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ON THE EMBEDDING OF A COMMUTATIVE RING
IN A LOCAL RING

ROBERT GILMER AND WILLIAM HEINZER

ABSTRACT. Let R be a commutative ring with identity. We consider conditions in order that there exists
an embedding of R in a local ring. This leads naturally to an examination of conditions in order that a
quasilocal ring (R, m) be dominated by a local ring. This, in turn, leads to a study of extensions of the
residue field of a quasilocal rihg.

1. Introduction

Let R be a commutative ring with identity. In this paper we consider conditions
for the existence of an embedding of R in a local ring. This leads naturally to an
examination of conditions for a quasilocal ring (R, m) to be dominated by a local
ring. This, in turn, leads to a study of extensions of the residue field of a quasilocal
ring. We prove several results concerning domination of a quasilocal ring by a local
ring including the result that a zero-dimensional quasilocal ring that is embeddable
in a Noetherian ring is dominated by an Artinian local ring.

All rings considered in this paper are assumed to be commutative and unitary. If
R is a subring of a ring S, we assume that the unity of S is contained in R, and hence
is the unity of R.

If R is a ring with a unique maximal ideal rn, we say that R is a quasilocal ring.
We frequently write (R, m) to indicate that R is quasilocal with maximal ideal rn.
If R is also Noetherian, then we say that R is a local ring. It is well known that a
quasilocal ring has 0 and as its unique idempotent elements. Thus a ring having a
nontrivial idempotent element cannot be embedded in a quasilocal ring. We began
this work by considering the following four questions:

(1) Under what conditions is a ring R a subring of a quasilocal ring?
(2) Under what conditions is a Noetherian ring R a subring of a quasilocal ring?
(3) Under what conditions is a Noetherian ring R a subring of a local ring?
(4) Under what conditions is a ring R a subring of a local ring?

In general, a ring R is a subring of a quasilocal ring if and only if the set of
zero-divisors of R is contained in a prime ideal P E SpecR. Thus there exists an
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embedding of R into a quasilocal ring if and only if there exists P 6 SpecR such
that the canonical map of R into Re is an injection. This gives what we regard as a
satisfactory answer to ).

Since the localization of a Noetherian ring at a prime ideal is a local ring, if a
Noetherian ring R is a subring of a quasilocal ring, then R is a subring of a local
ring. Thus (2) and (3) are, equivalent and hold precisely if the zero-divisors of R are
contained in some P 6 SpecR. This gives what we regard as a satisfactory answer
to (2) and (3). Question (4) is more subtle. We note first:

Remark 1.1. It is possible for a ring to be a subring of a Noetherian ring and
also a subring of a quasilocal ring and yet not be a subring of a local ring. In fact,
it is possible for a quasilocal ring to be a subring of a Noetherian ring and yet hot a
subring of a local ring as we show in the following example.

Example 1.2. Let (R, m) be a one-dimensional quasilocal reduced ring with a
finite number n > of minimal primes and with idempotent maximal ideal. Then
R is not dominated by a local ring, but the total quotient ring of R is a product of n
fields. Hence R is a subring of a Noetherian ring. If (S, n) is a local ring containing
R, then since m is nonzero and idempotent, n must lie over a minimal prime of R.
But this means there exists a minimal prime of R that is not contracted from S. Hence
R is not a subring of S.

To obtain a specific one-dimensional quasilocal reduced ring (R, m) with two
minimal prime ideals and with idempotent maximal ideal, let x, y, z be indeterminates
over a field F. Let a, b be rationally independent positive real numbers. Define a
rank-one nondiscrete valuation domain W on the field F(x, y) such that F C+ W by
defining x to have W-value a and y to have W-value b. Then W F + Q, where
Q is the maximal ideal of W. Define R W[z]/(z(z x)). Then R is reduced with
two minimal primes, the images of the prime ideals (z) and (z x) of the polynomial
ring W[z], while the image m of the maximal ideal (Q, z) of W[z] is the unique
maximal ideal of R. Moreover, the fact that Q is idempotent in W implies that m is
idempotent in R.

Remark 1.3. Example 1.2 may also be modified to assume only that (R, m) is
not dominated by a local ring, rather than the stronger property that m m2 :/: (0).
It is shown in [GH4] that every local ring is dominated by a one-dimensional local
ring.

Remark 1.4. In order that a ring R be a subring of a local ring, it is necessary
that there exists P 6 SpecR having the properties that (i) the canonical map of R to
Rt, is an injection, and (ii) the quasilocal ring Re is dominated by a local ring.

We say that a quasilocal ring (T, p) is dominated by a quasilocal ring (S, n) if T is a subring of S and
pC_n.
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Thus in considering Question (4) and conditions for a ring to be a subring of a local
ring, we are led to the problem of determining conditions in order that a quasilocal
ring be dominated by a local ring. This question has a rich history.

Discussion 1.5. Some necessary conditions for a quasilocal ring (R, m) to be
dominated by a local ring are:

(i) the powers of m intersect in (0);
(ii) the ideal (0) in R is a finite intersection of strongly primary ideals,2 and hence

R has only finitely many minimal prime ideals;
(iii) the universally contracted ideals of R satisfy a.c.c.;
(iv) every universally contracted ideal of R is a finite intersection of strongly primary

ideals.

It is natural tO ask about other conditions that are necessary for a quasilocal ring
(R, m) to be dominated by a local ring. Jeanne Wald Kerr in [K] presents a construc-
tion which establishes existence of a zero-dimensional quasilocal ring (R, m) with
m (0) such that R satisfies a.c.c, on annihilator ideals but such that there is no
bound on the lengths of chains of annihilator ideals of R, so R is not a subring of a
Artinian ring and therefore also not a subring of a Noetherian ring. We consider a
case of the Kerr construction in (1.6) and show that it yields a ring which also satisfies
a.c.c, on universally contracted ideals.

The universally contracted ideals of a ring R are a subset of the set of weakly
annihilated ideals of R, where an ideal I of R is weakly annihilated if it satisfies the
following equivalent conditions [GM], [HL2].

(i) For every a 6 1 and b I, there exists c 6 R so that ac 0 while bc : O.
(ii) Ann(Ann(a)) is contained in I for each a 6 I.
(iii) The ideal I is the union of annihilator ideals of R.

Example 1.6 (Kerr). Let X {Xij Z+, < j < i} be a countably infinite
set of indeterminates over an infinite field K. Let M denote the maximal ideal of
K[X] generated by X, andletl M +({XijXik Z+andj :/: k}). Then
R K[X]/I is a form of the Kerr example. Let xij denote the image of Xij in R
and for n 6 Z+, let Sn {x,,j }=. It is clear that m M/I is the unique maximal

ideal of R, and that R, m, m2 and (0) are annihilator ideals of R. Kerr shows that the
only other ideals of R that are annihilator ideals are the ideals of the form (S) + m2,
where for some n > 1, S is a nonempty proper subset of S,,.

2An ideal is strongly primary if it is primary and contains a power of its radical.
3An ideal of a ring S is said to be universally contracted if is contracted from every extension ring

of S.
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We show:
(1.6.1) Each weakly annihilated ideal of R is an annihilator ideal. Hence univer-

sally contracted ideals of R are annihilator ideals, so R satisfies a.c.c, on universally
contracted ideals. Indeed, each weakly annihilated ideal of R is of the form Ann(f)
for some f 6 R.

Proof Let J be a nonzero proper weakly annihilated ideal of R. If a is a nonzero
element of J, then Ann(a)

___
rn so J

_
Ann(Ann(a))

_
Ann(m) m2. Modulo

me, a is congruent to a unique K-linear combination ha aijxij of the xij, with
only finitely many of the coefficients aij nonzero. By the support of a, denoted
supp(a), we mean {xij aij =/: 0}; ifa ’ m2, then a and h have the same annihilator.
Kerr shows that Ann(a) > rn2 only if supp(a) is a nonempty proper subset of S,, for
some n > 1, and in this case Ann(a) (S,,-supp(a)) +m2. If J contains an element
a with Ann(a) rn2, then, since J is weakly annihilated, rn Ann(rn2) c_ J, and
hence J m, an annihilator ideal. If J contains no such element a, then since
supp(a + b) supp(a) tO supp(b) if supp(a) and supp(b) are disjoint, there exists
an integer n such that supp(a) c_ Sn for each a I m2. Let Y tO{supp(a)
a 6 1 me}. Then Y is a nonempty subset of S,,. Since the field K is infinite, if
a, b 6 1 rn2, there exists k 6 K such that supp(a + kb) supp(a) tO supp(b). It
follows that Y supp(f) for some f 6 I, and since Ann(f) > rn2 by assumption,
we conclude that Y is a proper subset of S,,. Since J is a weakly annihilated ideal,
Ann(Ann(f)) Ann((S,, Y) + rne) (Y) + rn2 c_ J. But since supp(a)

___
Y for

each a 6 1 me, the reverse inclusion also holds. Therefore J (Y) + m2 as we
wished to show. I--I

Thus the four necessary conditions listed in (1.5) in order that a quasilocal ring
(R, m) be dominated by a local ring are not sufficient for this to occur, even in
dimension zero. It seems natural to ask"

Question 1.7. Suppose (R, rn) is a zero-dimensional quasilocal ring having the
property that there exists a positive integer n such that every chain of universally
contracted ideals of R has length at most n. Does it follow that R is dominated by a
local ring?

The condition of (1.7) implies, in particular, that R satisfies a.c.c, on annihilator
ideals. Therefore Ann(rn) Ann(I) for some finitely generated ideal I c_ rn. It
follows that Ann(mJ) Ann(lJ) for each positive integer j. Hence some power
of rn is (0). Therefore the annihilators of distinct nonzero powers of rn are distinct
annihilator ideals. Hence if R satisfies the condition of (1.7), then m" (0). In
particular, R satisfies the four necessary conditions of (1.5). We do not know the
answer to (1.7) even in the special case where (0) C+ ((0) rn) C+ rn C+ R are the only
annihilator ideals of R.

(1.8) The question of domination of a quasilocal ring (R, rn) by a local ring
subdivides into the case where R is an integral domain and the case where R fails to
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be an integral domain. In [AH1], a quasilocal domain that is dominated by a local
ring is defined to be sublocal. It is easy to see (cf. [AH1, page 862]) that a quasilocal
domain R is sublocal if and only if R is dominated by a rank-one discrete valuation
domain (DVR) of its quotient field. It is noted in [AHI, Theorem 2.1] that a normal
sublocal domain has behavior with respect to integral unramified extensions that fails
in general for normal quasilocal domains. In general, the localization Rp of a sublocal
domain (R, m) at a prime ideal P may fail to be sublocal. In view of [GH1, (5.6)],
Example 5.8 of [GH1] illustrates this statement.

(1.9) We recall that a ring R is called an N-ring if for each ideal I of R, there
exists a Noetherian extension ring S(1) of R such that I is contracted from S(1);
equivalently, R is an N-ring if, for each ideal I of R, the ring R/I is a subring of
a Noetherian ring [GH3]. It is shown in [HL1, Theorem 2.3] that R is an N-ring if
and only if for each ideal I of R, the annihilator ideals of R/I satisfy the a.c.c. Thus
a sufficient condition for a ring R to be a subring of a Noetherian ring is that for
every ideal I of R, the annihilator ideals of R!I satisfy a.c.c., and a ring R with this
property is a subring of a local ring if and only if the zero-divisors of R are contained
in some P 6 Spec(R).

2. Extensions of the residue field

(2.1) In [EGA, Om (10.3.1)], Grothendieck proves the following useful result.
Suppose (A, m) is a local ring with residue field k and K is an extension field of k.
Then there exists a local extension ring B of A such that mB is the maximal ideal of
B, B is flat as an A-module, and B/mB is k-isomorphic to K.

If the extension field K! k of (2.1) is not algebraic, one can reduce to the algebraic
case by passing from A to A (X), where X is a set of indeterminates over A in one-
to-one correspondence with a transcendence basis for K! k, and where A (X) denotes
the localization of A[X] at the prime ideal mA[X]. In general, A(X) is flat over A.
Moreover, the passage from A to A (X) preserves the Noetherian property and if A is
Noetherian, then dim A dim A (X) [GH2].

In the case ofan algebraic extension ofresidue fields, variations ofthe Grothendieck
construction are of interest to us.

Construction 2.2. Suppose (R, m) is a quasilocal ring with residue field R/m
k, and E k({Ya}aa) is an algebraic extension field of k. There exists a quasilocal
extension ring S of R such that:

(1) S is an integral extension of R.
(2) S is a free R-module.
(3) mS is the maximal ideal of S.
(4) S/mS is isomorphic to E as an R-algebra. Moreover, there exists a free basis

for S as an R-module that maps bijectively under the canonical map of S onto
E to a basis for E over k.
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Proof Let X {Xa }a6A be a family of indeterminates over R and assume that
A is well-ordered under a relation <. For a E A, there is an R-algebra epimorphism
a" R[{xb b < a}] --+ k({yb b < a}) that first reduces coefficients modulo m
and then substitutes Yb for Xb. This map 4a extends to an R-algebra epimorphism
ck," R[{xb "b < a}][Xa] -+ k({yb "b < a})[x,,] mapping x, to x,. For each a E A,
we wish to choose a polynomial .fa R[{xb b < a}][x,,] so that fa is monic
of positive degree in Xa and so that 4* (f,,) is the minimal polynomial for Ya over
k({yb b <a}).

If a is the first element of A, we let f,, (x,,,) be any monic preimage in R[xa,]
of the minimal polynomial of a over k. If polynomials fb as described above have
been chosen in R[X] for all b < a, we consider the minimal polynomial ga(Xa)

m-lX -}- lgm--lX --’’" + UXa + uo for y,, over k({yb b < a}); here ui 6 k({yb
b < a}) for each i. Hence ui ,(si) for some si R[{xb b < a}]. Let

m-Ifa Xa + Sm-Xa + + SXa + SO. By choice of the polynomials si, ck*(f,) is
the minimal polynomial of Ya over k({yb b < a}). By induction, this establishes
the existence of {.f,, }aa.

For a 6 A, let la be the ideal of R[{xb b < a}] generated by {.fb b < a}.
.We define I Uaala. Then R[{xb b < a}]/(m, la) k({yb b < a}) and
R[X]/(m, I) E. We prove that I O R (0). Since I (q R Uaa(la f3 R), it
suffices to show la fq R (0) for each a E A. If r la fq R, then

r gf, + g2fb2 -Jr-’’’-]- g,,f,,,

where the gi R[{Xb b < a}] and bl < b2"’" < bn < a. The gi involve only
finitely many of the Xb’S, SO by increasing n and taking zero as the coefficient of the
corresponding fb,, ’s, it suffices to show

(fb,, fb fbn)R[Xbl Xb (’ R (0).

This last statement is seen by induction by going modulo the principal ideal (f,) to
reduce to fewer variables. In more detail, one uses Lemma 2.3 stated below.
We conclude that R is embedded in S := R[X]/I. Moreover, if z,1 denotes the

image of x in S, then S is integral over R and free as an R-module with free basis
i,,,whereO < in < ma m is thethe set of all monomials of the form Haa Za

degree of y,, over k({y b < a}), and only finitely many integers i,, are nonzero.
Since R[X]/(m, I) is isomorphic as an R-algebra to E, it follows that mS is the

unique maximal ideal of S, so S is quasilocal with maximal ideal mS. Moreover,
the free basis {l-l,,ea Z’ maps bijectively onto {I-IaeA.a }, which is a basis for E/k.

LEMMA 2.3. Suppose x x,, are indeterminates over a ring T andfor <
< n, .} T[x xi-][xi] is monic in xi ofpositive degree as apolynomial over

T[Xl xi-i]. If J (fl fn), then J UI T (0).
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Proof If n 1, the assertion is clear. Assume that n > and that the assertion
holds forn- 1. Let U T[x]/f T[x] and let W T[x x,, ]/.f T[x x,, ].
Then T canonically injects into U, W is a polynomial ring in n variables over U,
and by our inductive hypothesis applied to the ring U, the image of J in W intersects
U in (0). Therefore J f3 T (0). [21

Discussion 2.4. (1) If the quasilocal ring (R, m) of (2.2) is Artinian, then the
quasilocal extension ring S produced by the construction is also Artinian since S
is then 0-dimensional with finitely generated maximal ideal. Since for X a set of
indeterminates over R, R Artinian implies R(X) is Artinian, then even if E ! k is not
algebraic, the construction of (2.1) preserves the Artinian property.

(2) If (R, m) is Noetherian, then the proof of Lemme 10.3.1.3 of [EGA, p. 21]
shows that the constructed ring S is again Noetherian.

(3) If (R, m) is a chained ring, 4 then the quasilocal extension ring S produced by
the construction of (2.2) is such that each element of S is an associate of an element
of R. Hence each principal ideal of S is the extension of its contraction to R, and
it follows that the ideals of S are in one-to-one inclusion-preserving correspondence
with the ideals of R with respect to the operations of contraction and extension. To
see this assertion about principal ideals of R and S, we use the free basis {HaEA Z’
for S as an R-module constructed in the proof of (2.2). Given s 6 S, let r rn
denote the elements of R that are nonzero coefficients in the expression for s in
terms of this free basis, say s rM + + r,,Mn, where the Mi are monomials
in the free basis {HaEA za }" Since R is a chained ring, one of the ri, say r r,
generates (r rn)R. For > there exists ti R such that ri tir. Hence
s r(M + t2M2 +. + t, M,,). Since the images of the monomials Mi in the residue
field of S are linearly independent over k, the element := M + t2M2 + + t,M,
has a nonzero image in the residue field of S. Hence is a unit of S and s tr.
It follows that if P is the prime ideal of S consisting of the zero divisors of S, then
P pS, where p is the prime ideal of zero divisors of R.

As an immediate consequence of (3), we have:
(4) If (R, m) is a valuation domain, then the quasilocal extension ring S produced

by the construction of (2.2) is also a valuation domain. Moreover the ideals of R and
S are in one-to-one correspondence with respect to the inclusion map of R to S. In
particular, if R is a DVR, then the ring S produced by the construction of (2.2) is also
a DVR.

(5) If (R, m) is an integral domain, then (2.2) can be used to establish the existence
of a quasilocal domain T such that T is an integral extension of R, mT is the maximal
ideal of T and T/mT is isomorphic as an R-algebra to E. Indeed, for S as given by
(2.2), since S is a free R-module the going-down theorem holds for R --> S [M 1,
Theorem 4, page 33], so each minimal prime p of S has the property that pA R (0).
Hence T S/p, for p a minimal prime of S, has the stated property.

4A ring is a chained ring if the ideals of the ring are linearly ordered with respect to inclusion.
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(6) Even if the extension field Elk is not algebraic, if (R, m) is a local domain,
then going modulo a minimal prime p of the local ring S given by (2.1) gives a local
extension domain Sip of R such that SiP has residue field E.

The ring S constructed in (2.2) is determined by a set {fa }aEA of polynomials
over R. In 5 we consider the way structure properties of S are affected by different
choices of the set {fa }.

In the case where (R, m) is a quasilocal domain, we present an alternative approach
to that of part (6) of (2.4) to show that, in the setting of (2.2), it is possible to construct
a quasilocal integral extension domain S of R such that S/mS is isomorphic as an
R-algebra to E. We first discuss the case of a simple extension.

Remark 2.5. Suppose (R, m) is a quasilocal domain with residue field R/m k,
and E k(ot) is a simple algebraic extension field of k. Let f2 be an algebraic
closure of the quotient field K of R and let f R[x] be a monic preimage of the
minimal polynomial f of c over k. Let/ be a root of f in f2. The polynomial
f(x) is irreducible in R[x] since its image in (Rim)Ix] is irreducible, but unless R
is assumed to be integrally closed, we cannot expect f to be irreducible in K[x].
Let I denote the contraction to R[x] of the K-algebra homomorphism of K[x] onto
K[/] that maps x to/. Then R[/] is integral over R, and mR[/] is maximal in
R[/] since R[]/mR[] R[x]/(m, I). Now f(x) I and R[x]/(m, f (x))
k[x]/(f(x)) E, so (m[x], f) is maximal in R[x], and hence (m[x], f(x))
m[x] + I. We conclude that R[]/mR[] E, so R[/] is a quasilocal domain with
maximal ideal mR[/], residue field E, and R[/] dominates R. Moreover, if R is
local, then R[/3] is local.

RESULT 2.6. Suppose (R, m) is a quasilocal domain with residuefield R/m k
and Ek is an algebraicfield extension. Then there exists a quasilocal domain (S, n)
such that S is integral over R, mS n, and S/mS is isomorphic as an R-algebra
to E.

Proof. Let f2 be an algebraic closure of the quotient field K of R and consider
the set $ {(Ra, ma, 4a)}, where (Ra, m) is a quasilocal integral extension of
R, Ra C_ f2, ma taRa, and Ca" Ra -- E is an R-algebra homomorphism with
ker(q) m. Define a relation

_
on S by (Ra, rn,, 4a)

_
(R, mr,, 4,) if R

dominates Ra and q restricts to 4, on Ra. It is straightforward to show that +/- is
a partial order on S and that ,9 is inductive under . Let (S, n, q) be a maximal
element of ,9. Then 4 is surjective, for if not, take an element y 6 E 4 (S); y is
algebraic over k R/m c_ c(S), so y is algebraic over 4(S). Remark 2.5, with
S playing the role of R and y the role of or, implies the existence of/ 6 f2 and

4*" S[] 4(S)[y] such that 4* extends 4, 4*(/4) Y and ker(4*) nS[/]. This
contradicts the maximality of q. We conclude that 4 is surjective. Ul

Result 2.6 yields an alternate proof to part of statement (4) of (2.4). We remark
that Corollary 2.7 is known; see, for example, [M l, Thm. 83, p. 266].
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COROLLARY 2.7. Suppose (V, m) is a DVR with residuefield V/m k and E is
an extension field of k. There exists a DVR (W, n) dominating V such that mW n
and W/mW is isomorphic as a V-algebra to E.

Proof. For any set X of indeterminates over V, the ring V(X) is a DVR with
maximal ideal mV(X) and residue field isomorphic as a V-algebra to E. Hence in
proving (2.7) we may asume without loss of generality that Elk is algebraic. In that
case Result 2.6 shows that there exists a quasilocal domain (W, n) such that W is
integral over V, n mW, and W/mW - E. Thus W is a DVR. U!

If (R, m) is a chained ring with residue field k and if X is a set of indeterminates
over R, it is straightforward to see that each element of R(X) is an associate of an
element of R, and hence R(X) is also a chained ring. Thus part (3) of (2.4) yields the
following generalization of Corollary 2.7:

RESULT 2.8. Suppose (R, m) is a chained ring with residue field k. If E is an
extensionfield ofk, there exists a chained ring (W, n) dominating R such that W has
residue field E and each element of W is the associate ofan element of R.

3. Gluing of maximal ideals to obtain domination

(3.1) Doering and Lequain in [DL] introduce a "gluing process for maximal ideals"
that is useful for showing certain rings are dominated by a local ring. Suppose
MI Mk are maximal ideals ofaring T, F is afield, andqi" T -- F is a
surjective ring homomorphism such that ker4i Mi for < < k. Let

S {t 6 T p (t) 2(t) pk(t)}.

Then S is a subring ofT containing M MI f3...fqMk as a maximal ideal, S/M - F,
T is a finitely generated integral extension of S, and each of the maximal ideals Mi
lies over M in S. We say that S is a gluing of the maximal ideals M Mk. If
the ring T is Noetherian, then by Eakin’s theorem [M2, page 18], S is Noetherian.
Since S is a subring of T, each associated prime of (0) in S is the contraction to S of
an associated prime of (0) in T. Moreover, if R is a subring of T such that i and
have the same restriction to R for every and j, then R is a subring of S.

THEOREM 3.2. Ifa zero-dimensional quasilocal ring R, m) is embeddable in a
Noetherian ring, then R is dominated by a local Artinian ring.

Proof. Since R is embeddable in a Noetherian ring, it is embeddable in an Artinian
ring A [GH3, Prop. 2.6]. Let M M,, be the maximal ideals of A. Each Mi lies
over m in R, the canonical map of R --> R/m is the restriction to R of the canonical
map A --> A/Mi, and R/m is a subfield of each A/Mi. Hence there exists a field E
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that is an extension field of each A/Mi. We have A I-I= AMi and AM; is local
with residue field AMi/MiAMi - A/Mi. By part (1) of (2.4), AM; is dominated by
an Artinian local ring Bi with residue field E. Hence B I-Ii= Bi is an Artinian
extension ring of A with n maximal ideals and each residue field of B is R-isomorphic
to E. Gluing the maximal ideals of B, we obtain an Artinian local ring C dominating
R and having residue field E. I-I

THEOREM 3.3. Suppose (R, m) is a quasilocal ring. Ifthere exists afinitefamily
{lj }=l of ideals of R such that (0) fq=lj and each R/Ij is dominated by a local
ring, then R is dominated by a local ring.

nProof. R is embedded in I-Ij= (R/ lj) and, as in the proof of (3.2), this latter ring
is embedded in the direct product S 1-I= S of local rings S, where S dominates

R/I and all the S have the same residue field. Gluing the maximal ideals of S, we
obtain a local ring dominating R.

PROPOSITION 3.4. Let (R, rn) be a reduced quasilocal ring. Then R is dominated
by a local ring ifand only ifR has onlyfinitely many minimalprime ideals Pl Pn
and R/Pi is dominated by a local domainfor each i.

Proof If R is dominated by a local ring S, then (0) in R is a finite intersection
of strongly primary ideals, and hence R has only finitely many minimal primes. If P
is one of these minimal primes, then P is contracted from a minimal prime Q of S
and RIP is dominated by the local domain S/Q.

Conversely, suppose R has only finitely many minimal prime ideals P! Pn
and that R! P/is dominated by a local domain (Si, mi) for each i. If E is a common
extension field of the fields Si/mi, then part (6) of (2.4) implies the existence of a local
extension domain (T/, ni) of Si such that T/has residue field E. Now R canonically
embeds in Hin___l (g/P/) which canonically embeds in Hin__l T/. Gluing the maximal
ideals of T then yields a local subring of T that dominates R. [21

THEOREM 3.5. The quasilocal ring (R, m) is dominated by a local ring if and
only if there exist strongly primary ideals Q , Qn of R such that (0) ("lni__l Qi
and RQi is dominated by a local ringfor each i.

Proof. Suppose (R, m) is dominated by the local ring (S, n). The zero ideal
of S is a finite intersection of strongly primary ideals QT Q,. Therefore the
zero ideal of R is I")in__l (Qi* f3 g), where each Q N R is strongly primary in R and
R/(Q fq R) is dominated by the local ring S/Q.

Conversely, if (0) f)= Qi and R/Qi is dominated by the local ring (Si, ni),
then R embeds in 1--Ii= Si, and R/m is a subfield of S/ni for each i. Let E be a
common extension field of each Si By (2.1), Si is dominated by a local ring
T/ with residue field E. By gluing the maximal ideals of 1-Ii= Ti we obtain a local
subring T of 1-Ii= T/that dominates R. I--I
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4. Some comments on a modification of the Kerr construction

In relation to Question 1.7, we show in this section that certain modifications of
the Kerr construction described in (1.6) give zero-dimensional quasilocal rings that
are dominated by an Artinian local ring.

(4.1) Let K be an infinite field of characteristic different from 2. Let X be
a countably infinite set of indeterminates over K and let M denote the maximal
ideal of K[X] generated by X. Partition X into infinitely many nonempty sub-
sets Sl, $2 and let I denote the ideal of K[X] generated by M and the set
{UP:U, l) U_ Si for some/and u - v}. Let R K[X]/I and m M/I. It is clear
that m (0), so R is quasilocal with maximal ideal m. We can extend Kerr’s proofs
to this construction and show:

(1) m m2 m (0).
(2) Ann(m2) m Ann(f) for each nonzero f 6 m2. For f 6 m m2,

define the support of f, denoted supp(f), as in (1.6). Then Ann(f) + m2 if
and only if supp(f) is a nonempty proper subset of some Si, and in this case,
Ann(f) m2 + (Si supp(f)).

(3) Other than (0), m2, m, and R, the annihilator ideals of R are of the form
(U, m2), where U is a nonempty proper subset of some Si.

(4) R satisfies a.c.c, on annihilator ideals if and only if each Si is finite; the length
of every strictly ascending chain of annihilator ideals of R is bounded if and
only if {I Sil}= is bounded. If n max{I Sil}icxz= then n + 2 is the maximum
length of a strictly ascending chain of annihilator ideals of R (this is counting
R as an annihilator ideal).

(5) In the case where each Si is finite, each universally contracted ideal of R is of
the form Ann(f) for some f 6 R.

We use these properties to establish:

THEOREM 4.2. With notation as in (4.1), assume that the positive integer n is the
least upper bound of {ISi [}i=. Then R is dominated by an Artinian local ring.

Proof In order to simplify notation, we first make the following reduction.
Choose s so that n < 2’, and expand each set Si to a set T/ of 2 indeterminates
over K. Let T U=I Ti. Let N denote the ideal of K[T] generated by T and define
J to be the ideal of KIT] generated by N and {uv u, v Ti for some and u v}.
Then K[T]/J is a form of the modified Kerr construction in which each set of the
partition contains exactly 2 elements. We show that J f) K[X] I, so that R is
dominated by K[T]/J. For a proof observe that as a vector space over K, the set of
pure monomials in T forms a basis H for K[T]. Now J is a K-subspace of K[T]
with basis H

___
H, where HI {uv" u, v Ti for some/and u =/= v} t2 {Q"

Q is a pure monomial in T of degree >_ 3}. Moreover, K[X] is a subspace of K[T]
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with basis H2

_
H, where H2 is the set of pure monomials in X. Therefore J fq K[X]

is the K-subspace of K[T] with basis H1 N H2 {uv u, v Si for some and u -76
v} t2 {Q Q is a pure monomial in x of degree > 3}. Thus J N K[X] I, as we
wished to show.

In view of this reduction, we may assume that Sil 2 k for each and that
Si {Xij }jk..=l We prove that for a suitable set L of indeterminates over K, there
exists an embedding of the ring R into the ring

s l<(L)tr,, U, r,,, u? r,?,

where T, U T,, U are indeterminates over the field K(L). It is clear that S is
a local Artinian ring. Let ti and u denote the images in S of Ti and Ui, respectively.
We take the set L of indeterminates over K to be the union of three sets Y, A, B,
whereY-- {Yij < < cx, < j < k},A {Aij < < x, < j <_k},
andB--{Bij" <i <oo, _<j <k}. Notice that each of the setsY, A, Bisina
natural one-to-one correspondence with the set X.

There are k binary sequences of length s; we denote them by g gk, where
gj (gjl g,) and each gji is either 0 or 1. Define 4" K[X] - S to be the
K-homomorphism such that 4(Xi) Oij Yijolij, where

Otij --I(Aihth + (--1)g’h BihUh).
h=l

We claim that 4) has kernel I. To see that I is contained in ker(40, it suffices to
show that OiaOib 0 for a - b and that the product of any three of the elements Oij is
0. For a b the sequences ga and ga are distinct, so gam gbm for some m. If, say,
gam 0 and gbm 1, then Oia is a multiple of Aimtm + Bimum and 0it, is a multiple of

2 2 0. We note that each Oij has a naturalAimtm Bimum, so OiaOib 0 since U

preimage in K (L)[T U,] that is homogeneous of degree s, so the product of
three of the elements Oij has a preimage that is homogeneous of degree 3s. Any such
element of K (L)[T U,,,] belongs to the ideal (T2, U2 T, U2), and hence
the product of any three of the elements Oij is 0. We conclude that I

_
ker(q).

Let f 6 ker(4). Modulo I, f is congruent to a K-linearcombination ofmonomials
Xij and monomials XaaX,.d, where either a c, or (a, b) (c, d). To show that

f 6 I, it therefore suffices to show that W {Oij} U {OaaO,.d a c implies b d}
is linearly independent over K.

Assume/ is a K-linear combination of elements of W that is equal to 0. The set

{Yig} is algebraically independent over the subring So K[{Aij, {Bij, {ti}, {ui}] of
S. Now Oij Olij Yij is an S0-multiple of Yij, and OabOcd is an S0-multiple of Ya Ycd.
Hence if xOj and yOabOcd, where x, y 6 K, are terms occuring in this expression
for/5 then xcj yOtabOtcd 0. Since ot 4-2 I-],= AhBhtu 5/: O, it follows
that Olij O. Since nonzero elements of K are units of S, we conclude that x 0.
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On the other hand,

OlabOlcd -I(Aahth -I- (--1)gbh BahUh)(Achth qt_ (_ l)gdh BchUh)
h--1

Since yOtabOtcd 0, it then follows that

Y{’-I((--1)gdhaahBch-+-(--1)gbhZchBah)]’h=l
which is an element of K (L) c_ S, is zero. To show that y 0 it therefore suffices to
show that (- 1)g" A,h B.h + (-- )gh,, A,.h Bah 0 for each h. Ifa c this is clear, and if
a c, then b d and the elementin question is (- l)gh 2Aah Bah O. We conclude
that y 0, so W is linearly independent over K and ker(40 I. Consequently, 4
induces an embedding of R into S. [El

Remark 4.3. The Artinian local ring S in the proof of (4.2) is also the quotient
of a polynomial ring by a regular sequence and hence is a complete intersection. In
particular, S is Gorenstein. Therefore each ring R as in (4.1) is dominated by a local
Artinian Gorenstein ring.

5. On the structure of quasilocal extensions with a prescribed residue field
extension

Discussion 5.1. Suppose (R, m) is a quasilocal ring with residue field R/m k
and E is an algebraic extension field of k. Even in the case where E!k is a simple
algebraic extension, the extension ring S of R provided by the construction of (2.2) and
possessing the four properties listed in (2.2) is usually far from unique. However, in
certain cases there are common properties possessed by every extension S constructed
by means of (2.2). Some of these properties are noted in (2.4). We also have:

(1) If R is a regular local domain of dimension d, then in view of part (2) of
(2.4), the extension ring S is again a regular local domain of dimension d. In
particular, if R is a DVR, then S is a DVR (cf. Corollary 2.7).

(2) If R is a normal quasilocal integral domain and E!k is separable, then S is a
normal quasilocal integral domain; see, for example, [AH2, (4.12), page 760].

(3) If R is a normal quasilocal integral domain and E! k is a simple extension,
then S is a quasilocal integral domain but may fail to be normal (part (1) of
Example 5.2). That S is a domain in this case follows from the fact that a monic
polynomial irreducible over an integrally closed domain R is also irreducible
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over the quotient field of R [ZS 1, Thm. 4, page 260], and therefore generates
a prime ideal of the polynomial ring R[x].

(4) There exists a normal local integral domain (R, m) and a purely inseparable
extension E k(a, b) of k such that there exists an extension S of R as in (2.2)
where S is not reduced (part (2) of Example 5.2).

(5) There exists a local integral domain (R’, m’) and a simple extension E k’(b)
of the residue field k’ of R’ such that there are monic preimages f, f2, f3 in
R’[x] of the minimal polynomial of b over k’, where

(i) S R’[x]/(fl) is an integral domain,

(ii) $2 R’[x]/(f2) is reduced but not an integral domain, and

(iii) $3 R’[x]/(f3) is not reduced.

(See part (3) of Example 5.2.)
(6) If a quasilocal integral domain (R, m) admits a lifting S as in (2.2) such that S

is a normal integral domain, then R is normal. This follows because S meets
the quotient field of R in R since S is a free R-module.

(7) There exists a quasilocal integral domain R and a simple extension E!k such
that every lifting S as in (2.2) fails to be an integral domain (Example 5.3).

Example 5.2. Let ’2 denote the prime field of characteristic 2, let a, b be inde-
terminates over 2, and let k 2(a2, b2). Let D k[[y, z]] be a formal power
series ring over k in the variables y and z, and let F denote the quotient field of D.

(1) Let R D[ay + bz]. We have D C R C+ D[a, b] k(a, b)[[y, z]]. The set
1, a, b, ab} is a module generating set for D[a, b] over D and a vector space basis

for the quotient field of D[a, b] over F, while 1, ay + bz} is a vector space basis for
the field F[ay + bz] over F. Using these bases, one sees that R D[ay + bz]
F[ay+bz]f3D[a, b] bythe following argument. Ifu+v(ay+bz) q+ra+sb+tab,
whereu, v Fandq, r,s,t D, thenu q D, vy r, vz s, and 0.
Thus v r/y s/z, and since y and z are relatively prime elements of the UFD
D, it follows that v 6 D and u + v(ay +bz) R. Therefore R is anormal
local domain with maximal ideal m (y, z, ay + bz) and with residue field k. With
E--k(a)--k[x]/(xZ-aZ),ifwetakexZ-a2 R[x as a preimage ofxZ -a2 k[x ],
then S R[a] R[x]/(x2 a2) is an integral domain but is not integrally closed.
That R[a] is an integral domain follows from the fact that R is integrally closed.
To see that R[a] is not integrally closed, observe that R[a] D[a, bz] is properly
contained in D[a, b] and R[a] and D[a, b] have the same quotient field, so D[a, b]
is the integral closure of R[a].

(2) Let R D[ay + bz], as in part (1), and take E k(a, b) as an extension field of
the residue field k of R. If we take x2 a 2 G R[x] as the preimage of the minimal
polynomial ofa over k and then take x2 -b2 G R[a][x] as the preimage of the minimal
polynomial of b over the residue field k(a) of R[a], then S R[a][x]/(x2 b2).
Since b is in the quotient field of R[a], the polynomial x2 b2 factors as (x b)2
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over the quotient field of R[a] D[a, bz]. Therefore S has a localization that is not
reduced, so S is not reduced.

(3) Let R’ R[a] D[a, bz]. Then k’ k(a) is the residue field of R’. Let
g(x) x2 b2 k’[x]. Then:

(i) f x2 b2 y R’[x] is a preimage of g that is irreducible over the quotient
field of R’. Hence SI R’[x]/(f) is an integral domain.

(ii) f2 (x b)(x b + bz) R’[x] is a preimage of g that factors over the
quotient field of R’ as a product of two distinct linear polynomials. Hence
$2 R’[x]/(f2) is reduced but not an integral domain.

(iii) f3 x2 b2 G R’[x] is a preimage of g that factors over the quotient field of
R’ as (x b)2. Hence $3 R’[x]/(f3) is not reduced.

Example 5.3. Let E k(c) be a separable algebraic extension field of k of
degree n > 2. Let V E[[y]] be the formal power series ring in y over E and
let R k + y V. Then R is a one-dimensional complete local domain with integral
closure R[c] V. Let g(x) k[x] be the minimal polynomial for c over k. Suppose
f(x) R[x] is a monic preimage of g(x). To show that R[x]/(f(x)) is not an
integral domain, it suffices to show that f (x) is reducible over the quotient field of
R. Since the image g(x) of f(x) in (V/yV)[x] E[x] is a separable polynomial
of degree n > 2 that has a root in E, it follows from Hensel’s Lemma that f (x) is
reducible in V [x].

In (5.4), we give an example which shows that for an infinite algebraic extension
E/k of the residue field k of a quasilocal domain (R, m), there may exist extensions
S and $2 of R with residue field E satisfying the conditions of (2.2), where SI is a
quasilocal domain while $2 has infinitely many minimal prime ideals.

Example 5.4. Let p, P2 be the sequence of positive prime integers. Let
E Q((p)/2, (p2)1/2 ), let z be an indeterminate over E, and let (V, m) denote
the DVR E[z]z). Let R be the one-dimensional quasilocal domain Q + m. Then
k Q is the residue field of R. In the notation of (2.2), we take A to be Z+ and
yi to be (pi) /2. We show that {fi xZi Pi z}= is one acceptable choice of
monic polynomials for (2.2), and the resulting ring S R[{xi}]/({fi}i) is a
quasilocal domain. On the other hand, we show that {gi xZi Pi}i_-i is another
acceptable choice, and the quasilocal ring Sz R[{xi }=]/({gi }i=1) is reduced and
has infinitely many minimal primes.

Proof. Let si Z -I- Pi and let ti (si) 1/2 for each 6 Z+. For a finite
subset W of Z+, the set of maximal ideals of E[z] that ramify in the extension field
E(z)({ti:i W})of E(z)is precisely the set {(siE[z]:i W} (cf. IN, (10.18)]).

2It follows that the polynomial fn x,, s,, is irreducible over the field E (z)({ti Ji="-
for each n 6 Z+. For a direct argument for this assertion, see, for example, the proof
given in JR]. This establishes that S is a quasilocal domain.
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To prove the statement concerning $2 R[{xi}__l]/({gi}i__l ), it suffices to show
thatforeachpositiveintegern R, g[{xi}i=l]/({gi n}i= is reduced with 2 minimal
prime ideals. Since gl factors over the integral closure V E + m of R as (xl
Yl)(Xl + y), a product of two distinct linear polynomials, it follows that R
R[xl]/(g) is reduced with two minimal prime ideals each of which has associated
residue class ring R[yl Q(y) + m. Assume that Rn is reduced with 2" minimal
primes each of which has associated residue class ring isomorphic to R[{Yi}in=l]
Q.({Yi}in=l) q- m. Since R,+l is finite and free as an R,-module, for a minimal prime
P of R, the primes of Rn+l lying over P in Rn are the minimal primes of PRn+l and
are minimal primes of the ring R+l. Since Rn+l R,, [x,,+ ]/ (g,,+ ), it follows that

Rn+l/Pgn+l (gn/e)[xn+l]/(g--) [.({Yi}in=l) + m][Xn+l]/(g--’).

Therefore gn+l is the product of the distinct linear polynomials x,+ Yn+ and
X+l + yn+ over the quotient field of R,,/P. Hence the zero ideal of Rn+l/PR,,+
is an intersection of two minimal prime ideals, each having associated residue class

In+l /n+lring R[{YiJi= Q({yiJi= + m. We conclude that Rn+ is reduced with 2
minimal prime ideals. This completes the proof. !-3

6. Embeddings into a ring with n maximal ideals

In analogy with the four questions mentioned in the introduction, we have also
considered, for a positive integer n, the following four questions:

(1) Under what conditions is a ring R a subring of a ring with n maximal ideals?
(2) Under what conditions is a Noetherian ring R a subring of a ring with n maximal

ideals?
(3) Under what conditions is a Noetherian ring R a subring of a Noetherian ring

with n maximal ideals?
(4) Under what conditions is a ring R a subring of a Noetherian ring with n maximal

ideals?

In general, a ring R is a subring of a ring with n maximal ideals if and only if the set
of zero-divisors of R is contained in the union of at most n prime ideals P E SpecR.
Thus there exists an embedding of R into a ring with at most n maximal ideals if
and only if there exists a multiplicative system N of R such that R N is the union
of at most n prime ideals of R and such that the canonical map of R into RN is an
injection. This gives what we regard as a satisfactory answer to Question (1).

Since the localization of a Noetherian ring at a multiplicative system is again a
Noetherian ring, if a Noetherian ring R is a subring of a ring with n maximal ideals,
then R is a subring of a Noetherian ring with n maximal ideals. Thus (2) and (3) are
equivalent and hold precisely if the zero-divisors of R are contained in the union of at
most n prime ideals P E SpecR. This gives what we regard as a satisfactory answer
to (2) and (3). As in the local case, Question (4) is more subtle.
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In analogy with Theorem 3.2, we have:

THEOREM 6.1. Ifa zero-dimensional ring R with n maximal ideals is embeddable
in a Noetherian ring, then R is a subring ofan Artinian ring with n maximal ideals.

Proof Since R is zero-dimensional and has n maximal ideals, R is the direct
product of n zero-dimensional quasilocal rings Ri. For < < n, let ei Ri be
the (idempotent) i-th component of in this decomposition and let S be a Noetherian
extension ring of R. Then Ri Rei is a subring of the Noetherian ring Si Sei. By
Theorem 3.2, each Ri is dominated by an Artinian local ring Ci. Hence R I-Ii=l Ri
is a subring of the Artinian ring C I-li=l Ci which has n maximal ideals. UI

In analogy with Remark 1.1, we have:

Remark 6.2. Let n be a positive integer. It is possible for a quasilocal ring to be
a subring of a Noetherian ring and yet not be a subring of a Noetherian ring having
fewer than n + maximal ideals as we show in the following example.

Example 6.3. Let (R, m) be a one-dimensional quasilocal reduced ring with n+
minimal primes and with idempotent maximal ideal. The total quotient ring of R is
a product of n + fields, a Noetherian ring with n + maximal ideals. Suppose S
is any Noetherian extension ring of R. We show that S has at least n + maximal
ideals. Since m m2 and since mS is finitely generated, it follows that mS eS,
where e e2 is an idempotent element of S. Because eS is a homomorphic image of
S, it suffices to show that the ring eS has at least n + maximal ideals. Since m has
annihilator (0) in R, no nonzero element of R annihilates the element e. Therefore
the map r er is an isomorphism of R onto eR, so without loss of generality we
assume that e mthat is, mS S. Choose a 6 m not in the union of the n +
minimal primes of R. Then a R is m-primary, so S = mS is contained in the radical
of aS, and hence a is a unit of S. We conclude that the total quotient ring of R is
isomorphic to a subring of S. Therefore S itself is a product of n + nonzero ideals,
so S has at least n + maximal ideals.

To obtain a specific one-dimensional quasilocal reduced ring (R, m) with n +
minimal prime ideals and with idempotent maximal ideal, let x, y, z be indeterminates
over a field F, and define a rank-one nondiscrete valuation domain W F + Q on
the field F(x, y) as in (1.1). Define R W[z]/(z(z -x)(z-x2) (z-xn)). Then
R is reduced with n + minimal primes the images of the prime ideals (z), (z
x) (z xn) of the polynomial ring W[z], while the image m of the maximal
ideal (Q, z) of W[z] is the unique maximal ideal of R. Moreover, the fact that Q is
idempotent in W implies that m is idempotent in R.

Remark 6.4. Using the fact that a ring R is a subring of a ring with n maximal
ideals if and only if the set of zero-divisors of R is contained in the union of at
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most n prime ideals P 6 SpecR, it is easy to give an example of a one-dimensional
Noetherian ring R such that SpecR is connected and R is not a subring of a ring with
fewer than n maximal ideals. For example, let p Pn be distinct primes in the ring
of integers Z, letx be an indeterminate over Z, and define R Z[x]/(p p,,x, x2).
Then R has the stated property.

In a Noetherian ring R the set of zero divisors is a finite union of prime ideals
P 6 SpecR. Hence a Noetherian ring is a subring of a ring with finitely many
maximal ideals. There exists, however, a non-Noetherian ring R having the property
that SpecR is connected and every extension ring of R has infinitely many maximal
ideals. For example, if R is the ring of continuous real-valued functions on the unit
interval, then SpecR is connected and the set of zero-divisors of R is not contained
in a finite union of prime ideals P 6 SpecR.
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