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ADDENDUM TO OUR PAPER
"CONFORMAL MOTION OF CONTACT MANIFOLDS

WITH CHARACTERISTIC VECTOR FIELD
IN THE k-NULLITY DISTRIBUTION"

RAMESH SHARMA

In [4], Okumura proved that if a Sasakian manifold M of dimension > 3, admits
a non-isometric conformal motion v, then v is special concircular and hence, if, in
addition, M is complete and connected, then it is isometric to a unit sphere. The
last part of this result follows from Obata’s theorem [3]: A complete connected
Riemannian manifold (M, g) of dimension > 1, admits a non-trivial solution p of
partial differential equations Wp -c2pg (for c a constant > 0), if and only if
M is isometric to a Euclidean sphere of radius 1/c. Recently, Sharma and Blair [5]
extended Okumura’s result to dimension 3 assuming constant scalar curvature and
proved the following: Let v be a non-isometric conformal motion on a 3-dimensional
Sasakian manifold. If the scalar curvature of M is constant, then M is of constant
curvature and v is special concircular. Generalizing this result we prove:

THEOREM. Let v be a non-isometric conformal motion on a 3-dimensional
Sasakian manifoldM such that v leaves the scalar curvature ofM invariant. Then M
is of constant curvature and v is special concircular. Hence, if, in addition, M is
complete and connected, then M is isometric to a unit sphere.

COROLLARY. Among all complete and simply connected 3-dimensional Sasakian
manifolds only the unit 3-sphere admits a non-isometric conformal motion that leaves
the scalar curvature invariant.

For a (2n + l)-dimensional contact metric manifold M(rl, , c, g) we know [1]
that

r/(e) 1, (dr/)(X, Y) g(X, Y), rl(X) g(X, ), 2 -I 4- r/ (R) , (1)

clb O, rl o 4) O, g(cDX, 4)Y) g(X, Y) o(X)rl(Y), rank b 2n. (2)
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A contact metric manifold is said to be K-contact if is Killing. For a K-contact
manifold,

Vx -Ox. (3)

Q 2n. (4)

A Sasakian (normal contact metric) manifold is a contact metric manifold satisfying
either one of the following:

R(X, Y) rI(Y)X rI(X)Y. (5)

(VxC/))Y g(X, Y) rI(Y)X. (6)

A Sasakian manifold is K-contact. A 3-dimensional contact manifold is Sasakian.
The Ricci tensor of a 3-dimensional Sasakian manifold [2] is given by

S(X, Y) {(r 2)g(X, Y) + (6- r)rl(X)rl(Y)}, (7)

where r denotes the scalar curvature.
A vector field v on a Riemannian manifold (M, g) is a conformal motion if there

is a smooth scalar function p on M such that

vg 2pg. (8)

If p is constant, v is homothetic, and for p 0, v is Killing. We say that a conformal
motion is non-isometric if it is not Killing on any open neighborhood in M. A
conformal motion v defined by (8) satisfies the following (see [5]):

(vS)(X, Y) -(m 2)(Vxdp)Y + (Ap)g(X, Y), (9)

r -2pr + 2(m 1) Ap, (10)

where rn is the dimension ofM and A div(D), D being the gradient operator. A
conformal motion is called an infinitesimal special concircular transformation if the
associated function p satisfies VVp (-cp + c2)g for some constants cl and c2.

In order to prove the theorem we need this result:

LEMMA. A homothetic vectorfield on a K-contact manifold is Killing.

Proof. As v is homothetic (g cg for a constant c), S 0. Writing
equation (4) as S(se, X) 2n g(, X) and Lie-differentiating it along v we get

S([v, ], X) 2ncg(, X) + 2ng([v, ], X).

Substituting for X and using (4) yields c 0, proving the lemma.
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Proof of the theorem. Since is Killing, r 0 and hence dr dr 0
and Dr 0. Thus

VOr -Dr (11)

From (8) and the fact that is unit it follows that

(,r/) -r/() p. (12)

By hypothesis, vr 0 and hence odr O. From (10) we also have

2Ap rp. (13)

Lie-differentiating (7) along v and using (9) and (13), we have

g(VxDp, Y) -[(4-r)pg(X, Y)+(r-6){(vrl)(X)rl(Y)+(vrl)(Y)rl(X)}]. (14)

Substituting for Y and using (12) we get

(r 6)(vr/)X prl(X) + g(VDp, X). (15)

The equation (15) transforms (14) into

VyDp (4- r)pY + r/(Y)(2p + VDp) + g(VDp, Y). (16)

Substituting Y in (16) and taking inner product with , we have

g(VDp, ) -p(r 8). (17)

Through (16) we compute R(X, Y)Dp (VxVr VyVx V[x, YI)DP and contract
it as g(R(ei, Y)Dp, ei) with respect to an orthonormal basis (ei) and obtain

S(Y, Dp) (r 6)Yp + pYr + 3g(V$Dp, CY) + (2sep + div VDp)rI(Y)
2g(VyVDp, ) + g(VVDp, Y). (18)

Replacing Y by Y and using (7) gives

(2 r)g(Y, CDp) (r 6)g(Y, Dp) + pg(dpY, Dr) 3g(V Dp, Y)

+ 3r/(Y)g(V DO, )
2g(VcrVDp, ) + g(VVoyDp, )
g(VDp, CV Y), (19)

where we used the equation

g(VVDp, CY) g(VV4yDp, ) g(VDp, VY),
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that can be obtained by differentiating the symmetry identity g(VDp, OY)
g(VoyDp, ) (this follows from Poincare lemma: d2 0), along . We now use
(16) and (3) to rearrange the last three terms of (I 9) as

g(R(, Y)Dp + 7[.4y]Dp, ) g(VDp, Vg)Y) g(V4yTDp, )
-g(Y, Dp) + g(VDp, 4)2Y) g(VoyVDp, )(using(3.12))

-g(Y, qbDp) + g(VDp, 4)2Y) (cY)g(VDp, ) + g(VDp, 7Oy)

-g(Dp, Y) + (8 r)(dpY)p -p(dpY)r,
Consequently, (19) reduces to

-p(ckY)r g(VDp, Y) + p(8 r)rl(Y),

and therefore, we obtain

7Dp --pckDr + -p(r 8). (20)

Next, differentiating (17) along Y gives

g(TyTDp, es) g(VDp, OY) + {(r 8)Yp + pYr}. (21)

Further, the divergence term in (18) is

div -(p/6)dpDr + -p(r 8) (r 8)p (l/6)g(Dr, Dp),

because (ei) can be taken as a 0-adapted base (e, 4)e, ) and hence

--(TVr)(ei, ei) g(VeDr, e) + g(qV4eDr, qe) O.

Thus (18) assumes the form

S(Y, Dp) 2Yp -pYr -pg(Y, qDr) + rl(Y) (r 6)p -g(dpDr, Dp)

Use of (7) in the above equation gives

(r 6)Yp 4- pYr (r 6)p g(cDDr, Dp) rl(Y)

-jpg(ODr, Y).
6

Substituting Y gives

(22)

(r 6)p 7g(4Dr, Dp). (23)
o
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If r 6 on M, then (7) shows that M is Einstein, and being 3-dimensional, is of
constant curvature 1. Now let r :/: 6 in some neighborhood N(p) of a point p in M.
Substituting Y qbDr in (22) and using (23) yields

(p)(lDrl2 + 18(r 6)2 0.

As r - 6, p 0, on N(p). Differentiating it along we have g(, V Dp) 0 and
hence, from (17) we obtain (r 8)p 0. But p :/: 0 in any open neighborhood, by
hypothesis, and so, r 8 on N(p). Then (22) reduces to Y,o 0; i.e., p constant,
and hence by Lemma 2, p 0 on N(p). This again contradicts our hypothesis.
Hence M is of constant curvature 1, and as r 6, (14) reduces to Wp -pg; i.e.,
v is special concircular. The rest of the theorem follows from Obata’s theorem.
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