THE ESSENTIAL NORM OF A COMPOSITION OPERATOR ON A PLANAR DOMAIN

STEPHEN D. FISHER AND JONATHAN E. SHAPIRO

ABSTRACT. We generalize to finitely connected planar domains the result of Joel Shapiro which gives a formula for the essential norm of a composition operator. In the process, we define and give some properties of a generalization of the Nevanlinna counting function and prove generalizations of the Littlewood inequality, the Littlewood-Paley identity, and change of variable formulas, as well.

1. Introduction

Let Ω be a domain in the plane. For $1 \le p < \infty$, the Hardy space $H^p = H^p(\Omega)$ is defined to be those analytic functions f on Ω for which the subharmonic function $|f(z)|^p$ has a harmonic majorant. Once we specify a base point $t_0 \in \Omega$, we define the norm of f to be the p^{th} root of the value at t_0 of the (unique) least harmonic majorant of $|f|^p$. A different choice of the base point gives an equivalent norm on H^p ; this is an application of Harnack's inequality. The Hardy space H^∞ is the space of bounded analytic functions on Ω with the supremum norm. For more on the Hardy spaces, see [6], [1].

An analytic function φ that maps Ω into itself determines a composition operator C_{φ} on H^{p} given by

(1)
$$C_{\varphi}f = f \circ \varphi.$$

 C_{φ} is a bounded operator on H^p . One simple way to see this is to note that if u_f is the least harmonic majorant of $|f|^p$, then $u_f \circ \varphi$ is an harmonic majorant of $|f \circ \varphi|^p$ and so

$$\|f \circ \varphi\|^p \le u_f(\varphi(t_0)) \le K u_f(t_0)$$

where K is a constant that, again by Harnack's inequality, depends only on the domain Ω , and the points t_0 and $\varphi(t_0)$.

In this paper we are concerned with H^p on a domain Ω that is finitely-connected; that is, has only a finite number of complementary components. In this setting, it is known [2] that C_{φ} is compact on some H^p , $1 \le p < \infty$, if and only if it is compact on all H^p . We therefore concentrate on C_{φ} acting on H^2 . The main result of this paper is an extension of the theorem of Joel Shapiro [7] on the essential norm—distance to the set of compact operators—of the composition operator C_{φ} that he proved when

© 1999 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received September 8, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B38; Secondary 30H05, 46E20.

 Ω is the unit disk. To understand the statement of Shapiro's theorem we must first define the Nevanlinna counting function of φ .

Definition 1.1. Let Δ be the open unit disk and suppose that φ is an analytic function mapping Δ into itself. The Nevanlinna counting function for φ is

(2)
$$N_{\varphi}(w) = \sum_{\varphi(z)=w} -\log|z| \quad \text{for} \quad w \neq \varphi(0) \,.$$

With this background, we can state Joel Shapiro's result.

THEOREM 1.2. Suppose that φ is an analytic function that maps Δ into Δ with $\varphi(0) = 0$. Let $||C_{\varphi}||_{e}$ denote the essential norm of C_{φ} as an operator on H^{2} . Then

$$\left\|C_{\varphi}\right\|_{e}^{2} = \limsup_{|w| \to 1^{-}} \left[\frac{N_{\varphi}(w)}{-\log|w|}\right].$$

In particular, C_{φ} is compact on H^2 if and only if

$$\lim_{|w|\to 1^-}\frac{N_{\varphi}(w)}{-\log|w|}=0.$$

The development of this paper follows the arguments of Shapiro in [7] closely, altering several parts as necessary to allow for the change in setting.

2. Background

Let D be a domain in the plane whose universal covering surface is the open unit disc Δ and let Π be the covering map. The *Poincaré metric* for D is defined at $\zeta = \Pi(z) \in D$ by

$$\lambda_D(\zeta) = |\Pi'(z)|(1-|z|^2).$$

It is shown in [3, p. 44] that the value of $\lambda_D(\zeta)$ is independent of the particular choice of $z \in \Delta$ with $\Pi(z) = \zeta$.

If D is regular for the Dirichlet problem, we denote the Green's function for D with pole at $p \in D$ by $g_D(z; p)$. The domain D is omitted unless confusion is possible.

In this paper we shall generally be concerned with a planar domain Ω whose complement consists of a finite number of disjoint non-trivial continua. Such a domain is conformally equivalent to one whose boundary consists of a finite number of disjoint analytic simple closed curves; indeed, it is conformally equivalent to a domain whose boundary components are circles. Since the conformal mapping gives an isometry of the corresponding Hardy spaces, we may assume, and shall do so, that the components $\Gamma_0, \ldots, \Gamma_p$ of Γ are circles, with Γ_0 the boundary of the unbounded

component of the complement of Ω . We let ω_{t_0} denote the harmonic measure on Γ for the (fixed) base point t_0 . It is standard [2] that each H^2 function f on Ω has boundary values almost everywhere on Γ , that these boundary values lie in $L^2(\Gamma, \omega_{t_0})$, and that the correspondence of f to its boundary values is an isometry of H^2 onto a closed subspace of $L^2(\Gamma, \omega_{t_0})$. We let Ω_j be the region outside Γ_j , $j = 1, \ldots, p$, including the point at ∞ and Ω_0 be the region inside Γ_0 . Each of the regions Ω_j is conformally equivalent to the unit disk Δ via a linear fractional transformation. When we write $H^2(\Omega_j)$ for the Hardy space for this region, we shall always assume that the norm is taken with respect to the base point t_0 .

2.1. Factorization of H^p functions. There is a factorization of functions in $H^p(\Omega)$, developed in [8], that parallels that for H^p functions on the unit disc. Here we give a summary; additional details may be found in [1, Section 4.7].

Let \mathcal{G} be the group of linear fractional transformations of Δ onto itself that leave the covering map Π invariant: $\Pi \circ \tau = \Pi, \tau \in \mathcal{G}$. An analytic function h on Δ is *modulus automorphic* if for each $\tau \in \mathcal{G}$ there is a unimodular constant $c = c(\tau)$ such that $h \circ \tau = ch$. Each modulus automorphic function h corresponds to a function fon Ω by $h(z) = f(\Pi(z)), z \in \Delta$. The modulus of f is single-valued, but f itself has unimodular periods in the sense that analytic continuation of a function element (f, \mathcal{O}) along any curve γ in Ω leads to the function element (cf, \mathcal{O}) , where c is a unimodular constant that depends only on the homotopy class of γ . The class of such multiple-valued analytic functions with single-valued modulus whose p^{th} power has a harmonic majorant will be denoted by $MH^p(\Omega)$.

A Blaschke product B is an element of $MH^{\infty}(\Omega)$ with

$$\log|B(z)| = -\sum_k g_{\Omega}(z; w_k), \quad \sum_k g_{\Omega}(w_k; t_0) < \infty.$$

If there are only a finite number of zeros, then the second condition is automatically satisfied.

A singular inner function S is an element of MH^{∞} with

$$\log |S(z)| = -\int_{\Gamma} P(s; z) dv(s)$$

where ν is a non-negative Borel measure on Γ that is singular with respect to harmonic measure ω_{t_0} and $P(\cdot; z)$ is the Poisson kernel for $z \in \Omega$.

An outer function in MH^p is an element F of MH^p of the form

$$\log |F(z)| = \int_{\Gamma} u(s) P(s; z) d\omega_{t_0}(s)$$

where $u \in L^1(\Gamma, \omega_{t_0})$ and $e^u \in L^p(\Gamma, \omega_{t_0})$.

The basic theorem on factorization is this.

THEOREM 2.1. Each function $f \in MH^p(\Omega)$ has a factorization as

f = BSF

where B is a Blaschke product, S is a singular inner function, and F is an outer function in $MH^{p}(\Omega)$. The factors are unique up to multiplication by unimodular constant. Even if f is single-valued, the factors need not be.

2.2. The Nevanlinna counting function. Our first goal is to generalize the Nevanlinna counting function to the domain Ω and understand some of its properties.

Definition 2.2. Let $\varphi: \Omega \to \Omega$ be an analytic function. The Nevanlinna counting function for φ , $N_{\varphi}(w)$ for $w \in \Omega \setminus \{\varphi(t_0)\}$, is

$$N_{\varphi}(w) = \sum_{\varphi(z)=w} g_{\Omega}(z; t_0).$$

Note that this reduces to the counting function defined previously if Ω is the unit disk Δ and $t_0 = 0$.

For the Nevanlinna counting function on the unit disk, there is the classical theorem of Littlewood [4]:

THEOREM 2.3. Let ψ be a holomorphic self-map of the unit disk Δ . Then

(3)
$$N_{\psi}(w) \le \log \left| \frac{1 - \overline{\varphi(0)}w}{\varphi(0) - w} \right|, \quad w \in \Delta \setminus \{\psi(0)\}$$

with equality holding for quasi-every w (i.e., all w except those in a set of capacity zero) exactly when ψ is inner.

If $\psi(0) = 0$, then (3) reduces to

$$N_{\psi}(w) \leq -\log|w|$$

which is an improvement of the Schwarz inequality.

For counting functions on Ω , we have the following generalization of Littlewood's inequality:

THEOREM 2.4. Let $\varphi: \Omega \to \Omega$ be analytic and fix the point t_0 . Then

$$N_{\varphi}(w) = \sum_{\varphi(z)=w} g(z;t_0) \le g(w;t_0) \text{ for all } w \in \Omega \setminus \{t_0\},$$

with equality holding (for quasi-every w) exactly when $\varphi(\Gamma) \subset \Gamma$, by which we will mean that the boundary values of φ on Γ lie in Γ almost everywhere (with respect to ω_{t_0}).

116

Proof. Let g(z; w) be the Green's function for Ω with pole at w. The function $g(\varphi(z); w)$ is harmonic on Ω except at the collection of isolated points where $\varphi(z) = w$; at such a point, $g(\varphi(z); w)$ has a logarithmic pole. Let $*g(\varphi(z); w)$ be the (multiple-valued) harmonic conjugate of $g(\varphi(z); w)$ on $\Omega \setminus \{\varphi(z) = w\}$ and set

$$Q_w(z) = e^{-g(\varphi(z);w) - i^*g(\varphi(z);w)}$$

 Q_w lies in MH^{∞} ; indeed, its modulus is bounded by one. Using Theorem 2.1, we factor Q_w in $H^2(\Omega)$ as $Q_w(z) = B_w(z)S_w(z)F_w(z)$ where the factors are a Blaschke product, a singular inner function, and an outer function, respectively. We then get

$$\begin{aligned} -\log |Q_w(t_0)| &= g(\varphi(t_0); w) \\ &= g(t_0; w) \\ &= -\log |B_w(t_0)| - \log |S_w(t_0)| - \log |F_w(t_0)|. \end{aligned}$$

The function $Q_w(z)$ has zeros exactly where $\varphi(z) = w$, so we have

$$-\log|B_w(t_0)| = \sum_{\varphi(z)=w} g(t_0; z) = N_{\varphi}(w).$$

Thus we see that

 $g(w; t_0) = N_{\varphi}(w) - \log |S_w(t_0)| - \log |F_w(t_0)|,$

so

$$g(w; t_0) \geq N_{\varphi}(w).$$

We have equality when both $\log |S_w(t_0)|$ and $\log |F_w(t_0)|$ are zero, which happens when both S_w and F_w are unimodular constants. If $\varphi(\Gamma) \subset \Gamma$, then we will have $|Q_w| = 1$ almost everywhere on Γ and thus $F_w \equiv 1$. By the extension of Frostman's theorem, Theorem 2.6, which is proved below since Q_w is a Blaschke product composed with φ , it has trivial singular factor for quasi-every w in Ω . \Box

The well-known theorem of Frostman, for functions on the unit disk, can be stated as follows:

THEOREM 2.5. Let ψ be an inner function on Δ . Then for |w| < 1, the function

(4)
$$q_w(z) = \frac{\psi(z) - w}{1 - \overline{w}\psi(z)}$$

is a Blaschke product except possibly for a set of w in Δ of logarithmic capacity zero.

For our generalization, we will prove the following theorem and associated lemma, which are suggested in [1, Ch. 5, Exercise 2, 3]:

THEOREM 2.6. Let φ be an analytic function on Ω with $\varphi(\Gamma) \subset \Gamma$, and $B_w(z) = \exp\{-g(z; w) - i^*g(z; w)\}$ be the Blaschke product on Ω with zero at w. Then the function

$$Q_w(z) = B_w(\varphi(z))$$

is a Blaschke product (on Ω), except possibly for a set of w in Ω of logarithmic capacity zero.

Proof. For Π , the universal covering map from Δ onto Ω (with $\Pi(0) = t_0$), we have the pull-back map $\psi: \Delta \to \Delta$ which satisfies $\varphi \circ \Pi = \Pi \circ \psi$. It is easy to see that if $\varphi(\Gamma) \subset \Gamma$, then ψ must be inner. Define

$$E = \left\{ w \in \Delta : \frac{\psi(z) - w}{1 - \overline{w}\psi(z)} \text{ has a nontrivial singular factor} \right\}.$$

By Theorem 2.5 above, E has logarithmic capacity zero, thus so does $\Pi(E)$ (in Ω). We write

$$Q_w \circ \Pi = B_w \circ \varphi \circ \Pi$$
$$= B_w \circ \Pi \circ \psi.$$

By Lemma 2.7, below, $B_w \circ \Pi$ is a Blaschke product on Δ , with zeros at those points z with $\Pi(z) = w$. The function $B_w \circ \Pi \circ \psi$ is thus a (constant times a) product of terms of the form (4). If w is not in $\Pi(E)$, then each of these terms is a Blaschke product. Thus $B_w \circ \Pi \circ \psi = B_w \circ \varphi \circ \Pi$ is a Blaschke product, and, again by Lemma 2.7, $B_w \circ \varphi = Q_w$ is a Blaschke product on Ω . \Box

LEMMA 2.7. The analytic function B on Ω is a Blaschke product if and only if $B \circ \Pi$ is a Blaschke product on Δ .

Proof. If B is a Blaschke product on Ω , we can write

$$B(z) = e^{-\Sigma g(z;z_j) - i^* \left(\Sigma g(z;z_j) \right)}$$

for some sequence $\{z_j\}$ with the property that $\sum_{j=1}^{\infty} g(\zeta; z_j) < \infty$ for each $\zeta \in \Omega$. $B \circ \Pi$ is easily seen to be an inner function on Δ , so we can write

$$B \circ \Pi = bS,$$

where b is a Blaschke product on Δ and S is a singular inner function. The Blaschke product b has a zero at any z with $\Pi(z) = z_j$ for some j. We now see that

$$\begin{aligned} -\log|B \circ \Pi(0)| &= -\log|B(t_0)| \\ &= \sum_{j} g(t_0; z_j) \\ &= \sum_{j} \sum_{\Pi(z)=z_j} \log \frac{1}{|z|} \\ &= -\log|b(0)|. \end{aligned}$$

The third line above comes from the fact [5, VII.5] that we can write the Green's function for Ω in terms of Green's functions on the unit disk,

$$g(w; t_0) = \sum_{\Pi(a)=w} \log \frac{1}{|a|}.$$

But (5) gives us $-\log |B \circ \Pi(0)| = -\log |b(0)| - \log |S(0)|$, so |S(0)| = 1, and thus $S \equiv 1$; i.e., $B \circ \Pi = b$ is a Blaschke product in Δ .

Now assume $B \circ \Pi$ is a Blaschke product on Δ . It is easy to see that B must be an inner function on Ω , so it has the factorization in $H^{\infty}(\Omega)$,

$$B = bS$$

where b is a Blaschke product on Ω and S is a singular inner function on Ω (i.e., S has boundary values of modulus 1 a.e., and has no zeros on Ω). We then have

$$B \circ \Pi = (b \circ \Pi) (S \circ \Pi)$$

and we can easily see that $S \circ \Pi$ is a function on Δ which has no zeros and has boundary values of 1 a.e., so $S \circ \Pi$ is a singular inner function. But $B \circ \Pi$ is a Blaschke product, so has only trivial singular inner factor; i.e., $S \circ \Pi$ is trivial, so S must be trivial, and B must be a Blaschke product. \Box

2.3. The sub-mean-value property. We will need the following property for the counting function on Ω :

THEOREM 2.8. Let h be an analytic function on a domain U. Suppose that D is an open disk in $U \setminus h^{-1}(t_0)$ with center at a and that $h(D) \subset \Omega$. Then

(6)
$$N_{\varphi}(h(a)) \leq \frac{1}{A(D)} \int_{D} N_{\varphi}(h(w)) dA(w)$$

where N_{ω} is the counting function for Ω and A is area measure.

Proof. This sub-mean-value property follows from the version proved in [7], since we can express our counting function on Ω as a counting function on the unit disk:

$$N_{\varphi}(w) = \sum_{\varphi(z)=w} g(z; t_0)$$

As we did earlier, we write the Green's function of Ω in terms of the Green's function on Δ to get

$$N_{\varphi}(w) = \sum_{\varphi(z)=w} g(z; t_0)$$

$$= \sum_{\varphi(z)=w} \sum_{\Pi(a)=z} \log \frac{1}{|a|}$$
$$= \sum_{\varphi \circ \Pi(a)=w} \log \frac{1}{|a|}$$
$$= N_{a \circ \Pi}(w),$$

for Π the universal covering map of the unit disk onto Ω which maps 0 to t_0 . In this last line, $N_{\varphi \circ \Pi}(w)$ is the counting function on the unit disk. It is shown in [7] that $N_{\varphi \circ \Pi}(h(w))$ has the required sub-mean-value property, so $N_{\varphi}(h(w))$ has the same property. \Box

2.4. The Littlewood-Paley identity. For functions in $H^2(\Delta)$, we have the Littlewood-Paley identity [7]:

THEOREM 2.9. For functions $f \in H^2(\Delta)$,

$$\|f\|_{H^{2}(\Delta)}^{2} = \frac{1}{2\pi} \int_{T} \left| f(e^{i\theta}) \right|^{2} d\theta = \frac{2}{\pi} \int_{\Delta} \left| f'(z) \right|^{2} \log(1/|z|) dA(z) + |f(0)|^{2} d\theta$$

The corresponding theorem on Ω is:

THEOREM 2.10. For functions $f \in H^2(\Omega)$,

$$\|f\|_{H^{2}(\Omega)}^{2} = \int_{\Gamma} |f|^{2} d\omega_{t_{0}} = \frac{2}{\pi} \int_{\Omega} |f'(z)|^{2} g(z; t_{0}) dA + |f(t_{0})|^{2},$$

where ω_{t_0} is harmonic measure on Γ for t_0 .

Proof. Let r be a small positive number and let $\Omega_r = \Omega \setminus \{z : |z - t_0| \le r\}$. The boundary of Ω_r is $\Gamma_r = \Gamma \cup \{z : |z - t_0| = r\}$. We begin with Green's formula:

$$\int_{\Gamma_r} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) ds = \int_{\Omega_r} \left(u \Delta v - v \Delta u \right) \, dA.$$

We take $u = |f|^2$ and $v = g(\cdot; t_0)$. We have

$$d\omega_{t_0} = \frac{-1}{2\pi} \frac{\partial v}{\partial n} ds$$
 and $\Delta u = 4|f'|^2$.

On the circle $|z - t_0| = r$, the normal derivative of v is the radial derivative and equals 1/r plus a bounded term. This gives a term on the left-hand side of $2\pi |f(t_0)|^2$ as $r \to 0$. On the other hand, v itself is $\log r$ plus a bounded term and so the other term from the left-hand side goes to zero as $r \to 0$. On the right-hand side, the Laplacian of v is identically zero on Ω_r and v itself is $\log s$, $0 < s \le r$ plus a bounded term on the circle $|z - t_0| = s$. Thus, the right-hand side approaches $-4 \int_{\Omega} |f'(z)|^2 dA$ as $r \to 0$. Rearrangement gives the conclusion. \Box

2.5. *Change of variable formulas*. We also have the change of variable formula for the disk (see [7]):

THEOREM 2.11. For any positive, measurable function F on Δ , and analytic self-map ψ of Δ ,

$$\int_{\Delta} F(\psi(z)) \left| \psi'(z) \right|^2 \log(1/|z|) dA(z) = \int_{\Delta} FN_{\psi} dA.$$

We will need the corresponding theorem on the domain Ω .

THEOREM 2.12. For any positive, measurable function F on Ω , and analytic self-map φ of Ω ,

$$\int_{\Omega} F(\varphi(z)) \left| \varphi'(z) \right|^2 g(z;t_0) dA(z) = \int_{\Omega} F(z) N_{\varphi}(z) dA(z).$$

Proof. The proof follows closely the one in [7]. Since φ is a local homeomorphism on the open set Ω' formed by deleting from Ω the zeros of φ' , there exists a countable collection $\{R_j\}$ of disjoint open regions in Ω' the union of whose closures is Ω , and such that φ is one-to-one on each R_j . Let ψ_j denote the inverse of the restriction of φ to R_j , so that ψ_j is a one-to-one map taking $\varphi(R_j)$ back onto R_j . By the usual change of variable formula applied on R_j , with $z = \psi_j(w)$,

$$\int_{R_j} F(\varphi(z)) \left| \varphi'(z) \right|^2 g(z;t_0) dA = \int_{\varphi(R_j)} F(w) g\left(\psi_j(w);t_0 \right) dA(w).$$

Thus, if χ_j denotes the characteristic function of the set $\varphi(R_j)$,

$$\int_{\Omega} (F \circ \varphi) |\varphi'| g(\cdot; t_0) dA = \int_{\Omega} F(w) \left\{ \sum_j \chi_j(w) g\left(\psi_j(w); t_0\right) \right\} dA(w).$$

This is the desired formula, since the term in curly braces on the right side of the equation above is $N_{\varphi}(w)$. \Box

We will also need the following version of this change of variable formula.

COROLLARY 2.13. For each f analytic on Ω ,

$$\|f \circ \varphi\|_{H^2(\Omega)}^2 = \frac{2}{\pi} \int_{\Omega} |f'|^2 N_{\varphi} dA + |f(\varphi(t_0))|^2.$$

Proof. The generalized form of the Littlewood–Paley identity applied to $f \circ \varphi$ yields

$$\|f \circ \varphi\|_{H^{2}(\Omega)}^{2} = \frac{2}{\pi} \int |(f \circ \varphi)'(z)|^{2} g(z; t_{0}) dA + |f(\varphi(t_{0}))|^{2}$$
$$= \frac{2}{\pi} \int |f' \circ \varphi|^{2} |\varphi'|^{2} g(z; t_{0}) dA + |f(\varphi(t_{0}))|^{2}$$

(by the chain rule). An application of the change of variable formula, with $F = |f'|^2$, completes the proof. \Box

2.6. A basis for $H^2(\Omega)$.

THEOREM 2.14. Let Ω be bounded by p + 1 disjoint circles, $\Gamma_0, \ldots, \Gamma_p$, and let Ω_i , $i = 0, 1, \ldots p$ be defined as at the beginning of this section. There is an orthonormal basis of $H^2(\Omega)$, say u_0, u_1, u_2, \ldots , with this property: if $f \in H^2$ has the expansion $\sum_{0}^{\infty} c_k u_k$, then $f - \sum_{0}^{m(p+1)} c_k u_k$ has a zero at t_0 of order at least $m, m = 1, 2, 3, \ldots$

Proof. Let ϕ_j be the linear fractional transformation that maps Ω_j onto the unit disk Δ , normalized so that $\phi_j(t_0) = 0$. Let $u_{jk} = \phi_j^k$; then $\{u_{jk}\}_{k=0}^{\infty}$ is an orthonormal basis of $H^2(\Omega_j)$, $j = 0, \ldots p$ and u_{jk} vanishes to order k at t_0 . Arrange the functions u_{jk} as

$$u_{00}, u_{10}, \ldots, u_{p0}, u_{01}, u_{11}, \ldots, u_{p1}, u_{02}, \ldots$$

and renumber them as $v_0, v_1, v_2, ...$ Now let E_n be the closed linear span of $\{v_{n+1}, v_{n+2}, ...\}$, n = 0, 1, 2, ... Finally, let u_m be the (normalized) projection of v_m onto the orthogonal complement in H^2 of E_n .¹ We now check that these functions have the desired properties. Evidently, by its very construction, u_0 is orthogonal to $v_1, v_2, ...$ We write $u_1 = v_1 + h_1$ where $h_1 \in E_1$. Hence,

$$0 = \langle u_0, v_1 \rangle = \langle u_0, u_1 \rangle - \langle u_0, h_1 \rangle = \langle u_0, u_1 \rangle,$$

and so u_0 is orthogonal to u_1 . Next, u_2 is orthogonal to v_3, v_4, \ldots . We write $u_2 = v_2 + h_2$ where $h_2 \in E_2$. Hence,

$$0 = \langle u_0, v_2 \rangle = \langle u_0, u_2 \rangle - \langle u_0, h_2 \rangle = \langle u_0, u_2 \rangle$$

and

$$0 = \langle u_1, v_2 \rangle = \langle u_1, u_2 \rangle - \langle u_1, h_2 \rangle = \langle u_1, u_2 \rangle$$

¹Thanks to Todd Young for his contribution of this idea to the proof.

so that u_2 is orthogonal to both of u_0 and u_1 . In a similar way we can see that the functions u_0, u_1, u_2, \ldots are mutually orthogonal. Next, it is easy to establish that the linear span of u_0, \ldots, u_n is the orthogonal complement of $E_n, n = 0, 1, 2, \ldots$ and so if $v \in H^2$ is orthogonal to u_0, u_1, \ldots , then

$$v\in\bigcap_{n=0}^{\infty}E_n.$$

and thus v = 0. Finally, suppose $f \in H^2$ has an orthonormal expansion $f = \sum_{k=0}^{\infty} c_k u_k$. Those u_k with k > (p+1)m vanish at t_0 to order at least m and hence $f - \sum_{0}^{m(p+1)} c_k u_k$ has a zero at t_0 of order at least m.

PROPOSITION 2.15. Suppose that $f \in H^2(\Omega)$ vanishes to order n at t_0 . Let Π be the universal covering map from Δ to Ω . For $\zeta \in \Omega$ and $\Pi(z) = \zeta$, let λ_{Ω} be the Poincaré metric for Ω . Then:

(a)
$$|f(\zeta)| \leq \frac{|z|^n}{\sqrt{1-|z|^2}} (\lambda_{\Omega}(\zeta) \|\Pi\|_{\infty})^{\frac{1}{2}} \|f\|_2;$$

(b)
$$|f'(\zeta)| \le \sqrt{2}n \frac{|z|^{n-1}}{\sqrt{1-|z|^2}} (\lambda_{\Omega}(\zeta))^{\frac{3}{2}} ||f||_2 ||\Pi||_{\infty}^{\frac{1}{2}}.$$

Proof. Let $g = f \circ \Pi$ so that g has a zero of order n at the origin. Then use the standard estimates (see [7]) in the unit disk plus the fact that $\lambda_{\Omega}(\zeta) = |\Pi'(z)|(1 - |z|^2) \le ||\Pi||_{Bloch} \le ||\Pi||_{\infty}$.

3. The main theorem

With the background of Section 2 in place, we are now ready to state and prove the main result of this paper.

THEOREM 3.1. Suppose that Ω is finitely connected and that φ is an analytic function mapping Ω into itself with $\varphi(t_0) = t_0$. Let $||C_{\varphi}||_e$ denote the essential norm of C_{φ} , regarded as an operator on $H^2(\Omega)$. Then

$$\left\|C_{\varphi}\right\|_{e}^{2} = \limsup_{w \to \Gamma} \frac{N_{\varphi}(w)}{g(w; t_{0})}.$$

In particular, C_{φ} is compact on H^2 if and only if

$$\lim_{w\to\Gamma}\frac{N_{\varphi}(w)}{g(w;t_0)}=0.$$

We will prove the theorem by proving separately upper and lower bounds for the essential norm of C_{φ} .

3.1. *The upper bound*. We will use the following general formula from [7] for the essential norm of a linear operator on a Hilbert space:

THEOREM 3.2. Suppose T is a bounded linear operator on a Hilbert space H. Let $\{K_n\}$ be a sequence of compact self-adjoint operators on H, and write $R_n = I - K_n$. Suppose $||R_n|| = 1$ for each n, and $||R_nx|| \to 0$ for each $x \in H$. Then $||T||_e = \lim_n ||TR_n||$.

The goal now is to show that, for an analytic function $\varphi: \Omega \to \Omega$ which fixes the point t_0 ,

(7)
$$\left\|C_{\varphi}\right\|_{e}^{2} \leq \limsup_{w \to \Gamma} \frac{N_{\varphi}(w)}{g(w; t_{0})}.$$

We do this by applying Theorem 3.2 above with K_n the operator which takes f to the sum of the first (p + 1)n terms in its expansion relative to the basis we have chosen for $H^2(\Omega)$ in Theorem 2.14.

For this orthonormal basis u_0, u_1, u_2, \ldots of $H^2(\Omega)$, we can write any $f \in H^2(\Omega)$ as $f = \sum_{k=0}^{\infty} c_k u_k$, and then $K_n f = \sum_{k=0}^{(p+1)n} c_k u_k$. $R_n = I - K_n$ will then be an operator with the property that $R_n f = \sum_{k=1+(p+1)n}^{\infty} c_k u_k$ has a zero of order at least *n* at t_0 .

The operator K_n is self-adjoint and compact. Since $R_n = I - K_n$, its norm is 1, so that the hypotheses of the proposition are fulfilled, and

$$\left\|C_{\varphi}\right\|_{e} = \lim_{n \to \infty} \left\|C_{\varphi}R_{n}\right\|.$$

To estimate the right side of the above, fix a function f in the unit ball of $H^2(\Omega)$, and a positive integer n. Then by Corollary 2.13 we get

$$\|C_{\varphi}R_{n}f\|_{H^{2}(\Omega)}^{2} = \frac{2}{\pi}\int |(R_{n}f)'|^{2}N_{\varphi}dA + |R_{n}f(\varphi(t_{0}))|^{2}.$$

Since $||f||_{H^2(\Omega)} \leq 1$, the same is true of $R_n f$.

Now fix r < 1. Split the integral above into two parts, $\Omega_r = \Pi(r\Delta)$ (where Π is the universal covering map of Ω which maps the origin to t_0), and the other its complement in Ω , Ω_r^c . Then take the supremum of both sides of the resulting inequality over all functions f in the unit ball B of $H^2(\Omega)$. We obtain

$$\|C_{\varphi}R_n\|^2 \leq \sup_B \frac{2}{\pi} \int_{\Omega_r} |(R_n f)'|^2 N_{\varphi} dA + \sup_B \frac{2}{\pi} \int_{\Omega_r^c} |(R_n f)'|^2 N_{\varphi} dA + |R_n f(\varphi(t_0))|^2.$$

We now use the pointwise estimate for $(R_n f)'$, from Proposition 2.15 part (b). $R_n f$ has a zero of order at least *n* at t_0 , and, for $w \in \Omega_r$, $w = \pi(z)$ for some *z* with |z| < r.

Thus we have

$$\left| (R_n f)'(w) \right| \le \sqrt{2}n \frac{|r|^{n-1}}{\sqrt{1-|r|^2}} \left(\lambda_{\Omega}(\zeta) \right)^{\frac{3}{2}} \|f\|_2 \|\Pi\|_{\infty}^{\frac{1}{2}},$$

so

$$\frac{2}{\pi} \int_{\Omega_r} |(R_n f)'|^2 N_{\varphi} dA$$

$$\leq \left(\sqrt{2}n \frac{|r|^{n-1}}{\sqrt{1-|r|^2}} \left(\lambda_{\Omega}(\zeta) \right)^{\frac{3}{2}} \|f\|_2 \|\Pi\|_{\infty}^{\frac{1}{2}} \right)^2 \frac{2}{\pi} \int_{\Omega_r} N_{\varphi} dA.$$

Since the right side is $(n|r|^{n-1})^2$ multiplied by terms which are bounded (independent of *n*), we get

$$\frac{2}{\pi}\int_{\Omega_r}\left|\left(R_nf\right)'\right|^2N_{\varphi}dA\to 0$$

as $n \to \infty$.

We can also easily see that $|R_n f(\varphi(t_0))|^2 = |R_n f(t_0)|^2 = 0$ for all $n \ge 1$. As f runs through the unit ball of $H^2(\Omega)$, $R_n f$ runs through a subset of the ball, so we can replace $R_n f$ in the remaining integral with f and only increase the right side. We use $h(w) = N_{\varphi}(w) / g(w; t_0)$, to obtain

$$\begin{split} \lim_{n \to \infty} \left\| C_{\varphi} R_n \right\|^2 &\leq \lim_{n \to \infty} \sup_B \frac{2}{\pi} \int_{\Omega_r^c} \left| (R_n f)' \right|^2 N_{\varphi} dA \\ &\leq \sup_B \frac{2}{\pi} \int_{\Omega_r^c} \left| f'(w) \right|^2 \frac{N_{\varphi} (w)}{g(w; t_0)} g(w; t_0) dA \\ &= \sup_B \frac{2}{\pi} \int_{\Omega_r^c} \left| f'(w) \right|^2 h(w) g(w; t_0) dA \\ &\leq \sup\{h(w) : w \in \Omega_r^c\} \sup_B \frac{2}{\pi} \int_{\Omega} \left| f'(w) \right|^2 g(w; t_0) dA \\ &\leq \sup\{h(w) : w \in \Omega_r^c\}, \end{split}$$

where the last line follows from the generalized version of the Littlewood-Paley identity, Theorem 2.10. As $r \to 1$, $w \in \Omega_r^c$ means that w is the image under Π of only those z with $|z| \ge r$, so $w \to \Gamma$; thus

$$\sup\{h(w): w \in \Omega_r^c\} \to \limsup_{w \to \Gamma} h(w),$$

giving us (7).

3.2. *The lower bound*. We now wish to complete the proof of Theorem 3.1 by showing

(8)
$$\left\|C_{\varphi}\right\|_{e}^{2} \geq \limsup_{w \to \Gamma} \frac{N_{\varphi}(w)}{g(w; t_{0})}$$

The following elementary proposition will be used.

PROPOSITION 3.3. Suppose T is a bounded operator on a Banach space X and $\{x_n\}$ is a sequence in the unit ball of X that goes weakly to zero. Then $||T||_e \ge \limsup_{n\to\infty} ||Tx_n||$.

Proof. Let *K* be a compact operator. Then

$$||T - K|| \ge \limsup ||(T - K)x_n|| = \limsup ||Tx_n||$$

since $||Kx_n|| \to 0$. Now take the infimum over all K to get the desired conclusion.

We will apply Proposition 3.3 to the operator C_{φ} with the role of $\{x_n\}$ played by normalized reproducing kernels for the spaces $H^2(\Omega_j)$. We fix $j, 0 \le j \le p$ and let ϕ be the linear fractional transformation that maps Ω_j onto the unit disk Δ , with $\phi(t_0) = 0$. We then know that

$$\int_{\Gamma_j} u \circ \phi^{\cdot} d\omega_j = \frac{1}{2\pi} \int_T u \, d\theta, \quad u \text{ continuous on } T,$$

where ω_j is the harmonic measure on Γ_j relative to Ω_j for the point t_0 . It then follows that the reproducing kernel for *a* on $H^2(\Omega_j)$ is given by

$$K_a^{\Omega_j}(z) = \frac{1}{1 - \overline{\phi(a)}\phi(z)}$$

From Proposition 3.3, we see that

(9)
$$\|C_{\varphi}\|_{e}^{2} \geq \limsup_{a \to \Gamma_{i}} \frac{\|C_{\varphi}K_{a}^{\Omega_{i}}\|^{2}}{\|K_{a}^{\Omega_{j}}\|^{2}}.$$

We may compute terms on the right above in the following way:

$$\begin{split} \|C_{\varphi}K_{a}^{\Omega_{j}}\|^{2} &= \int_{\Gamma} |K_{a}^{\Omega_{j}} \circ \varphi|^{2} d\omega_{t_{0}} \\ &= \frac{2}{\pi} \int_{\Omega} |K_{a}^{\Omega_{j}'}(\varphi(z))| \varphi'(z)|^{2} dA(z) + |K_{a}^{\Omega_{j}}(t_{0})|^{2} \\ &= \frac{2}{\pi} \int_{\Omega} \frac{|\phi(a)|^{2}}{|1 - \overline{\phi(a)}\phi(\varphi(z))|^{4}} |\phi'(\varphi(z))|^{2} |\varphi'(z)|^{2} dA(z) + 1 \end{split}$$

$$= \frac{2}{\pi} \int_{\Omega} \frac{|\phi(a)|^2}{|1 - \overline{\phi(a)}\phi(w)|^4} |\phi'(w)|^2 N_{\varphi}(w) dA(w) + 1$$

$$= \frac{2}{\pi} \int_{U} \frac{|b|^2}{|1 - \overline{b}\zeta|^4} N_{\varphi}(\phi^{-1}(\zeta)) dA(\zeta) + 1,$$

where $b = \phi(a)$, and $U = \phi(\Omega)$. We now make the change of variables $\zeta = \tau_b(\xi) = \frac{b-\xi}{1-b\xi}$ or $\xi = \tau_b(\zeta)$. We then obtain

(10)
$$\|C_{\varphi}K_{a}^{\Omega_{j}}\|^{2} \geq \frac{|b|^{2}}{(1-|b|^{2})^{2}} \frac{2}{\pi} \int_{U_{b}} N_{\varphi}(\phi^{-1}(\tau_{b}(\xi))) dA(\xi)$$

where $U_b = \tau_b(U)$.

We need to compute the norm of $K_a^{\Omega_j}$ in $H^2(\Omega)$ exactly. For simplicity, we set $b = \phi(a)$. Then

$$\begin{split} \|K_a^{\Omega_j}\|^2 &= \int_{\Gamma} \left| \frac{1}{1 - \overline{b}\phi(z)} \right|^2 d\omega_{t_0}(z) \\ &= 1 + \frac{2}{\pi} \int_{\Omega} \frac{1}{|1 - \overline{b}\phi(z)|^4} |b|^2 |\phi'(z)|^2 g_{\Omega}(z; t_0) dA(z) \\ &= 1 + \frac{2}{\pi} \int_{U} \frac{1}{|1 - \overline{b}\zeta|^4} |b|^2 g_U(\zeta; 0) dA(\zeta) \quad \text{(where } U = \phi(\Omega)\text{)} \\ &= 1 + \frac{2}{\pi} \frac{|b|^2}{(1 - |b|^2)^4} \int_{U_b} g_{U_b}(\xi; b) dA(\xi) \quad \left(\text{using } \xi = \frac{b - \zeta}{1 - \overline{b}\zeta}\right). \end{split}$$

This last integral may be computed using Theorem 2.10 with f(z) = z. This will give

$$\frac{2}{\pi} \int_{U_b} g_{U_b}(\xi; b) dA(\xi) = -|b|^2 + \int_{\partial U_b} |z|^2 d\omega_b^{U_b}(z)$$

$$= -|b|^2 + \int_{\partial U} \left[\frac{|\zeta - b|}{|1 - \overline{b}\zeta|} \right]^2 d\omega_0^U(\zeta)$$

$$= -|b|^2 + 1 - (1 - |b|^2) \int_S \frac{1 - |z|^2}{|1 - \overline{b}z|^2} d\omega_0^U(z)$$

$$= (1 - |b|^2) \left(1 - \int_S \frac{1 - |z|^2}{|1 - \overline{b}z|^2} d\omega_0^U(z) \right)$$

where S is the union of that part of the boundary of U that lies inside Δ , so that S is p disjoint circles lying inside Δ . When this is substituted into the expression for $||K_a^{\Omega_i}||^2$ we obtain

(11)
$$\|K_a^{\Omega_j}\|^2 = \left(\frac{1}{1-|b|^2}\right) \left(1-|b|^2 \int_S \frac{1-|z|^2}{|1-\overline{b}z|^2} d\omega_0^U\right)$$

(12)
$$= \left(\frac{1}{1-|b|^2}\right)(1-I(b))$$

where

$$I(b) = |b|^2 \int_{S} \frac{1 - |z|^2}{|1 - \overline{b}z|^2} d\omega_0^U.$$

We now put (12) together with (10) and obtain

(13)
$$\frac{\|C_{\varphi}K_{a}^{\Omega_{j}}\|^{2}}{\|K_{a}^{\Omega_{j}}\|^{2}} \geq \frac{1}{(1-|b|^{2})(1-I(b))}\frac{2}{\pi}\int_{U_{b}}N_{\varphi}(\phi^{-1}(\tau_{b}(\xi)))dA(\xi).$$

The open set $U = \phi(\Omega)$ has the form $U = \Delta \setminus P$ where *P* is the union of *p* closed disks. As $|b| \to 1$, τ_b converges uniformly on compact subsets on Δ to a unimodular constant. Thus, $\tau_b(P)$ (as a subset of Δ) converges to the unit circle as $|b| \to 1$; in particular, if r < 1 is given, then U_b contains the disk $\{|\xi| \le r\}$ when |b| is near enough to 1; that is, when *a* is near enough to Γ_i . Thus,

$$\int_{U_b} N_{\varphi}(\phi^{-1}(\tau_b(\xi))) dA(\xi) \geq \int_{|\xi| \leq r} N_{\varphi}(\phi^{-1}(\tau_b(\xi))) dA(\xi).$$

However, by the sub-mean-value property for the counting function, Theorem 2.8, we obtain

$$\frac{2}{\pi} \int_{|\xi| \le r} N_{\varphi}(\phi^{-1}(\tau_b(\xi))) dA(\xi) \ge 2N_{\varphi}(\phi^{-1}(\tau(0)))r^2 = 2N_{\varphi}(a)r^2.$$

When this and (13) are applied to (9) we obtain

$$\|C_{\varphi}\|_{e} \geq \limsup_{a \to \Gamma_{j}} \frac{2}{(1-|b|^{2})(1-I(b))} N_{\varphi}(a)r^{2}.$$

The number r may be arbitrarily near 1 so that it may be removed from this last inequality yielding

(14)
$$\|C_{\varphi}\|_{e} \geq \limsup_{a \to \Gamma_{j}} \frac{2N_{\varphi}(a)}{(1-|b|^{2})(1-I(b))}, \quad b = \phi(a).$$

Next, $g_{\Omega}(a; t_0) = g_U(b; 0)$ and so

(15)
$$\frac{2}{(1-|b|^2)}N_{\varphi}(a) = \frac{N_{\varphi}(a)}{g_{\Omega}(a;t_0)}\frac{g_U(b;0)}{\frac{1}{2}\left(1-|b|^2\right)}$$

We now claim that

(16)
$$\lim_{b \to e^{it}} \frac{g_U(b;0)}{\frac{1}{2} \left(1 - |b|^2\right) (1 - I(b))} = 1, \quad 0 \le t \le 2\pi.$$

(14), (15), and (16) imply that

(17)
$$\|C_{\varphi}\|_{e} \geq \limsup_{a \to \Gamma_{i}} \frac{N_{\varphi}(a)}{g_{\Omega}(a; t_{0})}$$

128

which together with (7) proves the theorem.

To see that (16) holds, we first note that

$$\lim_{b \to e^{it}} \frac{g_U(b;0)}{\frac{1}{2} (1-|b|^2)} = \lim_{b \to e^{it}} \frac{g_U(b;0)}{1-|b|} = \frac{\partial g_U}{\partial n} (e^{it}) = V(e^{it})$$

where V is the function such that $V dt = 2\pi d\omega_0^U$ on the unit circle T. Now let u be any continuous function on T and let \tilde{u} denote its harmonic extension to Δ via the Poisson kernel. Then

$$\begin{split} \frac{1}{2\pi} \int_{\mathbb{T}} u(t) \left(1 - \int_{S} \frac{1 - |z|^{2}}{|1 - \overline{e^{it}}z|^{2}} d\omega_{0}^{U} \right) dt \\ &= \widetilde{u}(0) - \int_{S} \left(\frac{1}{2\pi} \int_{\mathbb{T}} \frac{1 - |z|^{2}}{|1 - \overline{e^{it}}z|^{2}} u(t) dt \right) d\omega_{0}^{U}(z) \\ &= \widetilde{u}(0) - \int_{S} \widetilde{u}(z) d\omega_{0}^{U}(z) \\ &= \widetilde{u}(0) - \int_{\partial U} \widetilde{u}(z) d\omega_{0}^{U}(z) + \int_{\mathbb{T}} u d\omega_{0}^{U}(z) \\ &= \frac{1}{2\pi} \int_{\mathbb{T}} u V dt. \end{split}$$

This shows that

$$V(e^{it}) = 1 - \int_{S} \frac{1 - |z|^2}{|1 - e^{it}z|^2} d\omega_0^U$$

= $\lim_{b \to e^{it}} (1 - I(b)),$

which gives us (16), so we are done.

REFERENCES

- [1] S. D. Fisher, Function theory on planar domains, Wiley, New York, 1983.
- [2] S. D. Fisher, Eigen-values and eigen-vectors of compact composition operators on H^p(Ω), Indiana J. Math 32 (1983), 843–847.
- [3] I. Kra, Automorphic forms and Kleinian groups, W. A. Benjamin, Reading, Mass., 1972.
- [4] J. Littlewood, On inequalities in the theory of functions, Proc. London Math. Society (2) 23 (1925), 481–519.
- [5] R. Nevanlinna, Analytic functions, Springer-Verlag, New York, 1970.
- [6] W. Rudin, Analytic functions of the class H_p, Trans. Amer. Math. Soc. 78 (1955), 46–66.
- [7] J. H. Shapiro, The essential norm of a composition operator, Ann. of Math. 125 (1987), 375-404.
- [8] M. Voichick and L. Zalcman, *Inner and outer functions on Riemann surfaces*, Proc. Amer. Math. Soc. 16 (1965), 1200–1204.

STEPHEN D. FISHER AND JONATHAN E. SHAPIRO

Stephen D. Fisher, Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2730 sdf@math.nwu.edu

Jonathan E. Shapiro, Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2730 shapiro@math.nwu.edu

130