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ON THE SEQUENCES THAT ARE GOOD IN THE MEAN
FOR POSITIVE Lp-CONTRACTIONS, 1 _< p <

DO(AN OMEZ AND SEBASTIAN FERRANDO

1. Introduction

It is a well-known fact that, if a weight n is good a.e. for all operators induced by
measure preserving transformations (MPTs), then it is also good a.e. for any Dunford-
Schwartz operator (i.e., L L-contraction) [BO]. Similar results have been ob-
tained in various other settings [JO], [JOW], [(LO]. When T is an L l-contraction
induced by an MPT, various types of sequences, such as Z, block sequences [BL], se-
quences satisfying the cone condition [BL], [RW], sequence of squares and sequence
of primes [RW] are good in the mean for T. Recently, it was proved in [F] that,
sequences satisfying the cone condition are good a.e. and in the mean for the class of
bounded superadditive processes relative to MPTs.

In this article, our aim is to show that sequences which are good in the mean for
invertible MPTs are also good in the mean for T-(super)additive processes relative to
positive Lp-contractions(when < p < cxz), or positive Dunford-Schwartz operators
on L.

Let (X, E, #) be a finite measure space, and let T" Lp(X) Lp(X) be a
positive linear contraction where < p < cx is fixed. In order to avoid certain
difficulties we will assume that (X, E,/z) is a Lebesgue space. A strictly increasing
sequence n {nk} of integers is called good in the p-mean for T if, for every
f Lp, limN Tn’f exists in the Lp-norm If r is a measurable
transformation on X, we say that n is good in the p-mean for r when it is good in
the p-mean for the operator T induced by r. As usual, n is called good in the p-mean
if it is good in the p-mean for all MPTs.
A family F {F, }n>0 of functions in Lp is called a T-superadditive process

if Fn+m > Fn + TFm a.e. for all n, m > 0 (F0 0), where T is a positive linear
operator on Lp. If the reverse inequality holds, it is called T-subadditive, and if the

n-I Tequality holds, i.e., F Yi=0 F, it is called T-additive. A nonnegative T-
superadditive process F is called bounded if ’F SUPn>_l "ff f Fdlz < cx. It is well
known that, if F C L+ is bounded, then lim,,__, -ff f Fndlz ’F.

In order to define the "averages" of a T-superadditive process F Fn} along a
general sequence n, it will be convenient to view F as a collection of functions {fk}
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in Lp with partial sums Fn fo + f + + fn- satisfying the condition

TmFn < Fm+n Fm, m, n > O.

Following [JO], in the sequel we will use the generalized notation for sequences.
Namely, a sequence n will be a family of integers n {n(k,/)} such that

n(k,l) <n(k,/2) if Ii <12, and n(kl,l) <n(k2,1) if k <k2.
Given a sequence n {n(k, l)}, we define the average of a superadditive process F
along n as, for K > and L > 1,

L-1

L
fn(K,j) (x). (*)

N-I(When n {nk}, the averages of F along n will be -’k=0 fnk. A sequence
n {n(k, l) is called good in the p-meanfor T-superadditive processes if, for every
T-superadditive process F, limK, 2 fnx,,j) exists as a double limit in
Lp-norm.

2. The apparatus and the main theorem

The problem of determining when a sequence n is good in the mean for MPTs was
settled by Rosenblatt [R, Theorem ]"

(i) For < p < o, a sequence n is good in the p-mean for invertible MPTs if
ZT__-O e2rin(K,j) for all/3 [0, 1).and only if lim:,N-->o

(ii) When r is a MPT, -1 y._d f(rnK,J)x) converges in Lp-norm Vf Lp, _<
p < cx, ifand only if it converges in L2-normfor all f L2.

Naturally, one asks if the existence of the limit in (i) would imply that the sequence is
good in the p-mean for some operators on Lp. In this section, we will show that if n is
good in the p-mean for (super)additive processes relative to MPTs, then it is good in
the p-mean for (super)additive processes relative to positive Lp-contractions, when
< p < o, or relative to positive Dunford-Schwartz operators on L l. The main

tool in obtaining this result is the apparatus below. Parts of the construction of the
apparatus are standard, therefore we will only give an outline of it here (adapted to
the superadditive setting). The reader is referred to [JO], [J] for the details. In [JO],
due to the intended purpose there, only the case < p < cx was studied. Clearly,
the complications with p in [JO] are due to Chacon’s counterexample for a.e.
convergence for positive linear isometries in L l. We are mainly interested in norm
convergence, hence it is natural to consider also the case p 1.

The apparatus. Let T and S be linear operators induced by the nonsingular invert-
ible point transformations r and r on X and Y, respectively, with w and z as the
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associated weight functions. (If tr is measure preserving, z l.) Then

Tn(f)(x) f(rnx)w(x) and sn(f)(x) f(trnx)zn(X), n >_ 1.

where Wn w(w o r)... (w o rn-l) and Zn z(z r)... (z rn-l). Also assume
that r is aperiodic. Fix K and L l, and choose 8 > 0 such that

L-l P

e
fnr,j d <e if (E) <.

Let m Z+ such that and n (K, L) < m. Construct a Rohlin-Kakutani tower
m Ak) <{Ak}k for r with eor less than and (k=mZ_m+l . Similarly, construct

Pick a constanta Rohlin-Kakutani tower {Bk}k for g with eor less than .
such that (A) fly(B1). Let " A B be an inveible MPT and define
H" Lp(al) Lp(B) by H(f)(y) f(-ly)fll/p, p < , for supp(f) C

ma. Then f, [Hf(y)[Pdv fa, [f(x)[Pd Let A =Ak, and B Uk=IB,
and then extend H: Lp(A) Lp(B) as

H(f)(y) f(-y)
wk(z-k-ly) /P
z(a-y)

where ’A B is the extension of defined by (x)= (akr-k)(x), k
m2, for x 6 Ak. Consequently, if supp(f) C A, then supp(Hf) C B, and

From the construction, it follows that, for f L L, IIHfllL( I/11(.

LEMMA 2.1. Let the operators T, S, and H be as above. If {Fn} C Lp(X) is a
T-superadditive process, then HFn C Lp(Y) is an S-superadditive process.

Proof Itisenoughtoshowthat(HFn)(trmy)zm(y)-- H[(Fnorm)wm](y).Now,

H[(Fn o "gm)tom](y) [(Fn o "gm)(di)-ly)lWm(Cp-ly) l13k(15-k-l Y) [l/p
Zk (tr-k y)
tOk(r-k-m-ltymy)[(Fn(-ltTmy)]Wm(r-m-ltymy)

Zk (r-ky)

Since Wk+m(r-k-m-ltymy) tOm(-m-ltTmy)tOk(r-k-m-lcrmy), and
Zk+m(tr-k-mcrmy) Zm(Y)Zk(Cr-ky), we have

H[(Fn rm)tom](y) Fn(-lt:rmy) Wk+m (15 -k-m f- tymy

Zk+m (ty-k-mtym y)
Zm(y) lip

HFn(crmy)zm(y)

proving the desired equality, r"l
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Now we are ready to obtain the main result.

THEOREM 2.2. Let T be a positive Lp-contraction, < p < cxz, or a positive
Dunford-Schwartz operator on Ll. Ifn {n(k,/)} is a sequence ofpositive integers
which is good in the p-meanfor a class ofsuperadditive processes relative to MPTs,
then it is good in the p-meanfor T-superadditive processes ofthe same class.

Proof First we will prove the theorem when T is a positive invertible linear
isometry of Lp(X), < p < o. Let T be induced by an aperiodic invertible
nonsingular transformation r, and let (Y, E’, v, or) be an invertible measure preserving
system. Fix K, L, and consider the apparatus above (where S is the isometry induced
by tr). Let x 6 Ak N supp(T fn(K,j)). If y x, then

Hfn(K,j)(Y) H fn(K,j)(X) (2)
L

j=o j=o

Now, for any two pairs K, L and K’, L’, let 61 and 62 be chosen such that

L-I P P

fn’,j) d <L,j) du < and
j=o

2

if (E) < 6 and (E) < 32, respectively, as in the apparatus. Let min{6, 32}.
Pick m so that and n (K, L), n (K’, L’) < m, and construct the mapping H as

in the apparatus. Consequently, (2) holds for both fd fn,j) and A,,).
Then

Lp(X)

1
p

=o =o
p

+
=o =o

-’ 2
P

1
j=0

fnr,j) ff
j=0

fnr’,j) d + e by the choice of 6,

H j=0 fn(K,j)
j=0

fn(r’,j)) dv + by (1),

Hfn(K,j) Hfn(K’,j) + e by (2).
j=o j=o
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,_) Hfn(:,j) is Cauchy in theLetting e - 0, and then using the fact that T
norm by hypothesis (since S is induced by measure preserving transformation, and

Hfn is S-superadditive by Lemma 2.1), we have that the averages of the original
T-superadditive process is Cauchy in the norm. This proves the assertion when r
is aperiodic. If r is periodic with period d, the same argument applies with minor
modifications after replacing the sets Ai by disjoint sets A l, A2 Aa, where if
x 6A,thenrkx 6Ak, k= 1,2 d, andr+lx=x.

Next, let T be a positive Lp-contraction. By Akcoglu-Sucheston dilation theorem
[AS] there exists another (larger) Lp-space, say L, and a positive inveible isometry
Q" L L so that DT EQ’D for n 0, where D: Lp(X) L is apositive
isometric imbedding of Lp(X) into L and E: L L is a positive projection. Here,
the process {Dfk} is Q-superadditive in D(Lp), and, for any sequence n,

Dfn(K,j) (3)D
j=0

fn(,j) E
j=0

By the first paa, n is good in the p-mean for superadditive processes relative to positive
invertible isometries, thus it is good in the p-mean for Q, and by (3), it is good in
the p-mean for T.

When p 1, the same argument in the first part implies that if n is good in the
1-mean for superadditive processes relative to MPTs, then it is good in the 1-mean
for superadditive processes relative to positive inveible isometries which are also
L-contractions. Again, we use Akcoglu-Sucheston dilation theorem (for p 1) to
obtain (3). Since E and D preserve L-no for f 6 L L (see also [A]), the
asseion follows from the same argument as in the case < p < .

Not every sequence which is good in the p-mean is good in the p-mean for superad-
ditive processes (see the example below). However, the method of proof of Theorem
2.2, adapted to the additive processes, also gives:

THEOREM 2.3. Let T be a positive Lp-contraction, < p < x), or a positive
Dunford-Schwartz operator on L. Ifn {n(k, /)} is a sequence ofpositive integers
which is good in the p-mean, then it is good in the p-meanfor T.

Remark. If n is good in the mean for invertible isometries, then an argument
similar to that of Theorem 2.2 above shows that it is also good in the p-mean for
T-additive processes when T is a positively dominated operator on Lp, < p < cx,
or is a (not neccesarily positive) Dunford-Schwartz operator, or is a power bounded
Lamperti operator.

Combining Theorem 2.3 and the theorem ofRosenblatt [R], ifwe define the Fourier

7_1 e2rin(K,j) whenevercoefficentfunction C(/3)ofn, by C(fl)= limK,N
the limit exists for all/3 6 [0, 1), we obtain:
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THEOREM 2.4. Ifn is a sequence whose Fourier coefficentfunction C() exists

for all [0, 1), then it is good in the p-mean for all positively dominated Lp-
contractions, < p < o, or Dunford-Schwartz operators on L l.

Recall that the result (i) of Rosenblatt provides a criterion for determining the
sequences that are good in the 2-mean for additive processes (relative to MPTs).
There is, yet, no such criteria known for superadditive processes. We will show in the
following section that for a certain family of sequences (B-sequences) if the process
F has some additional properties, or if the averages of F along subsequences are
defined differently, one can say more about the convergence in the mean. Indeed, the
following shows that the question of which sequences n are good in the p-mean for
superadditive processes is very delicate (which will be discussed in a separate article).

Example. Let fn (-1)n, n 0, 1, 2 Clearly F {Fn} is a bounded
subadditive process (on a one point space). Now, we will define, inductively, a

N-Isequence {nk} such that limN Y-,=0 fnk fails to exist. For, let no 0, n 1,
n2 2, n3 4, n4 5, n5 7, and

n3i2+j, 0 _< j < 3i2, are the next 3i2 even numbers after n3i2_

n3in+j, 0 _< j < 3i2, are the next 3i2 odd numbers after n3i4_ 1.

N-IN- ifN 3i4.Hence, liminfN Y.k=0 fnkThen Y-.k=0 fn 0 ifN 3 2, and is
N-I0, whereas lim SUPN -k=0 fn .

Remarks. 1. The Fourier coefficent function of this sequence exists for all/3
[0, 1), hence, by Theorem 2.4, it is good in the p-mean (for additive processes).

2. For the process F in the example above, the sequence of even (or odd) integers,
sequence of squares, sequence of primes, and block sequences (i.e., sequences of the
form n tABk, where Bk {nk + i}i=0, and n ?, lk " with nk + lk < nk+l)are
good in the p-mean.

3. The superadditive case revised

In [F] it was shown that ifn is a B-sequence (see definition below), then the averages
ofbounded superadditive processes relative to MPTs along n (called moving averages)
are good in the l-mean as well as a.e. However, the definition ofmoving averages used
there is different than (,). In this section we will show in Proposition 3.1 that if the
definition (.) is used, then B-sequences and block sequences need not be good in the
p-mean (nor a.e.) for bounded superadditive processes. We emphasize that in these
two cases the additive averages do converge. For these subsequences we study two
different solutions: the first one is to consider a more restrictive class of superadditive
processes (the Chacon processes) and use the definition (.), and the second solution
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is to redefine the superadditive averages for these subsequences using the definition
in IF]. In both cases, we will show that B-sequences (and block sequences), which
are good in the 1-mean for additive processes, are good in the 1-mean for bounded
superadditive processes. In the sequel, we only concentrate on B-sequences given
that the case of block sequences is similar. We will also concentrate only on the case
p=l.
A sequence n (Un rn) o}n=0 in Z x Z such that rn > 0 for all n is called a

B-sequence if there is a constant satisfying

I{k qn, k + [Vn, Vn + rn) C" l}l _< Bill

for every interval I c Z, where ISI denotes the cardinality of a set S C Z. Notice
that, if l(j) rj, k k(j) vj, and n(k, i) k(j) + i, then B-sequences
can be viewed in terms of the general definition of subsequences. We observe that
the above definition of superadditive averages along a subsequence can be written as
follows:

--(Fv,,+r,, Fv,,), (4)
rn

PROPOSITION 3.1. Let {(vk, rk)}kl be a sequence of integers satisfying

rk

= Vk + rk 4’

where {Vn and {rn are strictly increasing sequence ofpositive integers. Then there
exists a nonnegative, bounded superadditive process Fn }n__0 (on a one-point measure
space) such that (4) diverges.

Proof Let f2 {w0},/z(w0) 1. We will define a new sequence

rk)}k= C {(Ok, rk)}k=

as follows" let (v’l, rl) (Vl, r), and

and andv2 Vn2 Vn2 such that Vn2 > v q-rl r2 rn2,

rn3 such that <
r,,3 g andr3 rn3,

In general

V Vn3.

where > and fork= 2,l)2k Vn2 On2k V2k- q" r2k_ r2k --rn2

and fork=l 2,where ’2k+r < " l)2k+l l)n2k+r2k+l rnzk+ rn2k+l
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Define X2k (xfk)jC=l where

if j [nv2k + (n 1)r2k, nv2 + nr2t) for some n >
otherwise,

for k 1,2 and X2k+! (0)j= for k 0, 1, 2 Moreover we also define

Yp Xp, Y0=0 and F,= Yp Fo O.
i=1 p=l

A picture for the above definitions is as follows: X is the infinitely long ith row, and
Yp is the sum of all the elements in the pth column.

Because v,, -- we see that Fn < cz for all n > 1. We first check that
IFn <SUPnz To prove this, notice that if we fix n > then there exists vk,,

< n andsatisfying vk,, vk,,+l > n. For a given i, _< _< kn, we write

r+r; we notice that the condition i__l ,-where 6i is an integer and 0 < Yi < vi Vi q-r
< -implies"

4 v
> (6)

3 v -Jr- r

Hence using (5), (6) and the fact that Sn is the sum of the ones in the first n columns
for each i:we estimate as follows: It is enough to consider the case t’ > vi

k 14Fn < (r[i d- r;) < -rn n
i=1

n
i=1

,)
4 ’i 4n r

3n
i=1

U -4c- r i--1
3

The next property we verify is Fn + Fm < Fm+,, Ym, n > 0 (superadditivity). This
follows from the inequality

n-1 m+n-I

p=0 p=m

m,n >_0,

__< z_j=ml-m+n-2 xj,iwhich in turn follows from Y._S Xj ’i >_ 1. This last inequality
follows from the definition given for X}k. So superadditivity is proved.

From the definitions it follows easily that

(F,v2k Wr2 Fv2k
r2k

>_ l, Vk= 1,2 (7)
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We finally claim that

Fv2k+l +r2k+l < k 0, 1,2 (8)3’r2k+
To check (8) take k > 0. By the construction, only the first 2k rows contribute with
ones to the difference (F, F, WriteO2k+! /r2k+! 132k+1

r2k+l q2j(l)2j + r2j) zt- Y2j (9)

for j p qzj an integer and 0 < ?’2j < (v’j + rj). We notice that by the
definitions,

l)2k + r2k v2j -+- r2j-> > l<_j<k,
r2k+ r2k+

hence,

( )r2j > r2j
j=l k.

3 l)2j zr- r2j r2k+l
Therefore, using (9) and (10) it follows from the definitions that

vzk+,+rk+, Fvk+,)
r2k/

q2jr2j r2j<
(q2jr2j + r2j)

< +
j=l r2k+l j=l r2k+l Y2j + r2j

< - r2k+ r2j r2j <.= r2k+ (v2j + r2j) 3 (v2j + r2j) 3

Combining (7) and (8) we conclude that limn__,o r,-’l F’v,,’/rn F,’vn) does not exist.

(10)

Remarks. 1. We notice that a subsequence of a B-sequence is also a B-sequence.
For instance, consider the example vk (k + 1)!, rk k !. Hence, r!vk 0 and
then taking an appropriate subsequence the condition Y= rk

o-TTff < used in the
proposition above can be satisfied for some B-sequence.

2. The example above may be adapted to give a counterexample for the case of
averages of bounded superadditive processes along Block sequences.

The counterexample constructed in Proposition 3.1 raises the question: Is there
(Fvk+rk (W) Fv (w))a class of one-parameter superadditive processes for which r-

converges in the mean (and possibly pointwise) as rk , when F is in that class?
Proposition 3.2 below proves that the so called Chacon’s admissible processes give
an affirmative answer to this question.

Definition. A collection {f0, f of functions in LI (X, E,/z) is said to be a
bounded Chacon admissible process with respect to a positive linear contraction S if

Sf/ _< J+l, > O,

sup fx Fn < O where Fn Ein= fi, n > 1.
n>l
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It follows that Fk + SkFn < Fk-t-n, k, n > 0 (take F0 0). Therefore, a bounded
Chacon admissible process is a bounded superadditive process.
We notice that the superadditive process constructed in Proposition 3.1 is not a

Chacon process (neither is the process in the example following Theorem 2.4).
For the purpose of the next proposition we will assume that S is an operator on

L, induced by an isomorphism on the base Lebesgue space. It is known that in this
case S admits a weak type (1,1) maximal inequality along B-sequences for additive
processes (in fact this is true for an arbitrary MPT IF]).

PROPOSITION 3.2. Let S be an operator as above. Assume that {f0, f }, a
collection of L (X, E, lz), is a bounded Chacon admissible process with respect to

n-IS. If Fn =-- i=0 fi’ n > 1, and {(vn, rn)}= is a B-sequence with rn --+ oo ,then

(Fo,,+r,, (w) Fo,, (w))
rn

converges a.e. and in the mean as

n-IProof Noticing that Yj=0 sJ fo < Fn, we can assume without loss of generality
that f/ > 0, > 0. For convenience, define Pi fi Sfi_, > 1; also we set

P0 f0. Using the fact that the process is bounded it can be proved that

lim f fk < oo. (11)

To obtain this inequality we compute as follows (Pi > 0)"

f sj fk < fk+Jfk (r + 1) j=O (r + 1) j=o

(f F+r+, f F)<(k +r+ l) ( f F+r+,)(r + 1) (r + 1) (k + r + 1)
(k+r+l)

sup fFn<
(r + 1) n>l n

Taking r --> cx, this implies that limk__, f f, < SUPn>_ f F..
For a given k > define

Sn-’ ft, (w) for n > kgkn(W)
fn(W) for 0 _< n < k.

Hence it follows that

0 if 0<n <k

fn (W) gk (W) rn

Y. sm-i Pk+i (1/3) for
i=1

n > k, where (12)
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2 -Fr kDefine Mi (f gk)
,-,=vi fn gn" Using (12) we estimate that

vi -Fri vi

Mi(f gk)(w) < E E Sj-r Pr(w)"
j’-vi r=k+l

q

Alsodefine bk,q(tO) Y Srer(uO) and b(w) lim bk,q(w) By an application
r=k+l q---x

of the Lebesgue monotone convergence theorem and equation (11) we obtain

fb(w)d#(w) lim b,q(w)dtx(w) < Pr < lira fk < c.
q---+x k---

r=k+l
(3)

Because bk,q b and bk 6 L we conclude S bk,q S bk. Therefore (13) implies

vi -Fri

Mi(f g) < E Sjbk" 4)

As usual, define

f (w) lim sup --1 v,,-
n-+oo rn

(;(

On

f2(w) lim inf
n--oo rn

fj(ll)).
0.

For an arbitrary ot > 0 define E {w fl (w) f2(w) > O}. Then to finish the
proof we need to show that/z(E) 0. For k > set

v,, +r,,- v,, +r,,-

Gk(W) lim- E (sJ-fk)(w)= lim- E g(w),
n cxz Fn n cx rnon Vn

where the last equality is obvious for the cases in which Vn or v, S M, Yn
1, and it also follows in the other case by an application of Theorem 3.3 in [F] (see
the remark following Theorem 3.3 in [F]). Therefore

c w sup Mn (f >
n gn

c wl sup-- Sb(wl >n>l Fn On

where we used (14) to obtain the last inclusion. By hypothesis, S admits a maximal
inequality along the B-sequence for the additive process {S b}j=0. Hence we obtain

lz(E) < b(w)dlz(w) IPrl <
Ol Ol

r=k+
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where we used (12). Then taking k --+ cxz gives/z(E) 0. Now we show how this
a.e result implies convergence in L I. Given the hypothesis on the operator S and the
fact that the sequence {fk} is a bounded Chacon process it follows that Gk < G,+l
and f G, f f,, where the last equality follows from the identification of the limit
result given in [F]. Therefore Lebesgue monotone convergence theorem guarantees
the existence of the L l-limit G L limk_ Gk.

-Fv,) GThe proof will be finished by showing that limn_-, r,(ev,,+r,,
0. Given e >_ 0, use equation (11) to find K such that f fn f fm < for all

for all k > K It has been shown in [F] that LK < m < n and IIG Gkll _<
convergence holds for additive processes along B-sequences; therefore limn G-

v,, +r,,
r,’- z--,j=v,, (Sj-* f)Ill 0. Hence

--(Fv,,+r, Fv,,) G
rn < (Fv,,+r,, Fv,,) Sj-k fk)

rn j=v,,

v,,+r,,--I

+ Gk Z (S-f) -4-IIGk-GII
r

vn

_< f,,/r,,-A+ _<. v1

To extend the mean result of Proposition 3.2 to the operator case we need a version
of Theorem 2.2 for Chacon processes. First notice that Proposition 3.2 implies that
the averages +/- (Fo,,+r,, Fo,) converge in the mean, where F is any Chacon processrn
with respect to some operator S (S as described above). To obtain this result for an
arbitrary positive L contraction T we can use the proof of Theorem 2.2 as HF is
S-Chacon admissible, where the transformation H is as in Theorem 2.2. But this is
easily checked along the lines of Lemma 2.1. With these remarks we obtain:

COROLLARY 3.3. Let F }nC=0 be a bounded Chacon’s admissible process with
respect to T, where T is a positive Dunford-Schwartz operator on L1 If (V rk)}=l
is a B-sequence with r - cxz. Then

(Fo,+r, (w) Fo, (to))

rk
converges in the mean as k --+ cxz.

The second solution to the problem of defining averages of superadditive processes
is actually to define them as follows. The "averages" of a T-superadditive process
F {F} along a B-sequence n {(Vn, rn)} can also be defined by

--T"Fr,,. (**)
rn

The ordinary (nonmoving) averages correspond to the case where 13n 0 for all n.
Observe that the averages of F along n {(vn, rn)} using the definition (.) corre-
sponds to r,-S [Fo,,+r,, Fv,, ]. Both definitions are equivalent in the additive case. The
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same apparatus used in the proof of Theorem 2.2 leads to the same conclusion when
the averages are defined by (**). For, since n {(Vn, rn)} is good in the l-mean
for bounded superadditive processes relative to MPTs in this case [F], it is enough
to prove that if T and S are as in Theorem 2.2 and n is good in the 1-mean for
bounded superadditive processes relative to MPTs, then it is also good for bounded
T-superadditive processes. That is why we only state this result (without proof):

THEOREM 3.4. Let Fn }n=0 be a bounded T-superadditive process, where T is a

positive Dunford-Schwartz operator on L . Ifn {(vk, rk)}=1 is a B-sequence with

r -- cxz. Then

Tvk Frk converges in the mean as k cx.
rk
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