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Dedicated to Professor Aiexandra Bellow

ABSTRACT. We study the almost everywhere convergence of the ergodic Cestro-a averages Rn,a f
An_ Tif and the boundedness of the ergodic maximal operator Maf SUPnN IRn,,fl,

associated with a positive linear operator T with positive inverse on some LP (#), < p < cx), 0 < a < I.

1. Introduction

Let (X, .T,/z) be a a-finite measure space and let T be a positive linear operator
on some Lp (/z), < p < o (positive means that if f > 0 a.e. then Tf > 0 a.e.).
For every f LP (/z) we consider the averages

and the maximal operator

--Tif, heN,R"f =n+l i=0

Mf sup R,f l.

Akcoglu [1] proved that if T is a positive linear contraction on Lp (/z), < p < x),

then

IMflp dlz < --Ji Ifl p d#

and Rn f converges almost everywhere and in LP (#) for all f e LP(#). Actually,
one does not need to have a contraction to obtain the boundedness of M and the a.e
convergence of the averages Rnf. In fact, it was shown in 16] that if T: Lp(#)
Lp (#), < p < o, is a positive linear operator with positive inverse then the ergodic
dominated estimate

fx lMflP d/z <- c fx lflP d/z
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A. E. CONVERGENCE OF CES,,RO-t ERGODIC AVERAGES 593

holds for all f LP (/z) if, and only if, the operator is Cesro bounded, i.e.,

nrsUPfx [R"flV d# <- C fx [flP d#

for all f Lp (/z) and, in that case, the averages Rn f converge a.e. and in Lp (/z) for
every f Lp (/Z). (A. Brunel [4] proved that this equivalence holds assuming only
that T is a positive linear operator on LP(/z), < p < CX.) It is worth mentioning
that by Theorem 4.2 in [8], a positive operator is Cesro bounded in LP (#) if, and
only if, the averages Rn f converge in LP (/z) for all f 6 Lp (/x).

The averages Rn are the Cesro-l averages of the sequence {Tnf}. In this paper
we are interested in studying the a.e. convergence of the Cesro-a averages with
0 < a _< l, which are stronger processes of convergence [23]. The Cesro-a
averages and the Ceshro-a maximal operator associated with T are defined by

and

A-rifRn,af -n i=0

Mf sup IR.,fl,
nEl

where A (+l)...a+n) and Ag Note that Rn, Rn and M M. In hisn!
thesis [11 ], R. Irmisch proved the following theorem which generalizes Akcoglu’s
theorem to Cesro-a averages.

THEOREM A [11 ]. Let a and p be such that 0 < <_ and up > 1. Let
T: LP(Iz) --> LP(Iz) be a positive linear contraction. Then there exists C > 0 such
that

fx lMflP dlz <- C fx lflP dlz

and R,f converges a.e. and in LP(lz) for all f LP(Iz).

In the limit case cp l, the result does not hold even if T is induced by an
ergodic measure-preserving transformation [5]. In this limit case, Broise, Deniel and
Derriennic [3] have obtained that a restricted weak type inequality holds for operators
defined by composition with a measure-preserving transformation. More precisely,
they obtained the following theorem.

THEOREM B [3]. Let (X, A/l,/x) be a probability measure space andassume that
r: X --> X is a measure-preserving transformation. Let Tf f o . Then the max-
imal operator M maps the Lorentz space Li/a,l(/z) into L l/,o(). Furthermore,
the sequence Rn,af converges a.e. for all f L/a, (lz). (See lO]for the definition
ofthe Lp,q () spaces.)
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Other results related to the ones stated above can be found in [6].
Our goal is to study the behaviour of the maximal operator M, and the a.e. con-

vergence of Rn, f, 0 < c < 1, assuming that T is a positive linear operator on
L’ (/z) with positive inverse, i.e., for the same class of operators considered in [16].
In Theorem 3.1 we give a sufficient condition for the boundedness ofM and the a.e.
convergence of the averages Rn. f. As a corollary we obtain the dominated estimate
and the a.e. convergence of the averages R,f in the following cases:

(1) T is a positive power bounded linear operator with positive inverse and pc >
(Corollary 3.3).

(2) T is a posite linear operator with positive inverse such that the operator T,
defined by Tf (Tf’*)/ for nonnegative functions, is Ces?aro bounded in
LP(lz), pc > (Corollary 3.4).

(3) T f o r where r: X X is an invertible nonsingular transformation such
that T is Ces?aro bounded in Lp (#), pc > (Corollary 3.5).

These results leave open the question of the equivalence between the ergodic
dominated estimate

fx lM,f l’ dz <_ c fx f l’ dtz
and the uniform boundedness of the Cesro-ot averages

.  sUpfx ’Rn,oflP dlz< C fx Iflt’ dtz.,

Unlike the case a 1, this equivalence does not hold for 0 < c < even in the
good case ap > 1. In 3 we show an example for which the Cesro-a averages are
uniformly bounded but the ergodic dominated estimate does not hold for Ma.

Taking into account this example, the following question arises: are there any
kind of Ces/ro-a averages, let us say {R’,, }, such that the boundedness of M is
equivalent to the uniform boundedness of {R’n,, }? In 4 we answer this question in
the affirmative for operators T of the form Tf g(f o r), where g is a positive
function and r is an ergodic invertible transformation, working in LP(cod#) where
w > 0 and/z is preserved b,y r (see Theorem 4.6, where we prove also that the
sufficient condition in Theorem 4.1 is equivalent to the boundedness of M). The
averages that we introduce in 4 can be viewed as generalizations of the Cesro-Hardy
averages defined for functions f on the integers by H,,f(k) Yin___t, a’- f(i)A,_
ilk _< n and Hnf(k) Oifk > n.

The statements and the proofs of the theorems need some notation and several
results that we establish in 2.

Throughout the paper the letter C means a positive constant not necessarily the
same at each occurrence.-If < p < then p’ is the number such that 1/p+ 1/p’
1. Finally, if A and B are measurable sets, A B means that A equals B up to a set
of measure zero.
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2. Some previous results

We are going to need some results about the maximal operator rn+ associated with
the Cesro-ot averages of functions on the set of the integer numbers.

Definition 2.1. Let 0 < c < 1. If a is a real-valued function on Z, we define the
Ces.ro-ot maximal function m+a by

m-da(i) sup
n>_o An

(i -b j)An_j
j=o

Z. (2.1)

LEMMA 2.2 [21 ]. Let to be a positivefunction on Z, 0 < c _< and < p < o.
Thefollowing statements are equivalent:

(i) There exists a positive constant C such that

[m+a(i)] p
w(i)<_ C la(i)lPto(i), (2.2)

i-’--o

for anyfunction a on Z.
(ii) to satisfies the condition Ap+.,a (Z), or to Ap+.,a (Z), i.e., there exists a positive

constant C such that

to(i) to’-P’(i) (A:)
i=r i=s

<_ CAk_r, (2.3)

for all r, s, k Z with r < s < k.

Lemma 2.2 is a particular case of Theorem 2.16 in [21 ]. Alternatively, just look at
the proof in [19] and write it in the setting of the integers. Observe that if w(i)
for all then (2.3) holds if, and only if, p > 1.

+The following result states a relationship between the classes Ap;a( and the
+classical ones Ap+(Z) Ap;l (Z); it also gives the analogue in our setting of the

implication to Ap+ (Z) = to A+ (Z) (see [20] [22], [16] and [14])p--e

LEMMA 2.3. Let to be a positivefunction on Z. Let 0 < t < and p > 1.
(|) If to Ap+.,o(Z) with a constant C, then there exists e > O, which depends

+only on C, such that to . Ap_,(). Furthermore, to is also in A- (Z) with the same
constant C.

+(2) Ifop > and to

_
A+p (Z), then to is also in

We shall sketch the proof of this lemma (alternatively, one can look at the corre-
sponding proof in 19] and write it in the setting of the integer numbers).
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Theorem 2.16 in [21 (see the proofof(ii)= (iii)) and the fact that, for < a < 0,
the coefficients A are decreasing as a function of n [23], give us (1).

To prove (2) we simultaneously use the fact that if to A+p (Z) with ap > 1, then
to e Ar+(Z) for some r with < r < up, together with H61der’s inequality with

-r’exponents , and ’ where
Analogous results hold for the operator

ma(i) sup- An+ja(i + j)
n>_o A j=-n

with the Ap+.,a (Z) changed by the A:(Z) classes" a positive function to defined on

Z satisfies the condition A:(Z) if there exists a positive constant C such that

to(i) to-P’(i) (Ar’)p’
’/p’

i=s i=r

< CAk_r,

forallr, s,k Z with r < s < k
The following result characterizes the power functions of the form toy (1 + li l) e

to the Ap+.,(-) (,Z) classes. This lemma will be important in the next section.belonging

LEMMA 2.4. Let 0 < a < and tp > 1. Then to Ap+;ta-)(Z if and only if
-1 <,<ap-l.

ProofofLemma 2.4. We shall give the proof only for the +Ap;a(Z) classes. As-
sume that -1 < , < ctp 1. As in the classical case of Muckenhoupt weights
(see [9]) it can be proved that toy A+p(Z) Then, by Lemma 2.3 (2), we have

toe Ap+’, (Z). For the converse we shall need the following lemma.

LEMMA 2.5. (1) If to Ap+..a(Z) then, for every natural number N, we have
to(i)

--,i<-2N_ < - <.(2) Ifto A-;a(Z) then, for every natural number N, we have ’i>2N ip

This lemma is nothing but the translation to our setting of Lemma 4 in [17].
Therefore, we omit the proof.

Once we have Lemma 2.5 it is not difficult to prove the converse ofLemma 2.4. As-
sume that toe e Ap+;a(Z)" On one hand, by Lemma 2.5 (1), we have

Ei<-EN (1 -- lil)elil -ap < O. Therefore cp , > or, equivalently, y < ctp I.
On the other hand, by Lemma 2.3, we have toe A+p (Z) which is equivalent to saying
that toel-P’ e A,(Z). Now applying Lemma 2.5 (2) as above, but with a l, we
obtain p’- ,(l p’) > or, equivalently, , > -l, which finishes the proof of
Lemma 2.4.
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3. The Cesro-u ergodic averages for positive linear transformations with
positive inverse

Let (X, .T’, IX) be a a-finite measure space. Let T be an invertible positive linear
operator on Lp (IX) Lp (X, .T’, #), with < p < cxz, and suppose that T- is also
positive. Then, as is well known [12], T and T- are Lamperti operators, i.e., they
separate supports, and they have the following properties:

(a) For each integer i, there exists a positive function gi such that

Ti f giS f and gi+j giS gj,

where S is a positive multiplicative invertible linear map acting on measurable func-
tions.

(b) For each integer i, there exists a positive function Ji such that

Ji+j Ji si jj and fx Ji si f dix fx f dix.

(c) If hi g-P Ji then

fx lTi flPhi dtx fx lflP dlz. (3.1)

THEOREM 3.1. Let (X, .T’, IX), p, T and hi be as above. Let 0 < ot < and
suppose that, for almost all x, the function hx defined on Z by ---> hi (x satisfies
Ap+.,a (Z) with a constant independent ofx. Then we have:

(i) The maximal operator M is bounded in LP(IX).
(ii) For every f Lp (Ix) the averages Rn,a f converge almost everywhere and in

LP(IX).

Proof. We start with the proof of (i). It suffices to work with nonnegative func-
tions belonging to LP(IX). Given L > 0, L N, let M,/ denote the truncated
maximal operator defined by

M,.t f sup R.,a f.
O<_n<_L

For such a function f there exist pairwise disjoint measurable subsets of X, E0, E,
EL, such that

For every Z, we have

L

j=O

L

T (Mo,Lf) r (XE, Rj,otf).
j=o

(3.2)
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Since T is positive and separates supports, there exist pairwise disjoint measurable
sets, El.o, Ei.i El.L, such that

T (XE, Rj., f) < XF_.,.., T (Rj., f) < XE,.., M,.L (T f), j 0, L. (3.3)

Adding up in (3.3) and using (3.2), we obtain

T (M,.Lf) < Mot.L(T f), Z. (3.4)

On the other hand, given N N, and x X, the definitions of Mot, L andm+ imply

Mo.L(Ti f)(x) +mo (GxXIO.N+L1)(i), 0, N, (3.5)

where G.,:XIO.N+LI is the function defined in Z by

TJf(x), if j Z f’) [0, N + L],
GxXIO.V+LI(j) 0, if j Z f’) [0, N + L].

Then, for fixed L > 0 and N > 0, using property (c) of the operator T, (3.4) and
(3.5) we see that

fx (Mo.Lf(x))P d#(x) (3.6)

fxN< E [m+(GxXt,V+Ll)(i)]p hi(x)dlz(x).
N+I i=0

Taking into account that < p < o and that, for almost every x
with a constant independent of x, Lemma 2.2 implies that there exists a positive
constant C such that

N

E [m+(GxX[.V+L])(i)] p
hx(i) < C E [GxX[,V+L](i)]p hx(i),

i=0 i=-o

(3.7)

for almost every x X. Now, using (3.6), (3.7) and property (c) of T, we obtain

(MaLf)pd# < f(x)]
N+I.=
N+L+ fxC
N + [f(x)]p dl(x).

Letting N tend to in (3.8) gives

fx(Mo,.Lf)P d, < C fx [f(x)]P dl(x)

Then let L tend to o to complete the proof of (i).

(3.8)
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Now we turn to the proof of (ii). It is clear that it suffices to prove the a.e.
convergence. Using Lemma 2.3, we see that hx A+p (Z) for almost every x X
with a constant independent of x. Then Theorem 2.1 of 16] implies that this is
equivalent to the uniform boundedness of the Ceshro-1 averages in LP (/z), that is,

sup{

Furthermore, Theorem 2.1 of [16] (see also [8]) shows that for every f LP(Iz) the
averages Rn,f converge in the LP-norm. Therefore, the set of all functions of the
form h + f Tf with h invariant and f simple is dense in Lp (/z) (see [7, Corollary
VIII.5.2]) The almost everywhere convergence of the Cesro-ct averages is clear
for the invariant functions. We shall prove it also for the functions f Tf with f
simple. Then, keeping (i) in mind, by the Banach Principle, the Cesro-ot averages
Rn.f converge a.e. for every f Lp (/z). Hence, it only remains to prove the almost
everywhere convergence ofthe Cesro-c averages for all functions ofthe form f- Tf
with f simple and, clearly, this will follow from the next result.

PROPOSITION 3.2.
f )(.A. Then

Let A be a measurable subset of X with lz(A) < oo and let

lim Rn,u(f-Tf)=O a.e. (3.9)

ProofofProposition 3.2. We write Rn.u (f Tf) as the sum of three terms"

Rn.a(f Tf)(x) (rif(x) Ti+l f (x))
i=o A

u-I n+l ot-IAn-i T f (x) i An+l-i T f(x)
i--0 A .= A
An-tf(x)
A

f(x)
ot +n

Tn+l f(x) +
A,S An+l_ T f(x)

A i=t A
ot An-i Tif(x)

Tn+tf(x) +
n+l-iA An i=0

An (x) B,, (x) + Cn (x).

Clearly limn--,oo An(x) 0 a.e. Now, using Lemma 2.3, we see that there exists
+e > 0 such that hx Ap_: (Z) for almost every x 6 X with a constant independent

of x. Then part (i) of Theorem 3.1, which has already been proved, implies that the
maximal operator M.r associated with the transformation T,, defined in Lp- (lz)
by

PTo g Sip, r
p-e
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is bounded in Lp- (/x) because the definition of T. and property (c) of the operator
T imply that for every tp Lt,-. (/z) we have

Then, keeping in mind that S is multiplicative and f is a characteristic function, we
have

T’,+l f (x)
B,,(x)

(t+l+n) T’+lf(x)
n + A+

t + +n Sn+g,+l (x) f(x)
(n + 1)

oh_l_t_n [ ]l/r(n + I)(A,+)/p
gn+(x)Sn+f(x)

An+l
ot d-I-t-n [Ma, f(x)] I/r<

(n + I)(A+)/p T

Since we have already seen that M,T is bounded in LP-e(lz), we have M,rf(x) <
x for almost every x e X. Then, using the fact that

ct+l+n
lim =0,
n-o (n + I)(A+I)e/P

we obtain lim,,__, B,(x) 0 a.e. Finally,

C.(x) f(x)
A Z_,/=on+l_i
1-t An_ [g(x)Sif(x)],/r
A i=0n+l-i

[l u_l ( l--o
An_ix

i=0 n+l-i
(3.10)

using the Htilder inequality. The first factor of the last term of (3.10) is dominated by
(M.r f(x)) /r. Consequently, in order to show that C,(x) --> 0 almost everywhere
it suffices to prove that

( )r’aor--|lim
,--, A i=0

n +
=0. (3.11)
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Note that

and that

An ’ o as n -- cx (3.12)

t- I-t n or- l-a r’i=oAn+,_i( )r’ -i=o (n+i-iAn-in+2-i !
ot- l-or r’

An+ ( n+2 !

A+ -An An+l -An
a ( n-’2)r’

An-I t’a+l
n+l )

as n o. (3.13)

Then (3.11) follows from (3.12) and (3.13) using Stolz’s criterium. This finishes the
proof of Proposition 3.2.

COROLLARY 3.3. Let (X, .T’, lz be a tr-finite measure space and let T be a pos-
itive linear operator on Lp(). Suppose that T is invertible and that T-l is also
positive. IfO < c _< l, ctp > and T is power bounded, i.e.,

sup Tn C < o, (3.14)
n>_0

then hx
_

Ap+;a(Z)for almost every x
_
X with a constant independent ofx and,

hence, (i) and (ii) in Theorem 3.1 hold.

Proof. We shall start by proving that, for almost every x, hx is a quasi-increasing
function on Z with a constant independent ofx, that.is, there exists a positive constant
C such that

hj(x) <_ Chi(x), for all i, j Z with j _< and a.e. x X. (3.15)

Let A be a measurable subset of X with/z(A) < o and let Z. Since T is
invertible, there exists f LP(lz) such that Tif ga. This fact and property (c)of
the operator T imply

fa hj dbt fx ITi flPhj dtZ fx ITi-j flP dlz, j Z. (3.16)

Now, (3.14) implies that

lTi-j flp dlz <_ C fx Iflp for all i,.j Z with j < i. (3.17)
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Using property (c) of the operator T again, we deduce that

Jx lflP dlz f lTi flPhi dlZ fA hi dlz. (3.18)

Then (3.15) follows putting together (3.16), (3.17) and (3.18).
Finally, we shall see that (3.15) implies that hx Ap+.,a(,) for almost every x e X

with a constant independent of x. Let r, k and rn be integers with r < k < m. We
may assume without loss of generality that r < m. Then, for almost every x, we have

hx(i) -hx(i)l-p’ (Am_i)P’a-I
i=r i=k

< Chx(k) I/p (hx(k)l_p,) l/p’ (Am_i)p’
i=r i=k

<_ C(m r - l) l/p (Am_i)a-I P’

i=k

C(m r + 1) I/p -1 p’

X i=0

liP’

(3.19)

Since (see [23])

na
An= [1+O(-)], a--l,-2

F(a + 1) n

and cp > or, equivalently, 0 < (1 or)p’ < 1, the last term is dominated by

(f0C(m r + 1) I/p tta-l)P’dt < CAin_r,

where the constant C does not depend on x, and therefore hx Ap+.,a (Z) for almost
every x X with a constant independent of x. Then by Theorem 3.1 we are done.

COROLLARY 3.4. Let T be as in Theorem 3.1 and let T be the operator defined
by Tf gl Sf (f LaP(lz)), tp > 1, 0 < ct < l.(Note that f (Tfa) /a for
nonnegative measurablefunctions.) If T is Ceshrorbounded in LaP(Ix), i.e., if

sUPfx,, f +Tf +...+Tnf
n -(- dlz < C f]ap dlz

for all f Lap (lz), then (i) and (ii) ofTheorem 3.1 hold.
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Proof. By Theorem 2.1 in [16], for almost every x, hx satisfies Aa+p(Z) with a
constant independent of x. By Lemma 2.3, this implies that, for,almost every x,
hx satisfies Ap+.,a(Z) with a constant independent of x and, therefore, (i) and (ii) in
Theorem 3. hold.

As a consequence of Corollary 3.4, we immediately obtain the following result.

COROLLARY 3.5. Let (X, .T’,/z) be a or-finite measure space and let r" X -. X
be an invertible nonsingular transformation. Let Tf f o 3, 0 < t <_ and
pc > I. If T is Cesftro bounded in LPa(lz) then (i) and (ii) ofTheorem 3.1 hold.

Remark 3.6. We observe that for ct 1, Corollary 3.4 tells us that the uniform
boundedness in LP (/z), p > 1, of the Cesro-1 averages associated with T is equiv-
alent to the boundedness in Lp (#) of the ergodic maximal operator. This result,
which is a part of Theorem 2.1 in 16], could induce us to also think that in the case
0 < ct < the uniform boundedness of the Cestro-ct averages and the boundedness
of the ergodic maximal operator associated with them are equivalent. The following
example shows that, at least in the case max{ 1/p, 1/p’} < c < 1, this equivalence
does not hold.

Example 3.7. Let X Z, the set of the integers, and let/z be the counting
measure on Z. Let T be the operator defined for every real-valued function a on Z
by Ta a o r where r is the invertible measure-preserving transformation on Z
defined by + 1. Note that given 0 < ct < 1, the operator Ma associated with
T coincides with the operatorm+ defined in the previous section. We know that this
operator is bounded in Lp(#) if, and only if, p > l/c. On the other hand, if p >
and a is a real-valued function defined in Z, we have

(Rn,lal(i)) p
i---

An-j
la(i q-

i=- =o A

< A- la(i + j)l p Ilallp,
]=o Ag i=-

i.e., the averages Rn, are uniformly bounded in Lp (/g), p >_ 1. Therefore, at least
in the case _< p _< , the uniform boundedness of the Ces/tro-c averages does not
imply the boundedness of the ergodic maximal operator M,. However, if we want
to show the differences between the cases 0 < t < and c we have to see that
even in the "good" case cp > the uniform boundedness of the Ces/ro-c averages
and the boundedness of the maximal operator M are not equivalent.
We shall work in the case 1/t < p < 1/(l c), that is, cp > and tp’ > l,

and we shall see that there exist positive measurable functions co defined on Z for
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which the uniform boundedness of the averages in LP(todlx) does not imply the
boundedness of the maximal operator in Lp (to dl.t). In order to find such a function
to, we shall make use of the adjoints of the averages Rn,a in LP(dl.t) which will be
denoted by R,a and are defined for every function a on Z by

0

An+jaR=ua(i) E ol--I (i + j),

The maximal operator associated with these operators is nothing but the operator mff
introduced in 2.

It follows from the results in 2 that our problem will be solved if we find a positive
measurable function to such that

tol -p’ Ap;a(Z).A,;(Z) and to +

In fact, for such a function o9, the analogue of Lemma 2.2 implies the boundedness
of the operator mff in Lp’ (tol-p’ d#) and, hence, the uniform boundedness of the
averages R,a in the same space. Then, by duality, we obtain the uniform boundedness
of the averages Rn, in LP(todlz). On the other hand, since to Ap+.,a(Z), the
maximal operator M m+ is not bounded in LP(todlz). To finish the example it
only remains to show a function to such that to-P’ A,;(Z) and to A.+;(Z). If
we take wv (i) (1 + li [)v, it follows from Lemma 2.4 that toe satisfies the desired
properties if tp < , < p 1. Note that the example does not include the case
a= lsincethenap-I =p-l.

4. The Cesiro-a ergodtc maximal operator associated with ergodic
transformations

Let (X, ,/z) be a a-finite measure space which is nonatomic if #(X) < oo
and let r: X ---> X be an invertible ergodic measure-preserving transformation. We
shall work in this section with the Lamperti operator associated with r and a positive
measurable function g, i.e., the operator T defined for all measurable functions f by

Tf(x) g(x)f(rx).

Of course, this operator is a particular case of the one treated in 3. For that reason,
in what follows we shall use the notations introduced in 3.

For the operator T introduced above, with arbitrary positive g, we shall study
the characterization of the boundedness of the Cesro-a ergodic maximal operator
in LP(w dlz), where to is a positive measurable function (see the final remark). It
follows from the results ofthe previous section that if, for almost every x, the functions
hx(i) g-P (x)to(’[ix)/to(x) satisfy Ap+;a (Z) with a constant independent of x then
Ma is bounded in LP (to d/x). The goal ofthis section is to show that the converse holds
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and that, actually, the boundedness ofM is equivalent to the uniform boundedness of
a countable family of some kind of Cesro-t averages. In order to fix these averages
and to state the theorem we need to introduce some notations, definitions and a lemma.

Definition 4.1. If B is a measurable subset and x t_Jj=0r-J B we define

nt (x) inf{k >_ 0: rkx B

and

sup{j > l’r
Ln(x) O,

-!X r-Jx B}, if [j > 1" z’-lx r-Jx . B}-fl,
otherwise.

Observe that LB (x) can take the value +cx.

Definition 4.2. If B is a measurable subset we define the average RB,f as

-I -,ns(x) a-I T(Annex)) Z-i=O Ann(x)-i f(x),Rt,af(x)
O,

ifx LIj=0r B,
otherwise.

Observe that

sup R,af(x) < Maf(x). (4.1)
B"

In fact, it can be proved that the equality holds. Moreover, we can obtain the equality
if we take the supremum over a countable family of measurable subsets. In order to
determine this countable family we need a definition and a lemma (see 13] and [2]).

Definition 4.3 [2]. Let k be a natural number. The measurable set B C X is said
to be the base of an (ergodic) rectangle of length k + if r B tq rJ B fl whenever

j, 0 < i, j < k. In such a case the set R U/=0riB will be called an (ergodic)
rectangle with base B and length k + 1.

LEMMA 4.4 13]. For every nonnegative integer k there exists a countablefamily
ofbases ofergodic rectangles oflength k + 1, {Bnk)" n N}, such that X t.JnBn.
We shall denote by 13 thefamily {r(Bn)): k, n N}.

Our first result in this section shows that the countable family B is enough to obtain
the equality in (4.1).

PROPOSITION 4.5. With the above notations and assumptions we have

sup R,af(x) Maf(x) for almost every x X.
BI3
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The uniform boundedness of the averages {RB,: B e B} is equivalent to the
boundedness of the Cesro-tr ergodic maximal operator. This fact is part of the
following theorem which is the main result in this section. It shows also that for oper-
ators induced by invertible ergodic measure-preserving transformations the converse
of part (i) in Theorem 3.1 holds.

THEOREM 4.6. Let (X, .T’,/z), r, g, 60 and 13 be as above. Let 0 < t <_ and
p > I. Thefollowing statements are equivalent:

(1) There exists C > 0 such that

lMaflPwdtx <_ C fx IflPwdlz

for all f Lp (to dlz).
(2) There exists C > 0 such that

sUPfx IRB,aflPwdlz< C fx IflPwdtx
BI3

for all f LP(to dlz).
(3) For almost every x X the function hx(i) gP(x)w(rix)/to(x) satisfies

Ap+.,a (Z) with a constant independent ofx.

ProofofProposition 4.5. Let X’ Ok t.J, Bn(k). Then/x(X \ X’) 0. Therefore,
it suffices to prove that the equality holds for every x e X’. Assume that x X’ and
m N. Then there exists R<m) such thatx Binm) If B rm(B(,m)) then B /3 andn
n(x) m. Therefore Rm,af(x) Rn,af(x) < supnt3 Rt,af(x) which proves
the proposition.

ProofofTheorem 4.6. It is obvious that (1) implies (2), and (3) = (1) follows
from Theorem 3.1. Therefore we only have to prove that (2) = (3). In order to prove
this implication we follow ideas of Rubio de Francia (see [9] for instance). For that
reason we need to compute the adjoint of RB,a.

LEMMA 4.7. Under the assumptions ofTheorem 4.6, if B is a measurable sub-
set and Rn, is bounded in LP(w dlz) then the adjoint of Rn,a is the operator
R*," Lp’ (w dlz) --+ Lp’ (to dlz) defined by

R*,uh(x) w-l u-I
[t,Btx

(x)AnBx)
\ j=0 Aj+nn(x)

-------(gjhw)(r-ix)) B"
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U -J B: nB (x) k}. By the definitionProofofLemma 4.7. Let Bk {x E j=0r
of RB,, and since r preserves the measure # we obtain

fx (R.,af) hwdlz f0r_,
o o Ak_j

f(x) j=o(gjhw)(r-Jx) k=j A ZBk Q:-Jx) d"(x)"

For fixed x and j, the sum

o Ak_j
x(r-x)

A
is not zero if there exists k > j such that "c -ix

_
Bk. In this case, it is clear that there

exists only one value of k with that property and k j nt (x). Notice also that, for
each x, the j’s satisfying r-ix Bj+nBx) are exactly the j’s such that j < Ln(x)
(see Definition 4.1). Therefore

Rn,f(x)h(x)w(x) dlz(x)
LB(x) ot-Ian"x)

d#(x),f(x) j=o (gjhw)(r-Jx) aj+nt(x)

and the lemma follows.

Proofof(2) = (3). Assume that (2) holds, i.e., the family {Rt,a" B 6 /3} is
uniformly bounded in LP(wdlz). By duality, the family of the adjoint operators
{R," B 6/3} is uniformly bounded in Lp’ (113 d). Therefore, there exists a constant
C > 0 such that for all B 6/3,

IIRn,fllp,wa, IRB,fIPw

< Cllfllp,od, for every f LP(w d) (4.2)

and

p’Ilgn,fllp,,wau IRn,fl wd

< CIIfllp,,wa, for every f LP’(to d). (4.3)

For every B 6 /3, let us consider the sublinear operators Pn and Qs defined, on
every measurable function f, by

and QBf (R*n,IfIP) I/p

It is clear from (4.2) and (4.3) that the family of sublinear operators {S/ Pn +
Qo" B 6/3} is uniformly bounded in Lpp’ (llo dt,t). Now let f be any positive function
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in Lpp’ (119 dlz) and define

oo s ’f
.__ (2C)

where S") is the i-th power of Sa and C is a constant such that II Sa < C for all B B.
en ha Lf(wd), ha is positive (ha f > 0), Ilhallpp,,aa 211flle,,aa
and

Sah a <_ 2Cha a.e.

Since Pa and Qa are positive sublinear operators, it follows that

Paha <_ 2Cha a.e. and Qaha <_ 2Cha a.e.,

which is the same as

and

ptRa,ah a <_ (2Cha)p’ a.e.

R* hPa < (2Cha)P a.ea,c
p’ I-p ThereforeLet ua hPaw and va ha By these definitions w uava

(4.4)

(4.5)

for almost every x e X and all r, k and n in Z with 0 _< k _< n.
Let r, k and n be in Z with 0 _< k _< n. Notice that if n 0, the above inequality

holds for every x X with any constant C >_ and, hence, it suffices to prove it in
the case n > 0. Observe, also, that if we define X’ as in the proof of Proposition 4.5,
i.e., X’ f3k On Bntk), then for almost every x X’ and all r e Z we have "lrx . X’
and, therefore, for fixed r, we have that, for almost every x X’, there exists B B
such that na(rrx) n. Applying (4.5) to zi+rx with k < < n, we obtain

A,-I
nll(ri+rx) j=O Aaj+nB(ri+rx)

(gjUB)(ri+r-Jx) < (2C)PuB(’tsi+rx) a.e.

Now observe thatnB(ri+rx) n and LB(ri+rx) >_ since n > 0. Therefore, we
have

An-i t (gJ llB)(’i+r-jx) <- (2C)PuB(’t’i+rx)
Aj+n-i

o(x)hx(i + r) : (w(x)hx(i + r)) ’-p’ (A_-)
i=0 k

w(x)hx(i) g-P (x)U B(’t’i x)I)IB-P (’ix) g-I (X)U B(.ix)(gi (x)13B(.ix)) I-p.
(4.6)

Once we have the functions w(x)hx(i) factorized in this fashion, we are going to
prove that (3) holds, i.e., there exists a positive constant C such that
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or, changing the variable,

or" (gi-lUB)(’l+rx) < (2C)PuB(’t’i+rx)
/=0 An-i

a.eo

Since 0 < k < i, we obtain

k

A- E---(gi-lUS)(rl+rx) <- (2C)Pus(ri+rx)
/=0 An-I

aoe.

Multiplying by g-(i+r)(ri+rX) gi+r-I (X) and taking into account that

g_ti+r) (ri+rx)gi_l(’t’l+rx) g_(i+r) (’i+rx)g(i+r)_tl+r) (’l+rx)
g_ti+r(rl+rx) g+lr(X),

we get, for all e Z with k < < n and for almost every x, the inequality

I

(rl+rx (2C)Pg_+lr(X)Ul )ot g_.I_Ir X U B .< -l-rXAn-i E t

/=0 An-i
(4.7)

Now let N with 0 < < k. Applying (4.4) to "rr+ix and keeping in mind that
nB(rr+ix) n we obtain

ot-I r+i+j p’

An-i j=0
An-i-JgJ(’t’r+ix)l)B( X) < (2C) 1)B(’r+ix) a.e.

Changing the variable, we have

ot-I (rr+ix
At-i i=i

An-! gl-i )l)B(’t’r+ix) <_ (2C)P’UB(’t’r+ix) a.e.

Since < k we have

or- (.t.r+i r+lX
t An_ gl-i X)VB(’t" <_ (2C)P’VB(rr+ix) a.e.

An-i I=k

Multiplying by gr+i(X) we obtain, for all Z with 0 < < k and almost every x,
the inequality

t-I rr+ix)
At-i I=k

An-! gr+l(X)VB( < (2C)p’gr+i(X)l)B(rr+ix). (4.8)
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By (4.6) and (4.8),

o(x)h.(i + r) (4.9)
i=0

g’_l_lr(X)UB(ri+rx)(gi+r(X)Vg(tsi+rx)) I-p
i=0

< 2C - (X)UB(.ri+r. ,,aa
gi+r ;t ),n_i )P- ASgl+r (X)UB (,l-Frx)

i=o I=k

for almost every x. On the other hand, by (4.6) and (4.7),

(o(xhx(i + r)) -p’ -(A,,_i)P’ (4.10)
i=k

(ri+r a-I)p’-I ri+rx)(g-_t_lr(X)UB X)) -P’(An_ A-__gi+r(X)l)B(
i=k

< 2C A-]gi+r(x)v(ri+rx) g+r(x)u(r+rx)
i=k /=0 An-I

Multiplying (4.9) and (4.10) we get

oo(x).hx(i + r) (w(x)h.r(i + r))-P’(A2]) p’

i=0 i=k

< (2C)2 - (x)u (tsi+rx A )p-I g_l_lr(X)UB(.Cl+rxgi+r B )( n-i
i=0 \ =0 An-

for almost every x, and, finally, since the coefficients A_i increase [23], we obtain

o)(x)h(i +r i=(o(x)h(i + r))’-P’(A:-_])p _< (2C)A: a.e.,

which proves (3).

Remark 4.8. Assume, for a while, that g and r is an invertible measurable
transformation which is nonsingular with respect to a finite measure v. If 0 < <
and the Cesro- averages R,,f converge a.e. for every f LP (du), then the same
happens for the Cesro-1 averages. Then it is known (see [15]) that the measure v is
equivalent to a finite measure # which is preserved by r. That is the reason why we
have worked with the measures o dg.
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