ALMOST EVERYWHERE CONVERGENCE AND BOUNDEDNESS OF CESÀRO-α ERGODIC AVERAGES

F. J. MARTÍN-REYES AND M. D. SARRIÓN GAVILÁN

Dedicated to Professor Alexandra Bellow

ABSTRACT. We study the almost everywhere convergence of the ergodic Cesàro- α averages $R_{n,\alpha}f = \frac{1}{A_{\alpha}^{\alpha}} \sum_{i=0}^{n} A_{n-i}^{\alpha-1} T^{i} f$ and the boundedness of the ergodic maximal operator $M_{\alpha}f = \sup_{n \in \mathbb{N}} |R_{n,\alpha}f|$, associated with a positive linear operator T with positive inverse on some $L^{p}(\mu)$, $1 , <math>0 < \alpha \le 1$.

1. Introduction

Let (X, \mathcal{F}, μ) be a σ -finite measure space and let T be a positive linear operator on some $L^p(\mu)$, $1 \le p < \infty$ (positive means that if $f \ge 0$ a.e. then $Tf \ge 0$ a.e.). For every $f \in L^p(\mu)$ we consider the averages

$$R_n f = \frac{1}{n+1} \sum_{i=0}^n T^i f, \quad n \in \mathbb{N},$$

and the maximal operator

$$Mf = \sup_{n \in \mathbb{N}} |R_n f|.$$

Akcoglu [1] proved that if T is a positive linear contraction on $L^{p}(\mu)$, 1 , then

$$\int_X |Mf|^p \, d\mu \le \left(\frac{p}{p-1}\right)^p \int_X |f|^p \, d\mu$$

and $R_n f$ converges almost everywhere and in $L^p(\mu)$ for all $f \in L^p(\mu)$. Actually, one does not need to have a contraction to obtain the boundedness of M and the a.e convergence of the averages $R_n f$. In fact, it was shown in [16] that if $T: L^p(\mu) \rightarrow L^p(\mu), 1 , is a positive linear operator with positive inverse then the ergodic dominated estimate$

$$\int_X |Mf|^p \, d\mu \le C \int_X |f|^p \, d\mu$$

 $\textcircled{\sc 0}$ 1999 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received November 9, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A35, 28D05; Secondary 42B25.

This research has been partially supported by a D.G.I.C.Y.T. grant (PB94-1496), a D.G.E.S. grant (PB97-1097) and Junta de Andalucía.

holds for all $f \in L^{p}(\mu)$ if, and only if, the operator is Cesàro bounded, i.e.,

$$\sup_{n\in\mathbb{N}}\int_X|R_nf|^p\,d\mu\leq C\int_X|f|^p\,d\mu$$

for all $f \in L^{p}(\mu)$ and, in that case, the averages $R_{n}f$ converge a.e. and in $L^{p}(\mu)$ for every $f \in L^{p}(\mu)$. (A. Brunel [4] proved that this equivalence holds assuming only that T is a positive linear operator on $L^{p}(\mu)$, 1 .) It is worth mentioning $that by Theorem 4.2 in [8], a positive operator is Cesàro bounded in <math>L^{p}(\mu)$ if, and only if, the averages $R_{n}f$ converge in $L^{p}(\mu)$ for all $f \in L^{p}(\mu)$.

The averages R_n are the Cesàro-1 averages of the sequence $\{T^n f\}$. In this paper we are interested in studying the a.e. convergence of the Cesàro- α averages with $0 < \alpha \le 1$, which are stronger processes of convergence [23]. The Cesàro- α averages and the Cesàro- α maximal operator associated with T are defined by

$$R_{n,\alpha}f = \frac{1}{A_n^{\alpha}}\sum_{i=0}^n A_{n-i}^{\alpha-1}T^if$$

and

$$M_{\alpha}f = \sup_{n\in\mathbb{N}} |R_{n,\alpha}f|,$$

where $A_n^{\alpha} = \frac{(\alpha+1)\cdots(\alpha+n)}{n!}$ and $A_0^{\alpha} = 1$. Note that $R_{n,1} = R_n$ and $M_1 = M$. In his thesis [11], R. Irmisch proved the following theorem which generalizes Akcoglu's theorem to Cesàro- α averages.

THEOREM A [11]. Let α and p be such that $0 < \alpha \leq 1$ and $\alpha p > 1$. Let $T: L^{p}(\mu) \rightarrow L^{p}(\mu)$ be a positive linear contraction. Then there exists C > 0 such that

$$\int_X |M_{\alpha}f|^p \, d\mu \leq C \int_X |f|^p \, d\mu$$

and $R_{n,\alpha}f$ converges a.e. and in $L^p(\mu)$ for all $f \in L^p(\mu)$.

In the limit case $\alpha p = 1$, the result does not hold even if T is induced by an ergodic measure-preserving transformation [5]. In this limit case, Broise, Deniel and Derriennic [3] have obtained that a restricted weak type inequality holds for operators defined by composition with a measure-preserving transformation. More precisely, they obtained the following theorem.

THEOREM B [3]. Let (X, \mathcal{M}, μ) be a probability measure space and assume that $\tau: X \to X$ is a measure-preserving transformation. Let $Tf = f \circ \tau$. Then the maximal operator M_{α} maps the Lorentz space $L_{1/\alpha,1}(\mu)$ into $L_{1/\alpha,\infty}(\mu)$. Furthermore, the sequence $R_{n,\alpha}f$ converges a.e. for all $f \in L_{1/\alpha,1}(\mu)$. (See [10] for the definition of the $L_{p,q}(\mu)$ spaces.)

F. J. MARTÍN-REYES AND M. D. SARRIÓN GAVILÁN

Other results related to the ones stated above can be found in [6].

Our goal is to study the behaviour of the maximal operator M_{α} and the a.e. convergence of $R_{n,\alpha}f$, $0 < \alpha \leq 1$, assuming that T is a positive linear operator on $L^{p}(\mu)$ with positive inverse, i.e., for the same class of operators considered in [16]. In Theorem 3.1 we give a sufficient condition for the boundedness of M_{α} and the a.e. convergence of the averages $R_{n,\alpha}f$. As a corollary we obtain the dominated estimate and the a.e. convergence of the averages $R_{n,\alpha}f$ in the following cases:

- (1) T is a positive power bounded linear operator with positive inverse and $p\alpha > 1$ (Corollary 3.3).
- (2) T is a positive linear operator with positive inverse such that the operator \widetilde{T} , defined by $\widetilde{T}f = (Tf^{\alpha})^{1/\alpha}$ for nonnegative functions, is Cesàro bounded in $L^{p\alpha}(\mu), p\alpha > 1$ (Corollary 3.4).
- (3) $T = f \circ \tau$ where $\tau: X \to X$ is an invertible nonsingular transformation such that T is Cesàro bounded in $L^{p\alpha}(\mu)$, $p\alpha > 1$ (Corollary 3.5).

These results leave open the question of the equivalence between the ergodic dominated estimate

$$\int_X |M_{\alpha}f|^p \, d\mu \leq C \int_X |f|^p \, d\mu$$

and the uniform boundedness of the Cesàro- α averages

$$\sup_{n\in\mathbb{N}}\int_X|R_{n,\alpha}f|^p\,d\mu\leq C\int_X|f|^p\,d\mu.$$

Unlike the case $\alpha = 1$, this equivalence does not hold for $0 < \alpha < 1$ even in the good case $\alpha p > 1$. In §3 we show an example for which the Cesàro- α averages are uniformly bounded but the ergodic dominated estimate does not hold for M_{α} .

Taking into account this example, the following question arises: are there any kind of Cesàro- α averages, let us say $\{R'_{n,\alpha}\}$, such that the boundedness of M_{α} is equivalent to the uniform boundedness of $\{R'_{n,\alpha}\}$? In §4 we answer this question in the affirmative for operators T of the form $Tf = g(f \circ \tau)$, where g is a positive function and τ is an ergodic invertible transformation, working in $L^{p}(\omega d\mu)$ where $\omega > 0$ and μ is preserved by τ (see Theorem 4.6, where we prove also that the sufficient condition in Theorem 4.1 is equivalent to the boundedness of M_{α}). The averages that we introduce in §4 can be viewed as generalizations of the Cesàro-Hardy averages defined for functions f on the integers by $H_n f(k) = \frac{1}{A_{n-k}^{\alpha}} \sum_{i=k}^{n} A_{n-i}^{\alpha-1} f(i)$ if $k \le n$ and $H_n f(k) = 0$ if k > n.

The statements and the proofs of the theorems need some notation and several results that we establish in §2.

Throughout the paper the letter C means a positive constant not necessarily the same at each occurrence. If 1 then p' is the number such that <math>1/p+1/p' = 1. Finally, if A and B are measurable sets, A = B means that A equals B up to a set of measure zero.

2. Some previous results

We are going to need some results about the maximal operator m_{α}^+ associated with the Cesàro- α averages of functions on the set of the integer numbers.

Definition 2.1. Let $0 < \alpha \le 1$. If a is a real-valued function on \mathbb{Z} , we define the Cesàro- α maximal function $m_{\alpha}^+ a$ by

$$m_{\alpha}^{+}a(i) = \sup_{n \ge 0} \frac{1}{A_{n}^{\alpha}} \left| \sum_{j=0}^{n} A_{n-j}^{\alpha-1}a(i+j) \right|, \quad i \in \mathbb{Z}.$$
 (2.1)

LEMMA 2.2 [21]. Let ω be a positive function on \mathbb{Z} , $0 < \alpha \le 1$ and 1 .The following statements are equivalent:

(i) There exists a positive constant C such that

$$\sum_{i=-\infty}^{\infty} \left[m_{\alpha}^{+} a(i) \right]^{p} \omega(i) \leq C \sum_{i=-\infty}^{\infty} |a(i)|^{p} \omega(i), \qquad (2.2)$$

for any function a on \mathbb{Z} .

(ii) ω satisfies the condition $A^+_{p;\alpha}(\mathbb{Z})$, or $\omega \in A^+_{p;\alpha}(\mathbb{Z})$, i.e., there exists a positive constant C such that

$$\left(\sum_{i=r}^{s} \omega(i)\right)^{1/p} \left(\sum_{i=s}^{k} \omega^{1-p'}(i) \left(A_{k-i}^{\alpha-1}\right)^{p'}\right)^{1/p'} \le CA_{k-r}^{\alpha}, \qquad (2.3)$$

for all $r, s, k \in \mathbb{Z}$ with $r \leq s \leq k$.

Lemma 2.2 is a particular case of Theorem 2.16 in [21]. Alternatively, just look at the proof in [19] and write it in the setting of the integers. Observe that if w(i) = 1 for all *i* then (2.3) holds if, and only if, $p\alpha > 1$.

The following result states a relationship between the classes $A_{p;\alpha}^+(\mathbb{Z})$ and the classical ones $A_p^+(\mathbb{Z}) = A_{p;1}^+(\mathbb{Z})$; it also gives the analogue in our setting of the implication $\omega \in A_p^+(\mathbb{Z}) \Rightarrow \omega \in A_{p-\epsilon}^+(\mathbb{Z})$ (see [20], [22], [16] and [14]).

LEMMA 2.3. Let ω be a positive function on \mathbb{Z} . Let $0 < \alpha \leq 1$ and p > 1.

(1) If $\omega \in A_{p,\alpha}^+(\mathbb{Z})$ with a constant C, then there exists $\varepsilon > 0$, which depends only on C, such that $\omega \in A_{p-\varepsilon,\alpha}^+(\mathbb{Z})$. Furthermore, ω is also in $A_p^+(\mathbb{Z})$ with the same constant C.

(2) If $\alpha p > 1$ and $\omega \in A^+_{\alpha p}(\mathbb{Z})$, then ω is also in $A^+_{p;\alpha}(\mathbb{Z})$.

We shall sketch the proof of this lemma (alternatively, one can look at the corresponding proof in [19] and write it in the setting of the integer numbers). Theorem 2.16 in [21] (see the proof of (ii) \Rightarrow (iii)) and the fact that, for $-1 < \alpha \le 0$, the coefficients A_n^{α} are decreasing as a function of *n* [23], give us (1).

To prove (2) we simultaneously use the fact that if $\omega \in A^+_{\alpha p}(\mathbb{Z})$ with $\alpha p > 1$, then $\omega \in A^+_r(\mathbb{Z})$ for some r with $1 < r < \alpha p$, together with Hölder's inequality with exponents γ and γ' , where $\gamma = \frac{1-r'}{1-p'}$.

Analogous results hold for the operator

$$m_{\alpha}^{-}a(i) = \sup_{n\geq 0} \frac{1}{A_{n}^{\alpha}} \left| \sum_{j=-n}^{0} A_{n+j}^{\alpha-1}a(i+j) \right|, \quad i \in \mathbb{Z},$$

with the $A^+_{p;\alpha}(\mathbb{Z})$ changed by the $A^-_{p;\alpha}(\mathbb{Z})$ classes: a positive function ω defined on \mathbb{Z} satisfies the condition $A^-_{p;\alpha}(\mathbb{Z})$ if there exists a positive constant C such that

$$\left(\sum_{i=s}^{k}\omega(i)\right)^{1/p}\left(\sum_{i=r}^{s}\omega^{1-p'}(i)\left(A_{i-r}^{\alpha-1}\right)^{p'}\right)^{1/p'}\leq CA_{k-r}^{\alpha},$$

for all $r, s, k \in \mathbb{Z}$ with $r \leq s \leq k$

The following result characterizes the power functions of the form $\omega_{\gamma} = (1 + |i|)^{\gamma}$ belonging to the $A_{n,\alpha}^{+(-)}(\mathbb{Z})$ classes. This lemma will be important in the next section.

LEMMA 2.4. Let $0 < \alpha \leq 1$ and $\alpha p > 1$. Then $\omega_{\gamma} \in A_{p;\alpha}^{+(-)}(\mathbb{Z})$ if and only if $-1 < \gamma < \alpha p - 1$.

Proof of Lemma 2.4. We shall give the proof only for the $A_{p;\alpha}^+(\mathbb{Z})$ classes. Assume that $-1 < \gamma < \alpha p - 1$. As in the classical case of Muckenhoupt weights (see [9]) it can be proved that $\omega_{\gamma} \in A_{\alpha p}^+(\mathbb{Z})$. Then, by Lemma 2.3 (2), we have $\omega_{\gamma} \in A_{p;\alpha}^+(\mathbb{Z})$. For the converse we shall need the following lemma.

LEMMA 2.5. (1) If $\omega \in A_{p;\alpha}^+(\mathbb{Z})$ then, for every natural number N, we have $\sum_{i \leq -2N} \frac{\omega(i)}{|i|^{op}} < \infty$. (2) If $\omega \in A_{p;\alpha}^-(\mathbb{Z})$ then, for every natural number N, we have $\sum_{i \geq 2N} \frac{\omega(i)}{i^{op}} < \infty$.

This lemma is nothing but the translation to our setting of Lemma 4 in [17]. Therefore, we omit the proof.

Once we have Lemma 2.5 it is not difficult to prove the converse of Lemma 2.4. Assume that $\omega_{\gamma} \in A^+_{p;\alpha}(\mathbb{Z})$. On one hand, by Lemma 2.5 (1), we have $\sum_{i \leq -2N} (1+|i|)^{\gamma} |i|^{-\alpha p} < \infty$. Therefore $\alpha p - \gamma > 1$ or, equivalently, $\gamma < \alpha p - 1$. On the other hand, by Lemma 2.3, we have $\omega_{\gamma} \in A^+_p(\mathbb{Z})$ which is equivalent to saying that $\omega_{\gamma}^{1-p'} \in A^-_{p'}(\mathbb{Z})$. Now applying Lemma 2.5 (2) as above, but with $\alpha = 1$, we obtain $p' - \gamma(1-p') > 1$ or, equivalently, $\gamma > -1$, which finishes the proof of Lemma 2.4.

3. The Cesàro- α ergodic averages for positive linear transformations with positive inverse

Let (X, \mathcal{F}, μ) be a σ -finite measure space. Let T be an invertible positive linear operator on $L^p(\mu) = L^p(X, \mathcal{F}, \mu)$, with $1 , and suppose that <math>T^{-1}$ is also positive. Then, as is well known [12], T and T^{-1} are Lamperti operators, i.e., they separate supports, and they have the following properties:

(a) For each integer i, there exists a positive function g_i such that

$$T'f = g_i S'f$$
 and $g_{i+j} = g_i S'g_j$

where S is a positive multiplicative invertible linear map acting on measurable functions.

(b) For each integer *i*, there exists a positive function J_i such that

$$J_{i+j} = J_i S^i J_j$$
 and $\int_X J_i S^i f d\mu = \int_X f d\mu$.

(c) If $h_i = g_i^{-p} J_i$ then

$$\int_{X} |T^{i} f|^{p} h_{i} d\mu = \int_{X} |f|^{p} d\mu.$$
(3.1)

THEOREM 3.1. Let (X, \mathcal{F}, μ) , p, T and h_i be as above. Let $0 < \alpha \le 1$ and suppose that, for almost all x, the function h_x defined on \mathbb{Z} by $i \to h_i(x)$ satisfies $A_{p;\alpha}^+(\mathbb{Z})$ with a constant independent of x. Then we have:

- (i) The maximal operator M_{α} is bounded in $L^{p}(\mu)$.
- (ii) For every $f \in L^{p}(\mu)$ the averages $R_{n,\alpha}f$ converge almost everywhere and in $L^{p}(\mu)$.

Proof. We start with the proof of (i). It suffices to work with nonnegative functions belonging to $L^{p}(\mu)$. Given L > 0, $L \in \mathbb{N}$, let $M_{\alpha,L}$ denote the truncated maximal operator defined by

$$M_{\alpha,L}f = \sup_{0 \le n \le L} R_{n,\alpha}f.$$

For such a function f there exist pairwise disjoint measurable subsets of X, E_0 , E_1 , ..., E_L , such that

$$M_{\alpha,L}f = \sum_{j=0}^{L} \chi_{E_j} R_{j,\alpha} f.$$

For every $i \in \mathbb{Z}$, we have

$$T^{i}(M_{\alpha,L}f) = \sum_{j=0}^{L} T^{i}(\chi_{E_{j}}R_{j,\alpha}f).$$
(3.2)

Since T^i is positive and separates supports, there exist pairwise disjoint measurable sets, $E_{i,0}, E_{i,1}, \ldots, E_{i,L}$, such that

$$T^{i}(\chi_{E_{j}}R_{j,\alpha}f) \leq \chi_{E_{i,j}}T^{i}(R_{j,\alpha}f) \leq \chi_{E_{i,j}}M_{\alpha,L}(T^{i}f), \quad j = 0, 1, \dots, L.$$
 (3.3)

Adding up in (3.3) and using (3.2), we obtain

$$T^{i}(M_{\alpha,L}f) \leq M_{\alpha,L}(T^{i}f), \quad i \in \mathbb{Z}.$$
(3.4)

On the other hand, given $N \in \mathbb{N}$, and $x \in X$, the definitions of $M_{\alpha,L}$ and m_{α}^+ imply

$$M_{\alpha,L}(T^{i}f)(x) = m_{\alpha}^{+}(G_{x}\chi_{[0,N+L]})(i), \quad i = 0, 1, \dots, N,$$
(3.5)

where $G_x \chi_{[0,N+L]}$ is the function defined in \mathbb{Z} by

$$\begin{cases} G_x \chi_{[0,N+L]}(j) = T^j f(x), & \text{if } j \in \mathbb{Z} \cap [0, N+L], \\ G_x \chi_{[0,N+L]}(j) = 0, & \text{if } j \notin \mathbb{Z} \cap [0, N+L]. \end{cases}$$

Then, for fixed L > 0 and $N \ge 0$, using property (c) of the operator T, (3.4) and (3.5) we see that

$$\int_{X} \left(M_{\alpha,L} f(x) \right)^{p} d\mu(x) = \frac{1}{N+1} \int_{X} \sum_{i=0}^{N} \left[T^{i} (M_{\alpha,L} f)(x) \right]^{p} h_{i}(x) d\mu(x) \quad (3.6)$$

$$\leq \frac{1}{N+1} \int_{X} \sum_{i=0}^{N} \left[m_{\alpha}^{+} (G_{x} \chi_{[0,N+L]})(i) \right]^{p} h_{i}(x) d\mu(x).$$

Taking into account that $1 and that, for almost every <math>x \in X$, $h_x \in A^+_{p,\alpha}(\mathbb{Z})$ with a constant independent of x, Lemma 2.2 implies that there exists a positive constant C such that

$$\sum_{i=0}^{N} \left[m_{\alpha}^{+} (G_{x} \chi_{[0,N+L]})(i) \right]^{p} h_{x}(i) \leq C \sum_{i=-\infty}^{\infty} \left[G_{x} \chi_{[0,N+L]}(i) \right]^{p} h_{x}(i), \quad (3.7)$$

for almost every $x \in X$. Now, using (3.6), (3.7) and property (c) of T, we obtain

$$\int_{X} (M_{\alpha,L}f)^{p} d\mu \leq \frac{C}{N+1} \sum_{i=0}^{N+L} \int_{X} [T^{i}f(x)]^{p} h_{i}(x) d\mu(x)$$
$$= C \frac{N+L+1}{N+1} \int_{X} [f(x)]^{p} d\mu(x).$$
(3.8)

Letting N tend to ∞ in (3.8) gives

$$\int_X (M_{\alpha,L}f)^p \, d\mu \leq C \int_X [f(x)]^p \, d\mu(x).$$

Then let L tend to ∞ to complete the proof of (i).

Now we turn to the proof of (ii). It is clear that it suffices to prove the a.e. convergence. Using Lemma 2.3, we see that $h_x \in A_p^+(\mathbb{Z})$ for almost every $x \in X$ with a constant independent of x. Then Theorem 2.1 of [16] implies that this is equivalent to the uniform boundedness of the Cesàro-1 averages in $L^p(\mu)$, that is,

$$\sup\{||R_{n,1}||, n \ge 0\} < \infty.$$

Furthermore, Theorem 2.1 of [16] (see also [8]) shows that for every $f \in L^p(\mu)$ the averages $R_{n,1}f$ converge in the L^p -norm. Therefore, the set of all functions of the form h + f - Tf with h invariant and f simple is dense in $L^p(\mu)$ (see [7, Corollary VIII.5.2]). The almost everywhere convergence of the Cesàro- α averages is clear for the invariant functions. We shall prove it also for the functions f - Tf with f simple. Then, keeping (i) in mind, by the Banach Principle, the Cesàro- α averages $R_{n,\alpha}f$ converge a.e. for every $f \in L^p(\mu)$. Hence, it only remains to prove the almost everywhere convergence of the Cesàro- α averages for all functions of the form f - Tf with f simple and, clearly, this will follow from the next result.

PROPOSITION 3.2. Let A be a measurable subset of X with $\mu(A) < \infty$ and let $f = \chi_A$. Then

$$\lim_{n \to \infty} R_{n,\alpha}(f - Tf) = 0 \quad \text{a.e.}$$
(3.9)

Proof of Proposition 3.2. We write $R_{n,\alpha}(f - Tf)$ as the sum of three terms:

$$\begin{aligned} R_{n,\alpha}(f - Tf)(x) &= \sum_{i=0}^{n} \frac{A_{n-i}^{\alpha-1}}{A_{n}^{\alpha}} (T^{i}f(x) - T^{i+1}f(x)) \\ &= \sum_{i=0}^{n} \frac{A_{n-i}^{\alpha-1}}{A_{n}^{\alpha}} T^{i}f(x) - \sum_{i=1}^{n+1} \frac{A_{n+1-i}^{\alpha-1}}{A_{n}^{\alpha}} T^{i}f(x) \\ &= \frac{A_{n}^{\alpha-1}}{A_{n}^{\alpha}} f(x) - \frac{T^{n+1}f(x)}{A_{n}^{\alpha}} + \sum_{i=1}^{n} \left(\frac{A_{n-i}^{\alpha-1} - A_{n+1-i}^{\alpha-1}}{A_{n}^{\alpha}} \right) T^{i}f(x) \\ &= \frac{\alpha}{\alpha+n} f(x) - \frac{T^{n+1}f(x)}{A_{n}^{\alpha}} + \frac{1-\alpha}{A_{n}^{\alpha}} \sum_{i=0}^{n} \frac{A_{n-i}^{\alpha-1}}{n+1-i} T^{i}f(x) \\ &= A_{n}(x) - B_{n}(x) + C_{n}(x). \end{aligned}$$

Clearly $\lim_{n\to\infty} A_n(x) = 0$ a.e. Now, using Lemma 2.3, we see that there exists $\varepsilon > 0$ such that $h_x \in A^+_{p-\varepsilon;\alpha}(\mathbb{Z})$ for almost every $x \in X$ with a constant independent of x. Then part (i) of Theorem 3.1, which has already been proved, implies that the maximal operator $M_{\alpha,T_{\varepsilon}}$ associated with the transformation T_{ε} , defined in $L^{p-\varepsilon}(\mu)$ by

$$T_{\varepsilon}\varphi = g_1^r S \varphi, \quad r = \frac{p}{p-\varepsilon},$$

is bounded in $L^{p-\epsilon}(\mu)$ because the definition of T_{ϵ} and property (c) of the operator T imply that for every $\varphi \in L^{p-\epsilon}(\mu)$ we have

$$\int_{X} \left| T_{\varepsilon}^{i} \varphi(x) \right|^{p-\varepsilon} h_{i}(x) \, d\mu(x) = \int_{X} \left| T^{i} \left(\varphi^{(p-\varepsilon)/p} \right) \right|^{p} h_{i}(x) \, d\mu(x) = \int_{X} \left| \varphi(x) \right|^{p-\varepsilon} \, d\mu(x).$$

Then, keeping in mind that S is multiplicative and f is a characteristic function, we have

$$B_{n}(x) = \frac{T^{n+1}f(x)}{A_{n}^{\alpha}}$$

$$= \left(\frac{\alpha+1+n}{n+1}\right)\frac{T^{n+1}f(x)}{A_{n+1}^{\alpha}}$$

$$= \frac{\alpha+1+n}{(n+1)A_{n+1}^{\alpha}}g_{n+1}(x)S^{n+1}f(x)$$

$$= \frac{\alpha+1+n}{(n+1)(A_{n+1}^{\alpha})^{\varepsilon/p}}\left[\frac{1}{A_{n+1}^{\alpha}}g_{n+1}^{r}(x)S^{n+1}f(x)\right]^{1/r}$$

$$\leq \frac{\alpha+1+n}{(n+1)(A_{n+1}^{\alpha})^{\varepsilon/p}}\left[M_{\alpha,T_{r}}f(x)\right]^{1/r}.$$

Since we have already seen that $M_{\alpha,T_{\varepsilon}}$ is bounded in $L^{p-\varepsilon}(\mu)$, we have $M_{\alpha,T_{\varepsilon}}f(x) < \infty$ for almost every $x \in X$. Then, using the fact that

$$\lim_{n\to\infty}\frac{\alpha+1+n}{(n+1)(A_{n+1}^{\alpha})^{\varepsilon/p}}=0.$$

we obtain $\lim_{n\to\infty} B_n(x) = 0$ a.e. Finally,

$$C_{n}(x) = \frac{1-\alpha}{A_{n}^{\alpha}} \sum_{i=0}^{n} \frac{A_{n-i}^{\alpha-1}}{n+1-i} T^{i} f(x)$$

$$= \frac{1-\alpha}{A_{n}^{\alpha}} \sum_{i=0}^{n} \frac{A_{n-i}^{\alpha-1}}{n+1-i} \left[g_{i}^{r}(x) S^{i} f(x) \right]^{1/r}$$

$$\leq \left[\frac{1}{A_{n}^{\alpha}} \sum_{i=0}^{n} A_{n-i}^{\alpha-1} g_{i}^{r}(x) S^{i} f(x) \right]^{1/r}$$

$$\times \left[\frac{1}{A_{n}^{\alpha}} \sum_{i=0}^{n} A_{n-i}^{\alpha-1} \left(\frac{1-\alpha}{n+1-i} \right)^{r'} \right]^{1/r'}, \quad (3.10)$$

using the Hölder inequality. The first factor of the last term of (3.10) is dominated by $(M_{\alpha,T_r}f(x))^{1/r}$. Consequently, in order to show that $C_n(x) \to 0$ almost everywhere it suffices to prove that

$$\lim_{n \to \infty} \frac{1}{A_n^{\alpha}} \sum_{i=0}^n A_{n-i}^{\alpha-1} \left(\frac{1-\alpha}{n+1-i} \right)^{r'} = 0.$$
(3.11)

Note that

$$A_n^{\alpha} \uparrow \infty \quad \text{as } n \to \infty$$
 (3.12)

and that

$$\frac{\sum_{i=0}^{n+1} A_{n+1-i}^{\alpha-1} \left(\frac{1-\alpha}{n+2-i}\right)^{r'} - \sum_{i=0}^{n} A_{n-i}^{\alpha-1} \left(\frac{1-\alpha}{n+1-i}\right)^{r'}}{A_{n+1}^{\alpha} - A_{n}^{\alpha}} = \frac{A_{n+1}^{\alpha-1} \left(\frac{1-\alpha}{n+2}\right)^{r'}}{A_{n+1}^{\alpha-1} - A_{n}^{\alpha}}$$
$$= \frac{A_{n+1}^{\alpha-1} \left(\frac{1-\alpha}{n+2}\right)^{r'}}{A_{n}^{\alpha-1} \left(\frac{\alpha+1}{n+1}\right)}$$
$$= \left(\frac{1-\alpha}{n+2}\right)^{r'} \to 0$$
as $n \to \infty$. (3.13)

Then (3.11) follows from (3.12) and (3.13) using Stolz's criterium. This finishes the proof of Proposition 3.2.

COROLLARY 3.3. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let T be a positive linear operator on $L^p(\mu)$. Suppose that T is invertible and that T^{-1} is also positive. If $0 < \alpha \le 1, \alpha p > 1$ and T is power bounded, i.e.,

$$\sup_{n \ge 0} \|T^n\| = C < \infty, \tag{3.14}$$

then $h_x \in A^+_{p;\alpha}(\mathbb{Z})$ for almost every $x \in X$ with a constant independent of x and, hence, (i) and (ii) in Theorem 3.1 hold.

Proof. We shall start by proving that, for almost every x, h_x is a quasi-increasing function on \mathbb{Z} with a constant independent of x, that is, there exists a positive constant C such that

$$h_i(x) \le Ch_i(x), \quad \text{for all } i, j \in \mathbb{Z} \text{ with } j \le i \text{ and a.e. } x \in X.$$
 (3.15)

Let A be a measurable subset of X with $\mu(A) < \infty$ and let $i \in \mathbb{Z}$. Since T^i is invertible, there exists $f \in L^p(\mu)$ such that $T^i f = \chi_A$. This fact and property (c) of the operator T imply

$$\int_{A} h_{j} d\mu = \int_{X} |T^{i} f|^{p} h_{j} d\mu = \int_{X} |T^{i-j} f|^{p} d\mu, \quad j \in \mathbb{Z}.$$
 (3.16)

Now, (3.14) implies that

$$\int_{X} |T^{i-j}f|^{p} d\mu \leq C \int_{X} |f|^{p} d\mu \quad \text{for all } i, j \in \mathbb{Z} \text{ with } j \leq i.$$
(3.17)

Using property (c) of the operator T again, we deduce that

$$\int_{X} |f|^{p} d\mu = \int_{X} |T^{i} f|^{p} h_{i} d\mu = \int_{A} h_{i} d\mu.$$
(3.18)

Then (3.15) follows putting together (3.16), (3.17) and (3.18).

Finally, we shall see that (3.15) implies that $h_x \in A_{p;\alpha}^+(\mathbb{Z})$ for almost every $x \in X$ with a constant independent of x. Let r, k and m be integers with $r \leq k \leq m$. We may assume without loss of generality that r < m. Then, for almost every x, we have

$$\left(\sum_{i=r}^{k} h_{x}(i)\right)^{1/p} \left(\sum_{i=k}^{m} h_{x}(i)^{1-p'} \left(A_{m-i}^{\alpha-1}\right)^{p'}\right)^{1/p'} \\ \leq Ch_{x}(k)^{1/p} \left(\sum_{i=r}^{k} 1\right)^{1/p} \left(h_{x}(k)^{1-p'}\right)^{1/p'} \left(\sum_{i=k}^{m} \left(A_{m-i}^{\alpha-1}\right)^{p'}\right)^{1/p'} \\ \leq C(m-r+1)^{1/p} \left(\sum_{i=k}^{m} \left(A_{m-i}^{\alpha-1}\right)^{p'}\right)^{1/p'} \\ \leq C(m-r+1)^{1/p} \left(\sum_{i=0}^{m-r} \left(A_{m-r-i}^{\alpha-1}\right)^{p'}\right)^{1/p'}$$
(3.19)

Since (see [23])

$$A_n^{\alpha} = \frac{n^{\alpha}}{\Gamma(\alpha+1)} [1 + O(\frac{1}{n})], \quad \alpha \neq -1, -2, \dots,$$

and $\alpha p > 1$ or, equivalently, $0 \le (1 - \alpha)p' < 1$, the last term is dominated by

$$C(m-r+1)^{1/p} \left(\int_0^{m-r} t^{(\alpha-1)p'} dt \right)^{1/p'} \le CA_{m-r}^{\alpha},$$

where the constant C does not depend on x, and therefore $h_x \in A^+_{p;\alpha}(\mathbb{Z})$ for almost every $x \in X$ with a constant independent of x. Then by Theorem 3.1 we are done.

COROLLARY 3.4. Let T be as in Theorem 3.1 and let \tilde{T} be the operator defined by $\tilde{T}f = g_1^{1/\alpha}Sf$ ($f \in L^{\alpha p}(\mu)$), $\alpha p > 1$, $0 < \alpha \le 1$.(Note that $\tilde{T}f = (Tf^{\alpha})^{1/\alpha}$ for nonnegative measurable functions.) If \tilde{T} is Cesàro-bounded in $L^{\alpha p}(\mu)$, i.e., if

$$\sup_{n} \int_{X} \left| \frac{f + \widetilde{T}f + \ldots + \widetilde{T}^{n}f}{n+1} \right|^{\alpha p} d\mu \leq C \int_{X} |f|^{\alpha p} d\mu$$

for all $f \in L^{\alpha p}(\mu)$, then (i) and (ii) of Theorem 3.1 hold.

A. E. CONVERGENCE OF CESÀRO-α ERGODIC AVERAGES

Proof. By Theorem 2.1 in [16], for almost every x, h_x satisfies $A_{\alpha p}^+(\mathbb{Z})$ with a constant independent of x. By Lemma 2.3, this implies that, for almost every x, h_x satisfies $A_{p;\alpha}^+(\mathbb{Z})$ with a constant independent of x and, therefore, (i) and (ii) in Theorem 3.1 hold.

As a consequence of Corollary 3.4, we immediately obtain the following result.

COROLLARY 3.5. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let $\tau: X \to X$ be an invertible nonsingular transformation. Let $Tf = f \circ \tau$, $0 < \alpha \leq 1$ and $p\alpha > 1$. If T is Cesàro bounded in $L^{p\alpha}(\mu)$ then (i) and (ii) of Theorem 3.1 hold.

Remark 3.6. We observe that for $\alpha = 1$, Corollary 3.4 tells us that the uniform boundedness in $L^{p}(\mu)$, p > 1, of the Cesàro-1 averages associated with T is equivalent to the boundedness in $L^{p}(\mu)$ of the ergodic maximal operator. This result, which is a part of Theorem 2.1 in [16], could induce us to also think that in the case $0 < \alpha < 1$ the uniform boundedness of the Cesàro- α averages and the boundedness of the ergodic maximal operator associated with them are equivalent. The following example shows that, at least in the case max $\{1/p, 1/p'\} < \alpha < 1$, this equivalence does not hold.

Example 3.7. Let $X = \mathbb{Z}$, the set of the integers, and let μ be the counting measure on \mathbb{Z} . Let T be the operator defined for every real-valued function a on \mathbb{Z} by $Ta = a \circ \tau$ where τ is the invertible measure-preserving transformation on \mathbb{Z} defined by $i \mapsto i + 1$. Note that given $0 < \alpha \le 1$, the operator M_{α} associated with T coincides with the operator m_{α}^+ defined in the previous section. We know that this operator is bounded in $L^p(\mu)$ if, and only if, $p > 1/\alpha$. On the other hand, if $p \ge 1$ and a is a real-valued function defined in \mathbb{Z} , we have

$$\left[\sum_{i=-\infty}^{\infty} \left(R_{n,\alpha}|a|(i)\right)^{p}\right]^{1/p} = \left[\sum_{i=-\infty}^{\infty} \left(\sum_{j=0}^{n} \frac{A_{n-j}^{\alpha-1}}{A_{n}^{\alpha}}|a(i+j)|\right)^{p}\right]^{1/p} \\ \leq \sum_{j=0}^{n} \frac{A_{n-j}^{\alpha-1}}{A_{n}^{\alpha}} \left(\sum_{i=-\infty}^{\infty} |a(i+j)|^{p}\right)^{1/p} = ||a||_{p},$$

i.e., the averages $R_{n,\alpha}$ are uniformly bounded in $L^p(\mu)$, $p \ge 1$. Therefore, at least in the case $1 \le p \le \frac{1}{\alpha}$, the uniform boundedness of the Cesàro- α averages does not imply the boundedness of the ergodic maximal operator M_{α} . However, if we want to show the differences between the cases $0 < \alpha < 1$ and $\alpha = 1$ we have to see that even in the "good" case $\alpha p > 1$ the uniform boundedness of the Cesàro- α averages and the boundedness of the maximal operator M_{α} are not equivalent.

We shall work in the case $1/\alpha , that is, <math>\alpha p > 1$ and $\alpha p' > 1$, and we shall see that there exist positive measurable functions ω defined on \mathbb{Z} for

which the uniform boundedness of the averages in $L^p(\omega d\mu)$ does not imply the boundedness of the maximal operator in $L^p(\omega d\mu)$. In order to find such a function ω , we shall make use of the adjoints of the averages $R_{n,\alpha}$ in $L^p(d\mu)$ which will be denoted by $R_{n,\alpha}^-$ and are defined for every function a on \mathbb{Z} by

$$R_{n,\alpha}^{-}a(i)=\frac{1}{A_n^{\alpha}}\sum_{j=-n}^{0}A_{n+j}^{\alpha-1}a(i+j),\quad i\in\mathbb{Z}.$$

The maximal operator associated with these operators is nothing but the operator m_{α}^{-} introduced in §2.

It follows from the results in §2 that our problem will be solved if we find a positive measurable function ω such that

$$\omega^{1-p'} \in A^{-}_{p';\alpha}(\mathbb{Z}) \text{ and } \omega \notin A^{+}_{p;\alpha}(\mathbb{Z}).$$

In fact, for such a function ω , the analogue of Lemma 2.2 implies the boundedness of the operator m_{α}^{-} in $L^{p'}(\omega^{1-p'} d\mu)$ and, hence, the uniform boundedness of the averages $R_{n,\alpha}^{-}$ in the same space. Then, by duality, we obtain the uniform boundedness of the averages $R_{n,\alpha}$ in $L^{p}(\omega d\mu)$. On the other hand, since $\omega \notin A_{p;\alpha}^{+}(\mathbb{Z})$, the maximal operator $M_{\alpha} = m_{\alpha}^{+}$ is not bounded in $L^{p}(\omega d\mu)$. To finish the example it only remains to show a function ω such that $\omega^{1-p'} \in A_{p';\alpha}^{-}(\mathbb{Z})$ and $\omega \notin A_{p;\alpha}^{+}(\mathbb{Z})$. If we take $w_{\gamma}(i) = (1 + |i|)^{\gamma}$, it follows from Lemma 2.4 that ω_{γ} satisfies the desired properties if $\alpha p - 1 < \gamma < p - 1$. Note that the example does not include the case $\alpha = 1$ since then $\alpha p - 1 = p - 1$.

4. The Cesàro- α ergodic maximal operator associated with ergodic transformations

Let (X, \mathcal{F}, μ) be a σ -finite measure space which is nonatomic if $\mu(X) < \infty$ and let $\tau: X \to X$ be an invertible ergodic measure-preserving transformation. We shall work in this section with the Lamperti operator associated with τ and a positive measurable function g, i.e., the operator T defined for all measurable functions f by

$$Tf(x) = g(x)f(\tau x).$$

Of course, this operator is a particular case of the one treated in §3. For that reason, in what follows we shall use the notations introduced in §3.

For the operator T introduced above, with arbitrary positive g, we shall study the characterization of the boundedness of the Cesàro- α ergodic maximal operator in $L^p(w d\mu)$, where w is a positive measurable function (see the final remark). It follows from the results of the previous section that if, for almost every x, the functions $h_x(i) = g_i^{-p}(x)w(\tau^i x)/w(x)$ satisfy $A_{p;\alpha}^+(\mathbb{Z})$ with a constant independent of x then M_{α} is bounded in $L^p(w d\mu)$. The goal of this section is to show that the converse holds and that, actually, the boundedness of M_{α} is equivalent to the uniform boundedness of a countable family of some kind of Cesàro- α averages. In order to fix these averages and to state the theorem we need to introduce some notations, definitions and a lemma.

Definition 4.1. If B is a measurable subset and $x \in \bigcup_{i=0}^{\infty} \tau^{-i} B$ we define

$$n_B(x) = \inf\{k \ge 0: \ \tau^k x \in B\}$$

and

$$L_B(x) = \begin{cases} \sup\{j \ge 1: \tau^{-1}x, \dots, \tau^{-j}x \notin B\}, & \text{if } \{j \ge 1: \tau^{-1}x, \dots, \tau^{-j}x \notin B\} \neq \emptyset, \\ 0, & \text{otherwise.} \end{cases}$$

Observe that $L_B(x)$ can take the value $+\infty$.

Definition 4.2. If B is a measurable subset we define the average $R_{B,\alpha}f$ as

$$R_{B,\alpha}f(x) = \begin{cases} (A_{n_B(x)}^{\alpha})^{-1} \sum_{i=0}^{n_B(x)} A_{n_B(x)-i}^{\alpha-1} T^i f(x), & \text{if } x \in \bigcup_{j=0}^{\infty} \tau^{-j} B\\ 0, & \text{otherwise.} \end{cases}$$

Observe that

$$\sup_{B\in\mathcal{F}} R_{B,\alpha}f(x) \le M_{\alpha}f(x). \tag{4.1}$$

In fact, it can be proved that the equality holds. Moreover, we can obtain the equality if we take the supremum over a countable family of measurable subsets. In order to determine this countable family we need a definition and a lemma (see [13] and [2]).

Definition 4.3 [2]. Let k be a natural number. The measurable set $B \subset X$ is said to be the base of an (ergodic) rectangle of length k + 1 if $\tau^i B \cap \tau^j B = \emptyset$ whenever $i \neq j, 0 \leq i, j \leq k$. In such a case the set $R = \bigcup_{i=0}^k \tau^i B$ will be called an (ergodic) rectangle with base B and length k + 1.

LEMMA 4.4 [13]. For every nonnegative integer k there exists a countable family of bases of ergodic rectangles of length k + 1, $\{B_n^{(k)}: n \in \mathbb{N}\}$, such that $X = \bigcup_n B_n^{(k)}$. We shall denote by \mathcal{B} the family $\{\tau^k(B_n^{(k)}): k, n \in \mathbb{N}\}$.

Our first result in this section shows that the countable family \mathcal{B} is enough to obtain the equality in (4.1).

PROPOSITION 4.5. With the above notations and assumptions we have

$$\sup_{B \in \mathcal{B}} R_{B,\alpha} f(x) = M_{\alpha} f(x) \quad \text{for almost every } x \in X.$$

The uniform boundedness of the averages $\{R_{B,\alpha}: B \in B\}$ is equivalent to the boundedness of the Cesàro- α ergodic maximal operator. This fact is part of the following theorem which is the main result in this section. It shows also that for operators induced by invertible ergodic measure-preserving transformations the converse of part (i) in Theorem 3.1 holds.

THEOREM 4.6. Let (X, \mathcal{F}, μ) , τ , g, ω and \mathcal{B} be as above. Let $0 < \alpha \le 1$ and p > 1. The following statements are equivalent:

(1) There exists C > 0 such that

$$\int_X |M_{\alpha}f|^p w \, d\mu \leq C \int_X |f|^p w \, d\mu$$

for all $f \in L^p(w d\mu)$. (2) There exists C > 0 such that

$$\sup_{B\in\mathcal{B}}\int_X |R_{B,\alpha}f|^p w\,d\mu \leq C\int_X |f|^p w\,d\mu$$

for all $f \in L^p(w d\mu)$.

(3) For almost every $x \in X$ the function $h_x(i) = g_i^{-p}(x)w(\tau^i x)/w(x)$ satisfies $A_{n;\alpha}^+(\mathbb{Z})$ with a constant independent of x.

Proof of Proposition 4.5. Let $X' = \bigcap_k \bigcup_n B_n^{(k)}$. Then $\mu(X \setminus X') = 0$. Therefore, it suffices to prove that the equality holds for every $x \in X'$. Assume that $x \in X'$ and $m \in \mathbb{N}$. Then there exists $B_n^{(m)}$ such that $x \in B_n^{(m)}$. If $B = \tau^m(B_n^{(m)})$ then $B \in \mathcal{B}$ and $n_B(x) = m$. Therefore $R_{m,\alpha} f(x) = R_{B,\alpha} f(x) \leq \sup_{B \in \mathcal{B}} R_{B,\alpha} f(x)$ which proves the proposition.

Proof of Theorem 4.6. It is obvious that (1) implies (2), and (3) \Rightarrow (1) follows from Theorem 3.1. Therefore we only have to prove that (2) \Rightarrow (3). In order to prove this implication we follow ideas of Rubio de Francia (see [9] for instance). For that reason we need to compute the adjoint of $R_{B,\alpha}$.

LEMMA 4.7. Under the assumptions of Theorem 4.6, if B is a measurable subset and $R_{B,\alpha}$ is bounded in $L^p(w d\mu)$ then the adjoint of $R_{B,\alpha}$ is the operator $R_{B,\alpha}^*$: $L^{p'}(w d\mu) \rightarrow L^{p'}(w d\mu)$ defined by

$$R_{B,\alpha}^*h(x) = w^{-1}(x)A_{n_B(x)}^{\alpha-1}\left(\sum_{j=0}^{L_B(x)} \frac{1}{A_{j+n_B(x)}^{\alpha}}(g_jhw)(\tau^{-j}x)\right)\chi_{\bigcup_{j=0}^{\infty}\tau^{-j}B}$$

Proof of Lemma 4.7. Let $B_k = \{x \in \bigcup_{j=0}^{\infty} \tau^{-j} B: n_B(x) = k\}$. By the definition of $R_{B,\alpha}$ and since τ preserves the measure μ we obtain

$$\int_{X} (R_{B,\alpha}f) hw \, d\mu = \int_{\bigcup_{i=0}^{\infty} \tau^{-i}B} f(x) \sum_{j=0}^{\infty} (g_{j}hw)(\tau^{-j}x) \sum_{k=j}^{\infty} \frac{A_{k-j}^{\alpha-1}}{A_{k}^{\alpha}} \chi_{B_{k}}(\tau^{-j}x) \, d\mu(x).$$

For fixed x and j, the sum

$$\sum_{k=j}^{\infty} \frac{A_{k-j}^{\alpha-1}}{A_k^{\alpha}} \chi_{B_k}(\tau^{-j}x)$$

is not zero if there exists $k \ge j$ such that $\tau^{-j}x \in B_k$. In this case, it is clear that there exists only one value of k with that property and $k - j = n_B(x)$. Notice also that, for each x, the j's satisfying $\tau^{-j}x \in B_{j+n_B(x)}$ are exactly the j's such that $j \le L_B(x)$ (see Definition 4.1). Therefore

$$\int_X R_{B,\alpha} f(x)h(x)w(x) d\mu(x) = \int_{\bigcup_{i=0}^{\infty} \tau^{-i}B} f(x) \sum_{j=0}^{L_B(x)} (g_j hw)(\tau^{-j}x) \frac{A_{n_B(x)}^{\alpha-1}}{A_{j+n_B(x)}^{\alpha}} d\mu(x),$$

and the lemma follows.

Proof of $(2) \Rightarrow (3)$. Assume that (2) holds, i.e., the family $\{R_{B,\alpha}: B \in \mathcal{B}\}$ is uniformly bounded in $L^p(w d\mu)$. By duality, the family of the adjoint operators $\{R_{B,\alpha}^*: B \in \mathcal{B}\}$ is uniformly bounded in $L^{p'}(w d\mu)$. Therefore, there exists a constant C > 0 such that for all $B \in \mathcal{B}$,

$$\|R_{B,\alpha}f\|_{p,w\,d\mu} = \left(\int_{X} |R_{B,\alpha}f|^{p}w\,d\mu\right)^{1/p} \leq C\|f\|_{p,w\,d\mu} \quad \text{for every } f \in L^{p}(w\,d\mu)$$
(4.2)

and

$$\|R_{B,\alpha}^{*}f\|_{p',w\,d\mu} = \left(\int_{X} |R_{B,\alpha}^{*}f|^{p'}w\,d\mu\right)^{1/p'} \le C\|f\|_{p',w\,d\mu} \text{ for every } f \in L^{p'}(w\,d\mu).$$
(4.3)

For every $B \in \mathcal{B}$, let us consider the sublinear operators P_B and Q_B defined, on every measurable function f, by

$$P_B f = \left(R_{B,\alpha} |f|^{p'} \right)^{1/p'}$$
 and $Q_B f = \left(R_{B,\alpha}^* |f|^p \right)^{1/p}$.

It is clear from (4.2) and (4.3) that the family of sublinear operators $\{S_B = P_B + Q_B: B \in \mathcal{B}\}$ is uniformly bounded in $L^{pp'}(w d\mu)$. Now let f be any positive function

in $L^{pp'}(w d\mu)$ and define

$$h_B = \sum_{i=0}^{\infty} \frac{S_B^{(i)} f}{(2C)^i}$$

where $S_B^{(i)}$ is the *i*-th power of S_B and *C* is a constant such that $||S_B|| \leq C$ for all $B \in \mathcal{B}$. Then $h_B \in L^{pp'}(w \, d\mu)$, h_B is positive $(h_B \geq f > 0)$, $||h_B||_{pp',w \, d\mu} \leq 2||f||_{pp',w \, d\mu}$ and

$$S_B h_B \leq 2C h_B$$
 a.e

Since P_B and Q_B are positive sublinear operators, it follows that

$$P_Bh_B \leq 2Ch_B$$
 a.e. and $Q_Bh_B \leq 2Ch_B$ a.e.,

which is the same as

$$R_{B,\alpha}h_B^{p'} \le (2Ch_B)^{p'} \text{ a.e.}$$

$$(4.4)$$

and

$$R_{B,\alpha}^* h_B^p \le (2Ch_B)^p \text{ a.e.}$$

$$(4.5)$$

Let $u_B = h_B^p w$ and $v_B = h_B^{p'}$. By these definitions $w = u_B v_B^{1-p}$. Therefore

$$w(x)h_{x}(i) = g_{i}^{-p}(x)u_{B}(\tau^{i}x)v_{B}^{1-p}(\tau^{i}x) = g_{i}^{-1}(x)u_{B}(\tau^{i}x)(g_{i}(x)v_{B}(\tau^{i}x))^{1-p}.$$
(4.6)

Once we have the functions $w(x)h_x(i)$ factorized in this fashion, we are going to prove that (3) holds, i.e., there exists a positive constant C such that

$$\left(\sum_{i=0}^{k} \omega(x) h_{x}(i+r)\right)^{1/p} \left(\sum_{i=k}^{n} (\omega(x) h_{x}(i+r))^{1-p'} \left(A_{n-i}^{\alpha-1}\right)^{p'}\right)^{1/p'} \le C A_{n}^{\alpha}$$

for almost every $x \in X$ and all r, k and n in \mathbb{Z} with $0 \le k \le n$.

Let r, k and n be in \mathbb{Z} with $0 \le k \le n$. Notice that if n = 0, the above inequality holds for every $x \in X$ with any constant $C \ge 1$ and, hence, it suffices to prove it in the case n > 0. Observe, also, that if we define X' as in the proof of Proposition 4.5, i.e., $X' = \bigcap_k \bigcup_n B_n^{(k)}$, then for almost every $x \in X'$ and all $r \in \mathbb{Z}$ we have $\tau^r x \in X'$ and, therefore, for fixed r, we have that, for almost every $x \in X'$, there exists $B \in \mathcal{B}$ such that $n_B(\tau^r x) = n$. Applying (4.5) to $\tau^{i+r} x$ with $k \le i \le n$, we obtain

$$A_{n_B(\tau^{i+r}x)}^{\alpha-1} \sum_{j=0}^{L_B(\tau^{i+r}x)} \frac{1}{A_{j+n_B(\tau^{i+r}x)}^{\alpha}} (g_j u_B)(\tau^{i+r-j}x) \le (2C)^p u_B(\tau^{i+r}x) \quad \text{a.e.}$$

Now observe that $n_B(\tau^{i+r}x) = n - i$ and $L_B(\tau^{i+r}x) \ge i$ since n > 0. Therefore, we have

$$A_{n-i}^{\alpha-1}\sum_{j=0}^{i}\frac{1}{A_{j+n-i}^{\alpha}}(g_{j}u_{B})(\tau^{i+r-j}x) \leq (2C)^{p}u_{B}(\tau^{i+r}x) \quad \text{a.e.}$$

or, changing the variable,

$$A_{n-i}^{\alpha-1} \sum_{l=0}^{i} \frac{1}{A_{n-l}^{\alpha}} (g_{i-l}u_B)(\tau^{l+r}x) \le (2C)^p u_B(\tau^{i+r}x) \quad \text{a.e}$$

Since $0 \le k \le i$, we obtain

$$A_{n-i}^{\alpha-1}\sum_{l=0}^{k}\frac{1}{A_{n-l}^{\alpha}}(g_{i-l}u_{B})(\tau^{l+r}x) \leq (2C)^{p}u_{B}(\tau^{i+r}x) \quad \text{a.e.}$$

Multiplying by $g_{-(i+r)}(\tau^{i+r}x) = g_{i+r}^{-1}(x)$ and taking into account that

$$g_{-(i+r)}(\tau^{i+r}x)g_{i-l}(\tau^{l+r}x) = g_{-(i+r)}(\tau^{i+r}x)g_{(i+r)-(l+r)}(\tau^{l+r}x)$$

= $g_{-(l+r)}(\tau^{l+r}x) = g_{l+r}^{-1}(x),$

we get, for all $i \in \mathbb{Z}$ with $k \le i \le n$ and for almost every x, the inequality

$$A_{n-i}^{\alpha-1} \sum_{l=0}^{k} \frac{1}{A_{n-l}^{\alpha}} g_{l+r}^{-1}(x) u_{B}(\tau^{l+r}x) \le (2C)^{p} g_{i+r}^{-1}(x) u_{B}(\tau^{i+r}x).$$
(4.7)

Now let $i \in \mathbb{N}$ with $0 \le i \le k$. Applying (4.4) to $\tau^{r+i}x$ and keeping in mind that $n_B(\tau^{r+i}x) = n - i$ we obtain

$$\frac{1}{A_{n-i}^{\alpha}}\sum_{j=0}^{n-i}A_{n-i-j}^{\alpha-1}g_j(\tau^{r+i}x)v_B(\tau^{r+i+j}x) \le (2C)^{p'}v_B(\tau^{r+i}x) \text{ a.e.}$$

Changing the variable, we have

$$\frac{1}{A_{n-i}^{\alpha}}\sum_{l=i}^{n}A_{n-l}^{\alpha-1}g_{l-i}(\tau^{r+i}x)v_{B}(\tau^{r+l}x) \leq (2C)^{p'}v_{B}(\tau^{r+i}x) \text{ a.e.}$$

Since $i \leq k$ we have

$$\frac{1}{A_{n-i}^{\alpha}} \sum_{l=k}^{n} A_{n-l}^{\alpha-1} g_{l-i}(\tau^{r+i}x) v_B(\tau^{r+l}x) \le (2C)^{p'} v_B(\tau^{r+i}x) \text{ a.e.}$$

Multiplying by $g_{r+i}(x)$ we obtain, for all $i \in \mathbb{Z}$ with $0 \le i \le k$ and almost every x, the inequality

$$\frac{1}{A_{n-i}^{\alpha}} \sum_{l=k}^{n} A_{n-l}^{\alpha-1} g_{r+l}(x) v_B(\tau^{r+l}x) \le (2C)^{p'} g_{r+i}(x) v_B(\tau^{r+i}x).$$
(4.8)

By (4.6) and (4.8),

$$\left(\sum_{i=0}^{k} \omega(x)h_{x}(i+r)\right)^{1/p}$$

$$= \left(\sum_{i=0}^{k} g_{i+r}^{-1}(x)u_{B}(\tau^{i+r}x)(g_{i+r}(x)v_{B}(\tau^{i+r}x))^{1-p}\right)^{1/p}$$

$$\leq 2C \left(\sum_{i=0}^{k} g_{i+r}^{-1}(x)u_{B}(\tau^{i+r}x)(A_{n-i}^{\alpha})^{p-1}\right)^{1/p} \left(\sum_{l=k}^{n} A_{n-l}^{\alpha-1}g_{l+r}(x)v_{B}(\tau^{l+r}x)\right)^{-1/p'}$$
(4.9)

for almost every x. On the other hand, by (4.6) and (4.7),

$$\left(\sum_{i=k}^{n} (\omega(x)h_{x}(i+r))^{1-p'} (A_{n-i}^{\alpha-1})^{p'}\right)^{1/p'}$$

$$= \left(\sum_{i=k}^{n} (g_{i+r}^{-1}(x)u_{B}(\tau^{i+r}x))^{1-p'} (A_{n-i}^{\alpha-1})^{p'-1} A_{n-i}^{\alpha-1}g_{i+r}(x)v_{B}(\tau^{i+r}x)\right)^{1/p'}$$

$$\leq 2C \left(\sum_{i=k}^{n} A_{n-i}^{\alpha-1}g_{i+r}(x)v_{B}(\tau^{i+r}x)\right)^{1/p'} \left(\sum_{l=0}^{k} \frac{1}{A_{n-l}^{\alpha}}g_{l+r}^{-1}(x)u_{B}(\tau^{l+r}x)\right)^{-1/p}.$$
(4.10)

Multiplying (4.9) and (4.10) we get

$$\left(\sum_{i=0}^{k} \omega(x)h_{x}(i+r)\right)^{1/p} \left(\sum_{i=k}^{n} (\omega(x)h_{x}(i+r))^{1-p'} (A_{n-i}^{\alpha-1})^{p'}\right)^{1/p'} \leq (2C)^{2} \left(\sum_{i=0}^{k} g_{i+r}^{-1}(x)u_{B}(\tau^{i+r}x)(A_{n-i}^{\alpha})^{p-1}\right)^{1/p} \left(\sum_{l=0}^{k} \frac{1}{A_{n-l}^{\alpha}} g_{l+r}^{-1}(x)u_{B}(\tau^{l+r}x)\right)^{-1/p}$$

for almost every x, and, finally, since the coefficients A_{n-i}^{α} increase [23], we obtain

$$\left(\sum_{i=0}^{k} \omega(x) h_x(i+r)\right)^{1/p} \left(\sum_{i=k}^{n} (\omega(x) h_x(i+r))^{1-p'} (A_{n-i}^{\alpha-1})^{p'}\right)^{1/p'} \le (2C)^2 A_n^{\alpha} \quad \text{a.e.},$$

which proves (3).

Remark 4.8. Assume, for a while, that g = 1 and τ is an invertible measurable transformation which is nonsingular with respect to a finite measure ν . If $0 < \alpha < 1$ and the Cesàro- α averages $R_{n,\alpha}f$ converge a.e. for every $f \in L^p(d\nu)$, then the same happens for the Cesàro-1 averages. Then it is known (see [15]) that the measure ν is equivalent to a finite measure μ which is preserved by τ . That is the reason why we have worked with the measures $\omega d\mu$.

A. E. CONVERGENCE OF CESÀRO- α ERGODIC AVERAGES

REFERENCES

- 1. M. A. Akcoglu, A pointwise ergodic theorem in L_p-spaces, Canad. J. Math. 27 (1975), 1075-1082.
- E. Atencia and A. de la Torre, A dominated ergodic estimate for L^p-spaces with weights, Studia Math. 74 (1982), 35-47.
- 3. M. Broise, Y. Déniel et Y. Derriennic, *Réarrangement, inégalités maximales et théorémes ergodiques fractionnaires*, Ann. Inst. Fourier (Grenoble) **39** (1989), 689–714.
- 4. A. Brunel Théorème ergodique pour les opérateurs positifs à moyennes bornées sur les espaces L_p (1 \infty), Ergodic Theory Dynamical Systems 12 (1993), 195–207.
- Y. Déniel, On the a.s. Cesàro-α convergence for stationary or orthogonal random variables, J. Theoret. Prob. 2 (1989), 475–485.
- 6. Y. Déniel et Y. Derriennic, Sur le convergence presque sure, au sens de Cesàro d'ordre α , $0 < \alpha < 1$, de variables aléatoires indepéndantes et identiquement distribuées, Probab. Theory Related Fields. **72** (1989), 629-636.
- 7. N. Dunford and J. T. Schwartz, Linear operators, vol. I, Wiley, New York, 1958.
- 8. R. Emilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1985), 1-14.
- 9. J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North Holland, 1985.
- 10. R. A. Hunt, On L(p, q) spaces, Enseign. Math. 12 (1966), 249-276.
- 11. R. Irmisch, *Punktweise Ergodensätze für* (C, α) -Verfahren, $0 < \alpha < 1$, Dissertation, Fachbereich Math., TH Darmstadt, 1980.
- 12. Charn-Huen Kan, Ergodic properties for Lamperti operators, Canad. J. Math. 30 (1978), 1206-1214.
- F. J. Martín-Reyes, Inequalities for the maximal function and convergence of the averages in weighted L^p-spaces, Trans. Amer. Math. Soc. 296 (1986), 61–82.
- _____, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 (1993), 691–698.
- _____, Almost everywhere convergence: Proceedings of the International Conference on Almost Everywhere Convergence In Probability and Ergodic Theory, Columbus, Ohio, June 11–14, 1988, Academic Press, 1989.
- F. J. Martín-Reyes and A. de la Torre, The dominated ergodic estimate for mean bounded, invertible, positive operators, Proc. Amer. Math. Soc. 104 (1988), 69–75.
- 17. _____, On the almost everywhere convergence of the ergodic averages, Ergodic Theory Dynamical Systems. **10** (1990), 141–149.
- 18. _____, One-sided BMO spaces, J. London Math. Soc. 49 (1994), no. 2, 529-542.
- 19. _____, Some weighted inequalities for general one-sided maximal operators, Studia Math. 122 (1997), 1–14.
- 20. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- M. D. Sarrión Gavilán, Weighted Lorentz norm inequalities for general maximal operators associated with certain families of Borel measures, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 403–424.
- 22. E. Sawyer, Weighted inequalities for the one sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61.
- 23. A. Zygmund, Trigonometric series, vols. I and II, Cambridge University Press, 1959.

F. J. Martín-Reyes, Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

martin@anamat.cie.uma.es.

M. D. Sarrión Gavilán, Departamento de Economía Aplicada (Estadística y Econometría), Facultad de Ciencias Económicas y Empresariales, Universidad de Málaga, 29013 Málaga, Spain

dsarrion@ccuma.uma.es