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ON MODULATED ERGODIC THEOREMS FOR
DUNFORD-SCHWARTZ OPERATORS

MICHAEL LIN, JAMES OLSEN AND ARKADY TEMPELMAN

ABSTRACT. We investigate sequences of complex numbers & = {ax} for which the modulated averages
;',- Z:=| a; T* f converge in norm for every weakly almost periodic linear operator T in a Banach space.
For Dunford-Schwartz operators on probability spaces, we study also the a.e. convergence in L,. The
limit is identified in some special cases, in particular when T is a contraction in a Hilbert space, or when
a = {SK¢ (&)} for some positive Dunford-Schwartz operator S on a Lebesgue space and ¢ € L,. We also
obtain necessary and sufficient conditions on @ for the norm convergence of the modulated averages for
every mean ergodic power bounded T, and identify the limit.

1. Introduction and preliminaries

Let (2, F, u) be a o-finite measure space, and let 7 be a Dunford-Schwartz
operator on L (u) (i.e., a contraction of L (u) which is also a contraction of L, (t)).
T is then also a contraction of each L,(1), 1 < p < 00, and the Dunford-Schwartz
pointwise ergodic theorem yields a.e. convergence of % i TEf forevery f €
L,(n), 1 < p < oo. Convergence in L,-norm, for 1 < p < oo, follows from the
reflexivity of L,(u), and yields L;-norm convergence for y finite.

For fixed p, we will be interested in sequences a = {a;} of complex numbers,
which yield modulated ergodic theorems — convergence, for every Dunford-Schwartz
operator T and every f € L,, either almost surely or in the mean, of the “modulated”
averages of the form 1 3" _ a,T* f. In case the limit

l n
L@ T)f := lim — Tk
@7)f = lim ~ ;ak f

exists for every f € L,(u), we would like to identify it.

If we want convergence of the modulated averages to hold at least for all rotations
of the unit circle, we must have that lim,,_, o, ﬁ ZZ=I akxk exists forall A with |A| = 1,
and denote that limit by c(1). In that case, we say that the sequence a = {ax} has
Fourier coefficients, call c(-) = c(-, a) the Fourier function of a, and, following [K-2,
p. 72], call a a Hartman (almost-periodic) sequence. The spectrum of a Hartman

Received July 15, 1998.
1991 Mathematics Subject Classification. Primary 28D05, 47A35.
The research of the first-named author was partially supported by the Israel Science Foundation.

The research of the second-named author was partially supported by ND EPSCoR through a grant from
the National Science Foundation.

© 1999 by the Board of Trustees of the University of Hlinois
Manufactured in the United States of America

542



MODULATED ERGODIC THEOREMS 543

sequence a = {a,} with Fourier function c()) is the set o (a) := {A: c(A) # 0}. By
[K-1], the spectrum is countable. A simple proof for bounded Hartman sequences, due
to Boshernitzan, is given in [Ro, Theorem 41]. In fact, the proof applies (precisely)
to Hartman sequences in the class W, defined below.

For 1 < p < o0, let W), be the class of complex sequences a = {ax} such that the
seminorm ||a||w,, given by (limsup,_, ., Zk 1 lakll’)P is finite. W, denotes all
bounded sequences. Clearly W, C W, forl < p, < p; < 00, and positive Hartman
sequences are in W;. We denote by W;+ the W;-seminorm closure of U, W,. An
adaptation of the proof given by Marcinkiewicz [M] for functions defined on R (see
also [Le, Theorem 5.10.1]) shows that all the sequence spaces W, are complete.

We look also at operators more general than Dunford-Schwartz operators, and the
problem is, for a power-bounded operator 7 on a Banach space X and a sequence
a = {ay}, to obtain the norm convergence

1 n
L@, T)x := lim — ZakT"x exists for every x € X. 1.n
n—>oo n k=l

When a € W, we have sup, || Iy aT < oo for every T power bounded in a
Banach space X, so the set of x € X for which 1 LY k=1 aT*x converges is closed.

The next proposition follows from Lemma 1 of [T-1] (see also [CLO] for its second
part).

PROPOSITION 1.1.  Let T be a power-bounded operator in X. If a™ e W,
satisfies (1.1) for each N, and ||a'y) — a||w, — O, then also a (which is necessarily
in W)) satisfies (1.1), and limy ||L(@™, T) — L(a, T)| = 0.

By Proposition 1.1, the set of Hartman sequences in W, is a closed subspace of
Wi.

Recall that T is called weakly almost periodic (WAP) if for every x € X the orbit
{T*x} is weakly conditionally compact. Power-bounded operators on reflexive spaces
are WAP. An important tool in the study of ergodic properties of WAP operators is
the Jacobs-Deleeuw-Glicksberg decomposition [Kr, §2.4]:

= [closed lin. span{y: Ty = Ay, |A| = 1})]®{z: T" z — Oweakly for some {n;}}.

THEOREM 1.2. Let a = {a;} be a Hartman sequence. If a € W+, then for every
weakly almost periodic operator T on a Banach space X,

l n
L(a, T)x := lim — E axT*x exists foreveryx € X.
n—>oo n =1

Proof. If Ty = Ly with |A| = 1, then L(a, T)y exists, by the existence of Fourier
coefficients for a. On the space X of the flight vectors of T (the vectors z with a
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subsequence of {T"z} converging weakly to 0), the limit in (1.1) exists and is zero
for all W, sequences (p > 1), by the proof of Theorem 4.1 of [CLO] — for that part
the existence of the Fourier coefficients is not needed. Hence, for the flight vectors
the limit exists and is zero also when a € W+, by Proposition 1.1.

Thus, convergence holds on the linear manifold Y generated by X, and the eigen-
vectors {y: Ty = Ay, |A| = 1}. Since Y is dense in X by weak almost periodicity,
convergence holds on X (because a € W)).

Remark. The W, sequences which approximate a € W;+ need not be Hartman.

Example. A Hartman sequence in Wy which is not in Wy+.

We define a = {ak} by ar = 0 if k is not a square, and a2 = j. For j?<n<
(j + 1)? we have -Zk ,ak ' ’ i E,soa € W;. Suppose b € W, with
p>1l,and |b—aly, <3 Then ||b|| w, > z. We may assume that by=0 fork not
a square, as this will only improve the approxnmatlon For n = j2, using Holder’s
inequality we have

—Zlbl 1|bkz|<—( Zlbkzlp)

/p

1/p
‘ u/,,( }:wu’) - 0.
i
This contradiction shows that a ¢ Wj+. We now show that a is Hartman. Let A
have an 1rrat10nal angle By Weil’s equidistribution theorem for the squares [KuN,
p. 271, Zk ,)J‘ - 0 Using Abel’s summation by parts, we can prove that if
L Zk__ dk -—> 0, then 4 o Z =1 kdr — 0. Hence, for A with irrational angle, our a
satlsﬁes Iy Ak = ? Zk_l kA — 0, where j = [/n]. For A aroot of unity
of order t the convergence 1s shown by representing eachk = ts +r withO <r < ¢;
we omit the computations.

Recall that T is called almost periodic if for every x € X the orbit {T*x} is
conditionally compact (in the norm). In that case, ||7"x|| — O for every x € X
(this property characterizes the almost periodic operators among the weakly almost
periodic ones), and (1.1) holds for any Hartman sequence a € W.

PROPOSITION 1.3. Let a = {ay} be a sequence of complex numbers. If for every
almost periodic operator T in a Banach space sup,, Il akT || < o0, thena e
Wi.

Proof. Define T in cq (the space of sequences converging to 0) by the shift
T{xx}) = {xk+1}. Clearly T" converges to O strongly, so T is almost periodic.
For a # 0, define x = (0, signay, signay, ..., signa,,0,0,...) € co (Where
signa = a/|a| for a # 0 and sign0 = 0). Then ||x™ || = 1 (for n large enough), and
the first coordinate of £ 3"} @, T*x™ is L 3"} _ |ai|. Hence

1< 1 &
kz—l: ay T"x("’ ;l' ; ay T’c

sup " Z lak| < sup

< sup
k=1 n
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PROPOSITION 1.4. A sequence a = {a;} satisfies (1.1) for every almost periodic
operator T in a Banach space X if and only if a is a Hartman sequence in W,.

Proof. Let a satisfy (1.1) for every almost periodic T. Then a € W, by the
previous theorem, and it is Hartman because rotations on the unit circle I' := {A €
C: |A| = 1} yield almost periodic operators on C(I'). The converse was observed
above.

A complex-valued function t on the integers is called a trigonometric polynomial
if there exist complex numbers Ay, ..., A, with all |A;| = 1, and complex numbers
by, ..., by, such that t(k) = bjAk + .-+ b,Ak forallk. If 1 < p < ocand a
is in the W, closure of the trigonometric polynomials, a is called p-Besicovitch.
1-Besicovitch sequences will be called just Besicovitch sequences, and every p-
Besicovitch sequence is Besicovitch. Since trigonometric polynomials are bounded
Hartman sequences, every Besicovitch sequence is in W+, and Proposition 1.1 shows
that it is a Hartman sequence, and also that it has countable spectrum. However, there
are many bounded Hartman sequences which are not Besicovitch [K-2, p. 73].- The
second part of the next proposition yields specific constructions.

PROPOSITION 1.5. Let 6 be an ergodic measure preserving transformation of a
probability space (2, F,u). If ¢ € L,(u) for 1 < p < 00, then for a.e. w, the
sequence a = {¢p(0*w)} is a Hartman sequence, which is in W,. Furthermore,
if 0 is weakly mixing, and ¢ is non-constant, then for a.e. w the sequence a is a
non-Besicovitch Hartman sequence.

Proof. When p < oo, the sequence {¢(6*w)} is a.e. in W, by the pointwise
ergodic theorem applied to |¢|”. The Wiener-Wintner Theorem (e.g., [W]) implies
that for almost every w, the sequence a = {¢ (9*w)} is a Hartman sequence. Its proof
also shows that for a.e. w, the Fourier coefficients of a are E(A)¢(w), where E(A) is
the ergodic projection of L,(u) on the eigenspace of A, and thus the spectrum of a
is {A : E(A)¢ # 0}. This shows that if 6 is weakly mixing, the Fourier coefficients
of a, except at 1, are all zero (see also [BO, Theorem 5.2]), so the sequence is not
Besicovitch.

Remarks. 1. The first part of the proposition is true without ergodicity, when the
probability space is a Lebesgue space.

2. For p = 1, the sequences a obtained in the proposition are in fact in W;+ (see
details in the proof of Theorem 3.6 below).

3. Proposition 1.5 is true also for a = {P¥¢(w)}, when P is a transition proba-
bility operator for which u is an ergodic invariant probability (this follows from the
construction of the Markov shift — see [CLO]). When the space is a Lebesgue space,
we can replace P by any Dunford-Schwartz operator on L, (2, 1) [CLO].

The following lemma, known for 2-Besicovitch sequences, is proved by standard
approximations (using Holder’s inequality).



546 MICHAEL LIN, JAMES OLSEN AND ARKADY TEMPELMAN

LEMMA 16. Letl < p <ooandq = p/(p—1). Ifa € W, is a Hartman
sequence and b is q-Besicovitch, then lim, ;',- 3 ko1 kb exists.

It follows from Lemma 1.6 that < a, b >:= lim,, % ZZ___, agby exists whenaand b
are 2-Besicovitch, and the completeness theorem yields that the equivalence classes
of 2-Besicovitch sequences form a Hilbert space with inner product < a,b >, in
which the sequences {A¥} (JA| = 1) form an (uncountable) orthonormal basis. Thus,
for a 2-Besicovitch sequence a with spectrum {A;} we have ||a||§ =Y i Ic(kj)|2, and
it follows from the Riesz-Fisher theorem that for any sequence {A;} with |A;| = 1 and
{cj} with Zj |c,~]2 < oo there is a 2-Besicovitch sequence a with spectrum {1;} and
c(A;) = c; (see [Bes, p. 110] for functions defined on R).

2. Series representation of the limit

In this section we study the problem of identifying the limit in Theorem 1.2. We
saw that for the flight vectors of a weakly almost periodic operator T the limitin (1.1)
exists and is zero for any a € W;+. Thus, on the dense linear manifold Y generated
by the space X, of flight vectors and the eigenvectors {y: Ty = Ay, |A| = 1} the
value of the limit operator L(a, T) is known: the limit is O for the flight vectors,
and obviously, for any Hartman sequence, L(a, T)(Z;f:, yj) = Z:f:] c(xj)y; when
Tyj = AjYj with Ile =1. N

For T power-bounded in X with AT mean ergodic, |A| = 1, the limit E(A, T)x =
lim, 13°%_, Ak T*x is the projection onto the eigenspace X, = {y: Ty = Ay}, along
(A — T)X. When T is understood, we write E(A) for E(A, T). It is immediate that
if AT is mean ergodic for every |A| = 1 (we call T totally mean ergodic), then for
A1 # Ay we have E(A)E(A;) = 0. For such a T, for any x € X the set of A of unit
modulus with E(A)x # 0 is countable (since in the separable T-invariant subspace
generated by {T"x}, the restriction of T has at most countably many eigenvalues

[Ja]).

THEOREM 2.1. Let a = {ax} be a Hartman sequence which is in Wy. Then (1.1)
holds for any contraction T in a Hilbert space H, and we have

L@, T)x = Z c(WER)x @.n

1Al=1

(with countably many non-zero terms, and strong unconditional convergence of the
series).

Proof. For any contraction T in H, the E(A, T) are orthogonal projections, by
the mean ergodic theorem. Orthogonality of the eigenspaces yields directly that for
fixed x € H only countably many E(A)x are non-zero. Since |c(A)| < |lallw, for
|A| = 1, the orthogonal series on the right hand side of (2.1) converges in norm.
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We first prove the theorem for U unitary. By the spectral theorem, forevery x € H
we have a (vector) measure o, on the unit circle such that

l n
;ZakU"x=/ —Zakk do,(A).
k=1

Rlr=1y g

Since sup, | Zk lak)» | < sup, Zk_, lax| < oo, the strong convergence follows
from Lebesgue s bounded convergence theorem, with L(a, U)x = f[ MA=1) c(V)doy.
But c(A) = 0 except for countably many values A;, so

L@ Ux =Y cpoe((hh =D cONER)x.
Jj Jj

Now let T be a contraction in H. By the dilation theorem, there exist a Hilbert

space H; containing H and a unitary operator U in Hj, such that T+ = PU* for every

k, where P is the orthogonal projection from H; onto H. Hence - Zk lakT x =

P(n Y i_jaxUkx) converges in norm for every x € H, by continuity of P, and (since
clearly E(A, T) = P E(A, U)) we obtain

L@ T)x=PL@Ux=)Y cO)PER;,Ux =) cO)ER;, T)x.
j j

Remarks. 1. For 2-Besicovitch sequences, the theorem was proved in [T-1] for T
unitary (in the context of unitary representations of LCA groups). It was extended to
contractions in a Hilbert space in [O] (still for 2-Besicovitch sequences), but without
mentioning that P E(A, U) = E(A, T).

2. Even for a contraction in a Hilbert space, the method of [CLO] yields (1.1) and
(2.1) only for a Hartman sequence a in W;+. In the more general case of a € Wy, itis
not clear how to use that method to prove convergence to 0 on the space Hy of flight
vectors.

3. The special case of the theorem obtained in [T-1] was applied in [T-2] to the
consistency of least square estimators in linear regression models with 2-Besicovitch
regressors. Applications of Theorem 2.1 (and of Theorem 2.7 below) to more general
regressors will appear elsewhere.

For a Hartman sequence a in Wi+ and T weakly almost periodic in X, we saw
that the limit L(a, T)x equals the right-hand side of (2.1) for x in the dense linear
manifold ¥ generated by Xo and {y: Ty = Ay, |A| = 1}. Thus, by continuity of the
limit operator (which is defined on all the space by Theorem 1.2), the problem of the
identification of the limit is reduced to proving the convergence of the right hand-side
of (2.1) for every x € X.

THEOREM 2.2. Leta = {ay} be a 2-Besicovitch sequence with spectrum {X;}. Let
T be a totally mean ergodic power-bounded operator in a Banach space X. Then
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;’i, c(})E(X;) converges in operator norm, and for every x € X,

ZakT"x - Zc(x )E(Rj)x

j=1

lim

n-—00

Proof. Smce {ax}is 2-Besicovitch, "2 |c(2j)|? < oo. Definea™ = {a{™ )5,
bya” = 1_, ¢(Aj)A}. Then

o0
2 N)y2 2
la—a™3, <lla—a™i, = Y eGP no00.
j=N+l

Since T is totally mean ergodic, for every x € X we have

l n
L@™, T)x = lim - Y a\VT*x
nmoon k=1

= n]_i_)noloic(kj)( ZA"T" ) Zc(x YE()x .
Jj=1

Jj=1
Proposition 1.1 now yields both assertions of the theorem.

Remarks. 1. Any weakly almost periodic operator is power-bounded and totally
mean ergodic. The identification of the limit for T WAP follows from (the ideas of)
[LO].

2. By Proposition 1.1 (see also [CLOY)), the convergence of 1 % _, a,T*x holds
even for a 1-Besicovitch sequence a. The difficulty in obtaining the identification
of the limit for every x is in proving that lim,_, [|a — a™||y, = 0 for the {a'V}
defined in the previous proof. Itis an interesting open problem at the moment whether
we have this latter convergence even for p-Besicovitch sequences, 1 < p < 2.

3. Any contraction T in L; with mean ergodic (ME) modulys is totally ME, by
[CL], since the modulus of AT is that of T.

Example. A totally mean ergodic Markov operator on C(K) which is not WAP.

The example was provided by I. Kornfeld. Let 6 be a uniquely ergodic minimal
homeomorphism of a compact metric space K, with invariant probability u, such that
6 is weakly mixing in L,(x) (such homeomorphisms exist—by Jewett’s theorem, ev-
ery weakly mixing probability preserving invertible transformation has a topological
model with such a ). Define P on C(K) by Pf = f o#6. Since 6 is uniquely
ergodic, P is ME. Since 6 is weakly mixing, mean ergodicity of A P, for every A # 1
with |A| = 1, follows from [As-2]; see [R] (and also [W1]). Thus, P is totally mean
ergodic. P is irreducible, by minimality of 6. If P were weakly almost periodic,
it would be almost periodic [Kr, p. 182], and by weak mixing we would then have
IP" flloo — Oforany f € C(K) with [ f du = 0, contradicting the invertibility of
P. Hence P is not WAP.
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THEOREM 2.3. Let {c;} be a sequence of complex numbers with }:;’f’__, Icj |2 < oo,
and let T be a totally mean ergodic power-bounded operator in a Banach space X.
Then for any sequence (of unimodular eigenvalues) {A;}, the series E;'i_, ¢ E (Xj )x
converges strongly for every x € X.

Proof. Fix the operator T and the sequence {A;}. Since Z;"’:l Icj |> < oo by as-
sumption, by the Riesz-Fisher theorem (see §1) there exists a 2-Besicovitch sequence
b with spectrum {A;} and Fourier function c(1), such that c(};) = c; for every j. By
the previous theorem we have the required convergence.

Remarks. 1. The stronger condition ) | |c;| < oo yields the theorem trivially.
2. For a contraction 7 in a Hilbert space, the orthogonality of {E(A;)} yields the
convergence of Y_: ¢; E();)x for any bounded sequence {c;}.

THEOREM 2.4. Leta = {a;} € W+ be a Hartman sequence. Ifz,ve(,(,l)lc()»j)l2 <
00, then for any weakly almost periodic operator T in a Banach space X and x € X,
we have

L@, T)x = Z c(ER)x
Aj€a(a)

(with countably many non-zero terms, and unconditional strong convergence of the
series).

Proof. 'The series converges to L(a, T)x for x in a dense subspace. The spectrum
of a is countable, and let {A;} be an enumeration. Since Z“;, Ic()»j)l2 < oo by
assumption, the previous theorem yields that the series converges for every x, which
is equivalent to the claimed equality.

Remarks. 1. The condition }’_’;, lc(Aj)1? < oo does not imply boundedness of
{ax}. For example, let ay = 1 if k # 2", ap» = n + 1. Then the spectrum consists
only of A = 1.

2. Sequences a obtained from ergodic probability preserving transformations as in
Proposition 1.5, with ¢ € L, satisfy the hypotheses of Theorem 2.4. A more general
case is treated in Theorem 3.15 in the next section.

If T is an operator in an L, space, we can ask also for a.e. convergence on the
right-hand side of (2.1). This question seems to be independent of the question of a.e.
convergence in (1.1) (treated in the next section; see [CLO], where earlier references
are given).

THEOREM 2.5. Let T be a contraction of Ly(2, u). If ;'i, ch|2 < 00, then for
every sequence {A;} of unimodular complex numbers and for every f € L, the series

Zj?'_i_, ¢; E(Aj) f is absolutely convergent a.e., and also converges unconditionally in
Ly-norm.
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Proof. By the definitions, JT(E(A, )f) = E(A)f. Hence the sequence {E(A))f}
is orthogonal in L;. Each E(A;) is an orthogonal projection, and {E (A )L,} are
orthogonal subspaces. Hence for every n,

2 n
IFI? = =Y IEG)fI%,
Jj=1

so [37_ IEQ)f 1> du < || f||*. Hence by Lebesgue’s theorem Y22 | E (A)f [*(w)} <
oo a.e. By the Cauchy Schwarz inequality,

n 2 n n
[ZIC,E@ f(w)l] < (Z |c,-|2) (ZlE(X,->f<w>|2).
i=1 i=1 j=1

Hence the series is a.e. absolutely convergent, since Z = |c, |* < 0o by assumption.
Since lim; ¢; = 0, 372, lc; EGH) FI? < I £11? max; l¢;|?, and the orthogonality
yields the unconditional norm convergence of 3 .-, ¢; E (k )f.

A function f € L, is called an L,-flight vector (1 < p < oo) for a Dunford-
Schwartz operator T in a probability space, if there is a subsequence such that 7% f
converges to zero weakly in L. The last part of the following proposition is probably
known (its first part is standard), but we have no reference for it.

PROPOSITION 2.6. Let T be a Dunford-Schwartz operator in a probability space.
Then T is weakly almost periodic in Ly, every L,-flight vector f is a flight vector in
Ly, and the set of L-flight vectors is dense in the set of L\-flight vectors.

Proof. For any contraction in a Banach space, standard approximation arguments
show that the set of vectors with weakly sequentially compact orbits is closed. For
f € L, the sequence {T" f} is weakly sequentially compact in L,, hence, since
Lo C Ly C Ly, itis also weakly sequentially compact in L. Hence T is weakly
almost periodic.

The Jacobs-Deleeuw-Glicksberg decomposition of T in L, yields a bounded pro-
jection Ej on the space of L;-flight vectors. The same decomposition in L, (and its
uniqueness) yields thatif f € L,,then Eqf € L,. Now let f € L, be a flight vector,
and let f; € L, converge to f in L;. Then f = Eyf = lim; Ey f;.

THEOREM 2.7. Let a = {a;} be a Hartman sequence which is in Wy. Then for
every Dunford-Schwartz operator Tina probabzhty space and every f € L,, 1 <
p<oo, L@T)f := lim,_, o & Zk axT* f exists in L p-horm for every f € L,
and L(a, T)f = O for every L| ﬂlght vector f. For f € L, we have (with L,
unconditional convergence of the series)

L@ T)f= Y cODER)S 2.2)

Aj€a(a)
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Furthermore, if the Fourier function of a satisfies ZM co@) Ic()&j)l2 < 00, then
(2.2) holds for every f € L, with L,-norm unconditional convergence of the series,
and for f € L,, the series converges also a.e.

Proof. T isacontraction of L, soby Theorem 2.1 lim,,_, % > et Gk Tk f exists
in L, norm for every f € L,. This implies convergence in L,-norm, for 1 < p <2
and f € L,. Since the sequence of operators {% Y i—1 akT*} is bounded in norm, we
have the L, convergence for every f € L, when1 < p < 2.

Nowlet p =2+ «. Fix f € Loo,andputg = L(a,T) f. Then g € L, and
1 ? I & ?
g——> aT'f| = / g— =) aT'f
= m
1 & 2
= f g— - aT'f
naio
g——ZakT"

> n—o00 0.

du

du

l n o
g~ Zakaf
[llglloo+sup Daklufuoo]

IA

Hence we have convergence in L, norm for bounded functions, and therefore, as
before, for every f € L,.

The limit operator L := L(a, T) on L, is bounded, and Lf = 0 for any L,-flight
vector f. Since the L,-flight vectors are dense in the L,-flight vectors, Lf = 0O for
every flight vector f € L,. Since T is a contraction in L,, (2.2) holds for f € L, by
Theorem 2.1.

Assume now Z, | |c()~,)|2 < o00. For 1 < p < o0, the right hand side of (2.2)
converges in L, by Theorem 2.3, and equals L(a, T) on the dense subspace L., 50
(2.2) holds.

Finally, the a.e. convergence of the series, for f € L,, follows from Theorem 2.5.

COROLLARY 2.8. Let T be a Dunford-Schwartz operator in a probability space,
and let a = {ay} be 2-Besicovitch with spectrum {}A;}. Then for every f e L,, the se-
ries ¢ _IC(A,)E(A, )f-converges a.e.(andin Ly)to L(a, T)f = llm,,_,oo DITY i i

Problems. 1. Under the assumptions of the corollary, is the a.e. convergence of
the series in (2.2) valid for f € L, or at least for f € L,, p > 1? (Theorem 2.7
yields L,-norm convergence ).

2. If T is a Dunford-Schwartz contraction in a probability space, for which func-
tions can we obtain a.e. or norm convergence of the series E 1GE (A )f, when

EI y l¢ejIP < oo for some p > 1? Of course, the norm convergence problem is only
for p > 2.
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For a positive Dunford-Schwartz operator t in a probability space (i.e., a Markov
operator with invariant probability 1), E(1, v) f is E,(f | T)—the conditional expec-
tation of f with respect to the o -algebra Z of t-invariant sets [Kr, p. 129]. M. Akcoglu
has noted that for a Dunford-Schwartz operator T in a probability space, the structure
of L-contractions given in [ABr] (see also [Kr, p. 163]), and the fact that T and AT
have the same linear modulus, yield the following representation of the projections
E\,T).

THEOREM 2.9. Let T be a Dunford-Schwartz operator in a probability space
(2, F, n) with linear modulus t, such that t1 = 1, and let T be the o-algebra of
T-invariant sets. Then for every A with |A| = 1 there exist a set A, € 1 and a
complex-valued I-measurable function hy, with |hy| = 14,, such that

EAT)f =hEN, 1) f) =hE. (i f |T) Yfel.

Remark. 1f, in the above theorem, 71 < 1, then both the conservative and dis-
sipative parts of 7 are absorbing. Thus, Theorem 2.9 applies to the restriction of T
to the conservative part of . On its dissipative part D, T has no fixed points, so
IpE(A,T)f =0a.e. forevery f € L,.

THEOREM 2.10. Let T be a totally mean ergodic power-bounded operator on
Li(2,n). If Z =1 lcj| < 0o, then for every sequence {A;} of unimodular complex

numbers and for every f € L), the series Y v j=1Cj E()k ) f is absolutely convergent
ae.,andin L.

Proof. Define M := sup, IIT*). Clearly |[E(1)|| < M for |A| = 1. For every n
we have

=

f D IGEO) fldu =Y _IGHEG)fIh < MIFIL Y Il
Jj=1 Jj=1

Hence we have the L, absolute convergence, and by Lebesgue’s theorem also the a.e.
absolute convergence.

Remark. 1If T is a contraction of L) (i) with mean ergodic linear modulus, then
it is totally mean ergodic [CL].

3. Pointwise modulated ergodic theorems for Dunford-Schwartz contractions

Pointwise modulated ergodic theoremsin L, (p > 1), for LCA group actions, were
first obtained by Tempelman [T-1], with modulation by (not necessarily bounded) g-
Besicovitch sequences (where ¢ = p/(p — 1) is the dual index). For T induced
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by a measure-preserving transformation, Ryll-Nardzewski [RN] obtained (indepen-
dently of [T-1]) pointwise convergence for L functions, with modulation by bounded
Besicovitch sequences (denoted oco-Besicovitch; these are in fact p-Besicovitch for
every | < p < oo [BeLo},[JO],[LO]). Baxter and Olsen [BO] showed that a bounded
sequence which modulates pointwise all L; functions for any measure preserving
transformation also modulates for all Dunford-Schwartz operators. Most of the sub-
sequent research was for L functions with modulation by bounded sequences (see
[CLO] for aditional references). The celebrated “return times theorem” [BoFKaOr]
shows that the sequences generated by measure preserving transformations (as in
Proposition 1.5) are pointwise modulating sequences.

B. Weiss (oral communication) has noted that there are bounded Hartman se-
quences {ay } for which { nl ZLI a f o 6%} may fail to converge a.e. for some probabil-
ity preserving 6 and f € Lo: Thouvenot and Weiss (unpublished) have constructed a
weakly mixing shift invariant probability on X' := {1, 2, 3, 4}N and a corresponding
generic point a, which is a Hartman sequence by [OrWe, pp. 120-121], with that
property.

PROPOSITION 3.1. Let T be a Dunford-Schwartz operator in a probability space
Q,un). Fixp,1 < p < oo, andletq = —11— If a = {ai} is a sequence in W,
(with Weo = Koo) such that L Zk—lakT f converges a.e. for every f € Loo(u),
then 1 Zk IakT f convergesae forevery f € L,(u).

Proof. We first assume 1 < p < oo, and fix {a;} as in the statement of the the-
orem. For f € L,(2, u), nl et t%(| £17) converges a.e. by the Dunford-Schwartz
theorem, where t is the linear modulus of 7. By Hoélder’s inequality, for a.e. w we

have
1 | R
(;Zwkl") (;er f(w)l”)
1< 1 &
=la?) |- [t"lfl(w)]”)
() (75
l n 5 l n %
(—Z|ak|q) (—Zr"(lfl”)(w)) N R))
n ni

k=1

IA
-

] n
=Y aT"f(w)
n k=1

I\
_ -

IA

with the last inequality by |tf|” < t(|f|?) a.e. [Kr, p. 65, Lemma 7.4]. Hence, for
every f € L, we have

n

axT* f (w)
k=1

< o0 a.e.

1
sup |—
n |n

By assumption, % Y ket Gk T* f (w) converges a.e. for every f € Loo(S2, u), so the
Banach principle now yields a.e. convergence for all f € L,.
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Now let p = 1, so g = oo. Then for a.e. w we have

sup
n

1 & 1 &
=Y aT fw)| < llallosup = > ¥ f1(w) < oo,
n n M

and convergence again follows from the Banach principle.

PROPOSITION 3.2. Let T be a contraction of Loo(u) let bV = {b(N )} be se-
quences in W, such that for every N, lim,_, o, 1 Zk | b( )Tk f exists a.e. for every
fe Loo, and let a = {a;} with limy_, [|b'Y) — a|lw, = 0 Then for every f € Lo,
lim,_, o0 L . Y i1 T* f exists a.e., and the limit operator L(a, T) f is bounded on
Loo.

Proof. Fix f € L. We prove the convergence of % > et Gk T* f by the method
of [JO] (which applies a.e. the inequalities obtained in [T-1] for norms): for a.e. w,

Zakr"f(w) -— Zakr"f(w)

< |- Z(a b")T* f (w)
+|= Zb,ﬁ”’T" flw) - Zb‘”’T"f (w)
k=1
1 m
+|— D (@ =BT fw)
k=1
1 & 1 &
< = la = bl flloo + = D lax = BVl flloo
=y m iz

Zb‘”’r* fw) - ;L- Y BT f(w)].
k=1

Hence {1 Y"%_, axT* f(w)} is a Cauchy sequence, and hence converges, for a.e.
w. Denote this limit by Lf (w). Clearly, || Ll < ||allw,, since we have a.e.

ILf ()| < lim sup — Dauufnoo

n—o00

THEOREM 3.3. Let T be a Dunford-Schwartz contraction in a probability space,
and let a={ay} be a 1-Besicovitch sequence. Then for every f € L,
lim,, oo % D ket Gk T* f exists a.e., and the limit operator Lf is bounded on L.
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Proof. Letb™ = (b{™} be trigonometric polynomials with
lim b™ —ally, =
N-oo

By the Dunford-Schwartz theorem (for each AT), lim,, o0 5 1 k=, (N )Tk [ exists

ae. (and equals Ly f = 37, cO"™)E(R;" ) f, where wm 1 <j < Jy)isthe
spectrum of b"?), The Theorem now follows from the previous proposition.

Remark. Lj;-norm convergence holds for every f € L, [CLO].

COROLLARY 3.4. If in the above theorem, {a;} is 2-Besicovitch with spectrum
{A;}, then

_'>n—>oo 0

Lf =Y cONER)f

j=1

o0

Jorevery f € L.

Proof. For the approximating sequence b") in the proof, take a¥) of Theo-
rem 2.2.

THEOREM 3.5. Fix p, 1 < p < 00, and let ¢ = FL—)'T If {ax} is q-Besicovitch,
then for every Dunford-Schwartz operator T in a probability space (2, ) and every
fe L,,(IL), . _1aT* f converges a.e.

Proof. For p = 00, ¢ = 1 and this is Theorem 3.3. For p < o0, combine
Proposition 3.1 and Theorem 3.3.

Remarks. 1. In fact, we have a weak maximal inequality in L,, (1 < p < 00):
o
" [w sup[ Zr (Ifl”)(w)] > e

> o{}
22 [ an

by the maximal inequalities for the Cesaro averages in L (the constant K (a) depends
only on a = {a;},noton T or f).

2. The theorem is true without requiring u to be finite. The modulus 7 splits the
space into two absorbing sets: on one of which t has an equivalent finite invariant
measure, and Theorem 3.3 applies; on the other v has no absolutely continuous
invariant measure, so on that set ‘ = TX f converges to zero for all f € L,
(1 < p < 00), and our inequalities (3 1) imply the result.

Zakr"f(w)

IA

u lw sup

IA
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3. The theorem was first proved in [T-1], for 1 < p < oo and T induced by a
measure preserving transformation (in the context of group actions of LCA groups),
without using the Banach principle. The proof of [T-1] can be adapted to our situation
(using the inequality [t| f|]” < (] f|?) ), but it does not give the theorem for p = 1.
For p = 1 and T induced by a measure preserving transformation, the theorem is due
to Ryll-Nardzewski [RN] (with a different proof).

THEOREM 3.6. Let (X, m) be a Lebesgue space, and let S be a Dunford-Schwartz
operator on Li(m). Let 1 < p < oo with dual index q. Then for ¢ € L,(m) there
exists a null set Z, such that for € ¢ Z the sequence ay = S*¢(£) is in Wy, and
has the property that for every Dunford-Schwartz operator T on a probability space
(2, ) and every f € L,(u) we have a.e. convergence of % Z;::, a T f.

Proof. For p =1 (W is £), this is Theorem 3.2 of [CLO], which depends on
the return times theorem [BoFKaOr] (and on [BO]). Fix 1 < p < 00,501 < g < 00,
and fix ¢ € L,(m). Let {¢n} be a sequence of bounded measurable functions on X
with |¢n| < |¢| a.e., which converges to ¢ pointwise and in L, (m)-norm. Let S be
the linear modulus of S. For a.e. £ we have (using [Kr, Lemma 1.7.4] again)

I & | QR 1 G-
limsup — ) " |S*¢ (€)1 < limsup — > "[S*|$1©)1F < lim =Y §*(191)(®),
no M3 no IS "R

which is finite a.e. by the pointwise ergodic theorem, so for a.e. § the sequence
{Skp (&)} isin W,.

Let C and D be the conservative and dissipative parts of S, which are both absorbing
[Kr, p. 131]. Since the limitin the ergodic theorem is zero on D and on the conservative
absorbing set Cp on which S has no finite invariant measure, for a.e. & € DUCythe
sequence {S¥¢ (&)} has W, seminorm 0, and (3.1) yields the desired convergence.

Let C; be the maximal support of a finite invariant measure for S‘, and let 0 <
Y € L (m) with {¢ > 0} = C; and S‘x/r = . For the behavior for § € C; we may
assume X' = Cj, since C is also absorbing. We already know that for a.e. £ the
sequence {S*¢ (£)} is in W,. Let E be the conditional expectation with respect to the
invariant o -field of S, in the space L (¥ dm). Using the identification of the limit in
the ergodic theorem, for a.e. £ we obtain

A

1< | R
limsup ~ 3 [8*(€) — S @)1 < limsup ~ 3 (5% (16 — on )N
n k=1 n k=1

)\

1 < -
lim = > §*(1¢ — ¢n 1))
(e
VEEW o — dnl)E).

Since ¥ ! f € Li(ydm) for f € L(m), the bounded convergence theorem for con-
ditional expectations yields limy E(¥~'|¢ — ¢n|7) (&) = 0 a.e. By Theorem 3.2 of
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[CLO]J, for a.e. & the sequence {S*@y (£)}x>1 can be taken as b in Proposition 3.2,
good for all Dunford-Schwartz operators. Since we have only countably many re-
lations, it follows from Proposition 3.2 that for a.e. £, the sequence a; = S*¢ (&)
satisfies the hypothesis of Proposition 3.1 for all Dunford-Schwartz operators. For
p = oo this is the statement of our theorem; for | < p < oo we now use Proposition
3.1 to conclude our theorem.

Remarks. 1. The first part of Theorem 3.6 is a generalization of Proposition 1.5.

2. Applying the theorem to rotations, we see that {S*¢ (&)} is Hartman. When
q = 1, the proof shows that for ¢ € L, the sequence {S¥¢ (&)} is in Wy« (all for a.e
£).

3. The main interestin [CLO] was in obtaining bounded a.e. modulating sequences.
The previous theorem suggests that positive L,{ contractions may yield a.e. modulating
sequences for positive L, contractions (when 0 +ql = 1). We now study this problem.

Definition. A contraction T of L,(2, F, u) of a o-finite measure space, 1 <
p < 00, is called positively dominated if there exists a positive contraction 7 of L e
such that |Tf| < T(Ifl) a.e. forevery f € L.

The proofs of the following well-known lemmas are sketched for completeness.

LEMMA 3.7. Let 1 < p < 0o with dual index ¢ = p/(p — 1), and let T be a
positive contraction of L,(u). If0 < ¢ € L, then o' e L, and T$ = ¢ if and
only if T*(¢P~") = ¢P~".

Proof. The first part is easy. When T¢ = ¢, use the equality in Holder’s in-
equality in

[ orau

/ o Fddu = f ST @ du < 161,17 @71,

IA

ol o7, = f o du

LEMMA 3.8. Letl < p < o0, and let T be a positively dominated contraction
of Ly(2, ). Then Q is decomposed as Q = Qo U Qi, such that each L,(S;) is
T and T invariant, there is 0 < ¢ € L, with T*¢ = Y and (¥ > 0} = Q, and
123 % T¥1£1 1|, — O for every f € Lp(Qo)

Proof. 2, is the maximal support of T -invariant functions, which by the previous
lemma is the maximal support of T*-invariant functions. €2 is the complement of
2. The assertions are now easily checked (using the mean ergodic theorem for the
last one).
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LEMMA 3.9. Let 1 < p < oo with dual index q, and let T be a positively
dominated contraction of L,(2, ). If there is ¥ € L, with y > 0 a.e. and
T*!/I = VY, then the operator T defined on L, by f'(f) = Yy T(fyYI") can
be extended to a Dunford-Schwartz operator on L{(2, v), where dv/du = 9.

Proof. ByLemma3.7, T(y9~") = ¢9~' € L,, sofor f € L, we have

ITfl=¢"NTY O <" TAFIYT™") < 1f oo

T can be extended to a contraction of L;(v) since
/ \7 fldv = f \F £l du < f VT QA dp = f [l Ty de
- [ v .

THEOREM 3.10. Let 1 < p < oo with dual index q, and let a = {a;} € W;

for some q < s < o0o. Assume that for every Dunford-Schwartz operator T in a
probability space we have

1 n
- ZakT"f converges a.e. Vf € L. 3.2)
k=1

Then (3.2) is satisfied by any positive contraction T of L, of an atomless measure

space. If ay > 0 Vk, then (3.2) holds for every positively dominated contraction T of
L, of an atomless measure space.

Proof. LetT be apositively dominated contraction of L,(2, u). By Lemma 3.8,
the problem is reduced to two cases: either (i) T* has an invariant function ¢ € L,
with¢ > 0 a.e., or (ii) T* has no invariant functions at all.

Case (i). T defined in Lemma 3.9 is a Dunford-Schwartz operatorin L (2, v), with
dv/dp = Y9 For f € Ly(u) wehave [ |f'~9|Py¢du = [ |fIPy 9P+ dp =
J1f1Pdp < oo. Hence fy'~7 € L,(v), and since ¢'~9T*(f) = T*(f¢'~9) for
every k, application of (3.2) to T yields (3.2) for T.

Case (ii). We first prove (3.2) for T a positive isometry of L,(u) (with no in-

variant functions). By Lamperti’s Theorem [La], there is a non-singular measurable
transformation 6 on (2, u) such that

du 1/p
Tf(w) = f(6w) [m-e_—,)(ew)] 3.3)

Lett =-5s/(s — 1) (where ¢ < s < oowitha € W), so1 <t < p. Define
Og(w) = g(ew)[zr%q—)(()w)]'/”. Then Q is a positive isometry of L,;,(u). Clearly
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f = 0isin L, if and only if f* € L, and then Q(f") = [Tf]'. Hence Q has

no invariant functions, and the pointwise ergodic theorem for Q [IT] (see also [KTr,
p- 186]) yields

1< 1< 1 &
ST AN < = STHAY < = D 0KAUfI) > 0 ae Vf e L,
ni= nia n

This implies (3.2), since a € Wy, and, by Holder’s inequality, for f € L,(u) we
have,

1/t 1/s
l n n
fs[—}ﬂﬂﬂi X[lEH@q -0,
ni= naa

We now turn to the general case of T having no invariant functions. By the dilation
theorem for positive contractions of L, [AS], there exists a larger space L,(2', u'),
anisometry R of L,(u"), and a positive isometric embedding D of L, (i) into L, (u'),
such that DT* = ER*D for every k > 0, with E a conditional expectation operator.
By what we have proved above and by case (i), we already have (3.2) for every positive
isometry of L,, so we apply it to R to conclude that ;'; 1 akR*Df converges a.e.
for every f € L,(n). Again, lett = s/(s —1),s01 <t < p, and let Q be the
isometry of L,/ (") as defined before (now for R instead of T). Since {a;} € W,

and |[Df|" € L, implies sup, - . Zk | o (IDfI") € L, by [IT] (see [Kr, p. 186]),
we have

l n
=Y aR*Df
ni=

sup
n

IA

1/t
] n
W[qu wkZqu
n k=1
| o 1/t
m[qu mkzmwﬂ € Lpy(u).
n k=1

By the dominated convergence theorem for conditional expectations, T satisfies (3.2).
Since T has no invariant functions, T f = Af for f € L, and |A| = 1 implies f =0
a.e. Hence all functions of L,(u) are flight vectors for T. Applying our assumption
to rotations of the circle, we see that a is a Hartman sequence Smce a € W with
s > 1, Theorem 4.1 of [CLO] (see Theorem 1.2) shows that ||— lakT fllp—0
forevery f € L,. Hence also the a.e. convergence is to 0. This completes the proof
of (3.2) for positive contractions of L.

IA

Now assume that a; > O for every k. For T positively dominated, we have to
prove (3.2) only in case (ii) (i.e., T* has no invariant functions). But in that case, by
the above, we have

L
fl< ;ZakT"lfI - 0 ae.
k=1
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Remarks. 1. The proof of case (ii) shows that if T* has no invariant functions,
then the limit in (3.2), and also in (3.4) below, is 0 a.e.

2. In general, the sequences produced in Theorem 3.6 are only in W,. We do not
know if Theorem 3.10 is true if we assume only thata € W,,.

COROLLARY 3.11. Let 1 < p < oo with dual index q, and let a = {a;} € W; for
everyl <5 < g (e.g.,a € W,). Assume that for every Dunford-Schwartz operator
T in a probability space and every r > p we have

l n
- Zak T*f convergesa.e. Vf € L,. 34
k=1

Then for every r > p, (3.4) is satisfied by any positive contraction T of L,. If
ay > 0 Vk, then (3.4) holds for every positively dominated contraction T of L, .

Proof. Fix r > p. Then its dual index r’ is less than ¢, so there is s with
r' < s < q. We now apply the theorem, with p and q replaced by r and r'.

PROPOSITION 3.12. Let 1 < p < oo with dual index q, and let S be a positively
dominated contraction on L,(X, m) of a Lebesgue space. Then for ¢ € Lg4(m) there
exists a null set Z, such that for & ¢ Z the sequence ay = S*¢(£) is in W; for
every s < q, and has the property that for every Dunford-Schwartz operator T on a
probability space (2, 1) and every f € L,(u) withr > p we have a.e. convergence
of L3 i T f.

Proof. Let X = XU X, be the decomposition obtained by applying Lemma 3.8
to S (interchanging p and g). Then &; are also Lebesgue spaces, and we can deal
separately with two cases .

DX =2X. Let *¢ = ¢ € L, with ¢ > 0 ae. For ¢ € L,, we have
[loy!=PliyPdm = f|¢|"1/f""”"+”dm = [|¢|dm < oo. By Lemma 3.9, Sis
a Dunford- Schwartz operator in L (1//”dm), and our result follows from applying
Theorem 3.6 to S, since ¥ ' =75 (¢) = Sk (¢py!~P) for every k.

(ii)) X = Xp. Let ¢ € L,. Since S has no invariant functions, Akcoglu s theorem
ylelds D Sk|p1(&) —> O a.e. Applying Lemma 2.9 of [BO] to §, for any rational
s € [0, q) we obtain sup,, - Zk ,[S"|¢I(§')]‘ < oo a.e. Welet Z be the null set where
any of the above relations falls Forfixed &€ ¢ Z,leta; = S*¢(£). Clearly {a;} € W,
forevery 1 <s <gq.

Now let T be a Dunford-Schwartz operator in L(u) of a probability space. For
f € Lo(1) we have

n

1
<N flloo~ 3 lail 0.

k=1

1 n
=Y aT f(w)
ni=
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Fixr > p,and let f € L,(u). Take ¢ rational, p <t <r. Thens =¢t/(t — 1) is
also rational, and s < g. Applying Lemma 2.9 of [BO] to T and using the choice of
& ¢ Z, from Holder’s inequality we obtain

1/s

n n 1/t
< sup |:-r1; Z |ak|"i| X Sup |:% Z IT"f(w)I’] < 00 a.e..
n k=1 k=1

n

sup
n

l n
=Y aT f(w)
ni=

The Banach principle yields the a.e. convergence of % > it Gk Tk f for every f €
L,(w).

THEOREM 3.13. Let 1 < p < oo with dual index q, and let S be a positively
dominated contraction on L,(X, m) of a Lebesgue space. Then for ¢ € L,(m) there
exists a null set Z, such that for £ ¢ Z the sequence a, = S*¢(§) is in Wy, and
has the property that for every positively dominated contraction T of L, (2, ) with
r > p and every f € L,(u) we have a.e. convergence of h]' Y et Gk Tkf.

Proof. For S positive, the theorem follows by combining Proposition 3.12 with
Corollary 3.11.

We now look at the general case, with S dominated by the positive contraction Sin
Ly(X,m). Fix¢ € L ¢(X, m), and let Z, be the null set obtained for S such that for
& ¢ Z, the sequence by = Sk|¢(£)| yields the a.e. convergence of 1 . Y ke b T f
for every positively dominated contraction T of L,(u), r > p. Let 2, be the null set
obtained for S by Proposition 3.12, such that for £ ¢ Z,, the sequence a; = S*¢ (£)
satisfies the hypothesis of Corollary 3.11. By the domination, |S¥¢| < Sk|¢| a.e. for
every k, and let Z, be the null set where for some k the inequality does not hold.
Define the null set Z = Z,U Z, U Z,. For & ¢ Z we let by = §"|¢(§)| and

= 5k ().

Now fix T positively dominated in L,(u), with r > p. The proof of case (i) in
Theorem 3.10 yields the a.e. convergence of % S 4_, aT* f when T* has an invariant
function which is > 0 a.e. By Lemma 3.8, it remains to prove the desired convergence
only when 7* has no invariant functions. But in that case we have

Zaka

since the limit in case (ii) of Theorem 3.10 (applied to {b;}) is 0 a.e.

n

T* - T* - T*
Zlak f|<nZ|ak| 1fl < Zbk 11> 0 ae.

k=| k=1

Remarks. 1. In fact, by [BO, Lemma 2.9], the sequence {ax} defined in the
theorem is in W, for every 1 < s < q. We do not know if it is in W,,.

2. For {a;} defined as in the theorem, with S positive, Assani [As-1] proved the
convergence of % > e Gk T* f only for T induced by a measure preserving transfor-
mation and f bounded. His proof is different.
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Problem. s Theorem 3.13 true also for r = p?

COROLLARY 3.14. Let (X, m) be a Lebesgue space, and let S be a Dunford-
Schwartz operatoron L |(m). Let 1 < p < oo withdualindexq. Then for$ € Lq(m)
there exists a null set Xy, such that for & ¢ X, the sequence ay = Sk (&) is in W,,
and has the property that for every positively dominated contraction T of L,(Q2, i)
withr > p and every f € L,(u) we have a.e. convergence of % Y ket aTrf.

Proof. Let {¢n} be as in the proof of Theorem 3.6, and b™ = {S*¢y (&) }i1-
We saw in Theorem 3.6 that a = {a;} is in W,, and that |b™) — a|ly, — 0. The
convergence statement follows from Theorem 3.13.

Alternative Proof (without using Proposition 3.12). Fixr > p, andlet T be a posi-
tively dominated contraction of L, (2, ). For f € L,(u), itfollows from Lemma2.9
of [BO] (with the roles of p and r interchanged) that Ms(w) := sup % h Iy |T* f|P
is finite a.e. By Holder’s inequality,

l n ql 1 n
(i) (o)

By [CLO, Theorems 2.4 and 3.2], nl Y ke bf‘N Tk f(w) converges a.e. Hence
[ | R

=S aT fw) — =) aT* f(w)
=y m =

< =3 @~ BT )
k=1

1

! D (@ = T f(w)
h k=1

1 1 «
COTE W) = = BT f(w)
k=1 mi=

m

1 > =BT
m

=1

(;Zlak—b‘”’ ) Mf(w)+( Z|ak -5 ) My (w)

1S~ gk (V) ik
ank T* f(w) — Zb T* f(w)|,

k=1

+

+

so {1 3%_, aT* f(w)} is a Cauchy sequence, and hence converges, for a.e. w.

Remark. For T Dunford-Schwartz, the convergence follows immediately from
Theorem 3.6, since L, C L, for r > p. We do not know if in general the result is
valid also for r = p.
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In order to use the results of the previous section for the identification of the
limit in Theorem 3.6, we have to find the Fourier function of the sequences {ay}
constructed there. This is done by using the extension of the Wiener-Wintner Theo-
rem to Dunford-Schwartz operators (which follows from Theorem 3.2 of [CLO], or
from Theorem 3.6). The passage from point transformations to Dunford-Schwartz
operators in [CLO] not only shows that these sequences are Hartman but allows a
computation of their Fourier function. We will carry out the details only for S an
ergodic positive Dunford-Schwartz operator with S1 = 1. Since we assume that
(X, m) is a Lebesgue space, we may remove a null set and obtain that S is induced
by a transition probability P, for which m is invariant. Thus, we deal with the case
where S¢(§) = f & (n) P(&, dn) for every bounded measurable function ¢, and the
same formula defines S¢ for every positive m-integrable function ¢, with finite values
a.e. by the P-invariance of m. Since the identification of the limit can be obtained
also from the norm convergence, we use the following general result.

THEOREM 3.15. Let S be a positive Dunford-Schwartz operator on Ly of a
Lebesgue space (X,m), with S1 = 1. For ¢ € Ly(m) let o5 = (A [A] =
1, E(A, S)¢ # 0). Then there exists a null set Z such that for § ¢ Z, the se-
quence a(&) = (S*¢ (€)} is a Hartman sequence in W,, its spectrum is o (a(£)) = oy,
c(h, a(§)) = [E(A, S)P)(&) for A € oy, and for every weakly almost periodic oper-
ator T on a Banach space X we have

L@@, Tx =) EQXHPEOER Tx =Y EX HPEER Dx (3.5

JAl=1 A€0¢

with the series unconditionally convergent in X .

Proof. Itfollows from Theorem 3.6 that for a.e. £, the sequence a(&) is a Hartman
sequence in W5. It follows from the above mentioned Wiener-Wintner Theorem for
Dunford-Schwartz operators that for a.e. £, the Fourier function of a(§) = {S*¢ (&)} is
ch,a€)) =[E@, S)¢l() for A € 04, and c(A, a(§)) = O for the other unimodular
A (only ¢ € L, is needed). Hence o (a(§)) = og4. Since ¢ € L,, the orthogonality
in L, of the functions { E(A, S)¢} yields era(a(e» lc(r, a(€))|? < oo (see the proof
of Theorem 2.5). Now we can apply Theorem 2.4 to obtain the identification of the
limit (3.5), with unconditional strong convergence of the series.

4. Modulated ergodic theorems for mean ergodic contractions

In this section we obtain necessary and sufficient conditions on asequence a = {ay}
for (1.1) to hold for every power-bounded mean ergodic operator T, and identify the
limit.

We shall use the following general weighted ergodic theorem for mean ergodic
power-bounded operators. As before, let E(1, T)x = lim, % Yo Thx.
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THEOREM 4.1. Let (0tn k)n>0,k>0 be a matrix such that for every n the series
Y teo lon k| converges. For T power-bounded in a Banach space X define A,(T)x =
Z:io anxT*x. Then A,(T)x — E(1, T)x for every power-bounded mean ergodic
operator T if and only if (oty k)n>0, k>0 Satisfies the following three conditions:

o0
supz lon i) = K < o0. “.1)
n k=0
o
lim > ey = 1. 4.2)
n—o00 =0
00
nll»ngo [ |atn.0] + kg(; lotn k41 — o%,k'] =0. 4.3)

Proof. The sufficiency of (4.1)—(4.3) is well known (e.g., [Kr, p.251]). (4.2)
ensures that A,(T)y — y for any fixed point y. (4.3) (which is equivalent to the pair
of conditions (W2)+(W3) in [Kr]) yields |A,(T)(I — T)|| — 0, and (4.1) shows that
sup, [|A(T)|| < oo, yielding the convergence on all of the space.

Assume now that A,(T)x — E(1, T)x for every power-bounded mean ergodic
operator T. (4.2) follows by taking T the identity. To prove (4.1), define T on cg by
T({xk}) = {xk+1}, and X)) = (signayo, signan, 1, ..., signe, ;,0,0,...). Then
the first coordinate of Y g otk T*X" is 3] _ lanl. Since x| < 1, and by
the assumption, sup,, |A,(T)|| = K < oo, (4.1) follows from

J 00
E lan il < Zan,k T*x")
k=0 k=0

For (4.3), define S on £; by S(xy, x2, x3,...) = (0, x1, x2,...), put X = (I — §)¢,
and T = S|x. Then T is mean ergodic with E(1, T) = 0. Denote the unit vectors of
£ by {e;}, and letx = (I — S)e; = e| — ez. Since S"ej = ej+«, we have

<K.

(e
anoer + Y _ (@it — tnidesz| = 1A (T)x|| > 0.

k=0

o0
|0l + ) 10t ka1 —ni] =
k=0

Remarks. 1. If in (4.2) the value of the limit is «, not necessarily 1, the theorem
holds with A,,(T) — «E(1, T).
2. The necessity of (4.1)—(4.3) seems to have been unnoticed.

PROPOSITION 4.2. Let (otni)n>0.k>0 be a matrix as above, and assume
lim, oo nx = O for every k. If Ay(T)x converges for every T mean ergodic,
then (4.1) and (4.3) hold, a = lim,, Z:io oy i exists, and for every T mean ergodic
lim, A,(T)x =aE(l, T)x.
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Proof. (4.1) follows from the previous proof. « is obtained by taking T to be the
identity. LetSon£;and T on X = (I — §5)£, be defined as before. By the assumption
that lim, ,, » = O for every k, the coordinates of A, (T)(e; —e;) converge to 0. Since
A, (T)(e; — ey) converges in norm, the limit is 0, so (4.3) holds.

THEOREM 4.3. A sequence a = {ay} satisfies (1.1) for every mean ergodic oper-
ator T in a Banach space X if and only ifais in Wy, a = lim, % Y i1 Gk exists, and
{ax) satisfies

R
lim ; Z: |ak+| - ak| =0. (4.4)
k=1

n—>00

If the conditions hold, then L(a, T)x = « E(1, T)x for every mean ergodic T .

Proof. Define o, 4 = “‘n—ﬂ forn > 0and0 <k <n,and o,y =0fork > n. We
can now apply the previous proposition.

Remark. The conditions on a in the previous theorem are very strong. A sequence
a; = ¢(6*€) with @ a probability preserving ergodic transformation typically does
not satisfy (4.4), as the limit is [ |¢ o 6 — ¢|, which is positive for non-constant ¢.

The convergence statement (1.1) in Theorem 2.1 can be similarly obtained from
the following more general result, which is also proved by using the dilation theorem
and the spectral theorem.

THEOREM 4.4. Let (0ty k)n>0, k>0 be a matrix as in Theorem 4.1, which satisfies
(4.1). Then A, (T)x converges strongly for every contraction T in a Hilbert space H
and every x € H if and only if (otn k)n>0, k>0 Satisfies

o0
c) = lim Y X exists VIA| = 1. @.5)
n—oo %—0
When (4.5) is satisfied, lim A, (T)x = E(1, T)x for every T if and only if c(1) = 1
and c(A) = 0 for every other |A| = 1.
If c(M) #0only for countably many A, thenlim, A, (T)x = Zwm:”c(X)E(A, T)x,
with countably many non-zero terms, and strong convergence of the series.

Remarks. 1. Most of Theorem 4.4, for unitary operators and for o, , > 0 with
Y« ok = 1 forevery n, is proved in [Ro]. The identification of the limit, when c(A)
is zero except for a countable number of points, is given there only in a restricted
particular case. The special case of convergence to E(1, T'), under the assumptions of
[Ro], was proved in [BIE] (in the context of unitary representations of LCA groups).

2. Proposition 33 of [Ro] shows that (for two-sided infinite row matrices), (4.5)
may be satisfied with {A: |A| = 1 and c(A) # 0} uncountable.

3. An example in [BIE] shows that (4.1), and (4.5) with ¢(A) = 0 for A # 1, do
not imply the convergence of A,(T)x for every mean ergodic contraction.
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