\left(\nabla_{\xi} D \rho, \xi\right)+g\left(\nabla_{\xi} D \rho, \nabla_{\phi Y} \xi\right) \\
& =-g(\phi D \rho, Y)+\frac{1}{2}(8-r)(\phi Y) \rho-\frac{1}{2} \rho(\phi Y) r,
\end{aligned}
$$

Consequently, (19) reduces to

$$
\frac{1}{6} \rho(\phi Y) r=g\left(\nabla_{\xi} D \rho, Y\right)+\frac{1}{2} \rho(8-r) \eta(Y)
$$

and therefore, we obtain

$$
\begin{equation*}
\nabla_{\xi} D \rho=-\frac{1}{6} \rho \phi D r+\frac{1}{2} \rho(r-8) \xi . \tag{20}
\end{equation*}
$$

Next, differentiating (17) along Y gives

$$
\begin{equation*}
g\left(\nabla_{Y} \nabla_{\xi} D \rho, \xi\right)=g\left(\nabla_{\xi} D \rho, \phi Y\right)+\frac{1}{2}\{(r-8) Y \rho+\rho Y r\} \tag{21}
\end{equation*}
$$

Further, the divergence term in (18) is

$$
\operatorname{div}\left\{-(\rho / 6) \phi D r+\frac{1}{2} \rho(r-8) \xi\right\}=\frac{1}{2}(r-8) \xi \rho-(1 / 6) g(\phi D r, D \rho)
$$

because (e_{i}) can be taken as a ϕ-adapted base ($e, \phi e, \xi$) and hence

$$
-(\nabla \nabla r)\left(e_{i}, \phi e_{i}\right)=g\left(\phi \nabla_{e} D r, e\right)+g\left(\phi \nabla_{\phi e} D r, \phi e\right)=0
$$

Thus (18) assumes the form
$S(Y, D \rho)=2 Y \rho-\frac{1}{3} \rho Y r-\frac{1}{6} \xi \rho g(Y, \phi D r)+\eta(Y)\left\{(r-6) \xi \rho-\frac{1}{6} g(\phi D r, D \rho)\right\}$.
Use of (7) in the above equation gives

$$
\begin{align*}
\frac{1}{2}(r-6) Y \rho+\frac{1}{3} \rho Y r= & \left\{\frac{3}{2}(r-6) \xi \rho-\frac{1}{6} g(\phi D r, D \rho)\right\} \eta(Y) \\
& -\frac{1}{6} \xi \rho g(\phi D r, Y) \tag{22}
\end{align*}
$$

Substituting $Y=\xi$ gives

$$
\begin{equation*}
(r-6) \xi \rho=\frac{1}{6} g(\phi D r, D \rho) \tag{23}
\end{equation*}
$$

If $r=6$ on M, then (7) shows that M is Einstein, and being 3-dimensional, is of constant curvature 1 . Now let $r \neq 6$ in some neighborhood $N(p)$ of a point p in M. Substituting $Y=\phi D r$ in (22) and using (23) yields

$$
(\xi \rho)\left(|D r|^{2}+18(r-6)^{2}\right)=0
$$

As $r \neq 6, \xi \rho=0$, on $N(p)$. Differentiating it along ξ we have $g\left(\xi, \nabla_{\xi} D \rho\right)=0$ and hence, from (17) we obtain $(r-8) \rho=0$. But $\rho \neq 0$ in any open neighborhood, by hypothesis, and so, $r=8$ on $N(p)$. Then (22) reduces to $Y \rho=0$; i.e., $\rho=$ constant, and hence by Lemma $2, \rho=0$ on $N(p)$. This again contradicts our hypothesis. Hence M is of constant curvature 1 , and as $r=6$, (14) reduces to $\nabla \nabla \rho=-\rho g$; i.e., v is special concircular. The rest of the theorem follows from Obata's theorem.

REFERENCES

1. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, no. 509, Springer-Verlag, Berlin, 1976.
2. D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q \phi=\phi Q$, Kodai Math. J. 13 (1990), 391-401.
3. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340.
4. M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces, Tohoku Math. J. 14 (1962), 398-412.
5. R. Sharma and D. E. Blair, Conformal motion of contact manifolds with characteristic vector field in the k-nullity distribution, Illinois J. Math. 40 (1996), 553-563.

Department of Mathematics, University of New Haven, West Haven, CT 06516
rs@charger.newhaven.edu

[^0]: Received September 18, 1997.
 1991 Mathematics Subject Classification. Primary 53C25; Secondary 53C15.
 Research supported by a University of New Haven Faculty Fellowship.

