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COBOUNDARIES FOR COMMUTING TRANSFORMATIONS

ISAAC KORNFELD

To Alexandra Bellow on the occasion of her retirement from teaching.

ABSTRACT. Let r and tr be two commuting ergodic measure preserving transformations of a probablity
space, and Cob(r ), Cob(r be the sets of their coboundaries. We show that the inclusion Cob(it

_
Cob(r)

holds if and only if tr r for some n Z. The transformations r and tr have exactly the same
coboundaries if and only if tr r+ Some related results and open questions are discussed.

1. Introduction and statements of the main results

Let r be an invertible measure preserving transformation of a probability space
(X,/3, #). A measurable real-valued function f on X is called a (measurable)
coboundary for r with transfer-function g if

f (x) g(x) g(rx) a.e., (1)

and g is measurable. Two measurable functions, fl and f2, are called cohomologous
if their difference fl f2 is a measurable coboundary.

Let Cob(r) denote the set of all measurable cobo0ndaries for r, and for any
p, < p < o, let Cobp(r) be the subset of Cob(r) for which the transfer-functions
are in LP (the subset of LP-coboundaries). If the space X has an additional structure
of a compact metric space, the measure/z is Borel, and r is a homeomorphism
preserving/z, we denote by Cobc(r) the set of all (continuous) coboundaries for r
with continuous transfer-functions. For n 1,2 let sn(f; r) denote the sum

n-I
.t. k/=0 f o

Throughout this note we assume r to be ergodic. In this case the transfer-function
g, for a given coboundary f, is defined uniquely up to a constant. If f L(X)
is a coboundary, then f f 0, even though the transfer-function g may be non-
integrable [A].

It is well known, in the frameworks of measurable, topological and smooth dy-
namics, that various stochastic and dynamical properties of a dynamical system are
intimately related to its cohomology. In the purely measure-theoretical setting, it can
be shown that some basic properties of a measure preserving transformation r admit
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simple characterizations in terms of the sets Cob(r), Cobp(r). For example, r is er-
godic ifffor any p, < p < o,thesetCobp(r)isdenseinL |f LP’f f =0};
r is weakly mixing iff the only function f Cob(r) taking only two values (mod 0)
is zero [Ha].

K.Schmidt [Sc] (see also [He]) gave a necessary and sufficient condition for a
real-valued function f to be a coboundary. To formulate this condition, we call a
sequence {on of real-valued functions on X stochastically bounded if for every e > 0
there exists N > 0 such that for each n,

(Ix X" I0(x)l > N}) < e.

The Schmidt criterion states that a measurable function f is a coboundary for r if
and only if the sequence {sn(f r)} is stochastically bounded.

Unfortunately, for a concrete transformation r and concrete f the verification
of stochastical boundedness of {s(f; r)} is often not an easy task; therefore, the
description of the set Cob(r), for a given r, can be very nontrivial.

In this note we will be concerned with the question: to what extent the sets Cob(r),
Cobp (r), Cobc (r) determine r itself. In particular, if two ergodic transformations
act on the same space, we want to know when they can have the same coboundaries.
We restrict ourselves to the case of two commuting transformations; in this case a
complete answer will be provided.

It is worth mentioning that the problem of "recovering" various properties of
a dynamical system from a cohomological information was one of the themes of
several recent papers devoted to the connections between C*-algebras and topological
dynamics (see [HPS], [GPS], [GW] and references therein). The approach in these
papers is different from ours in many asPects" their setting is topological and they
study Cantor dynamical systems; the cohomological information is represented by
the dimension group of a transformation rather than the set of its coboundaries.

Returning to our question, note that if tr r-, then Cob(r) Cob(or), and
Cobp(r) Cobp(tr). Indeed, every function f. that can be written in the form
f g g o r, can also be written as f g g o or, with g -g o r.
We will show that the converse is also true if the space X on which r and tr act

is non-atomic. Non-atomicity is certainly needed for this fact, since for X consisting
of finitely many points, ergodic transformations are cyclic permutations, and their
coboundaries are all functions with zero mean.

THEOREM 1. Suppose r and tr are two commuting invertible ergodic measure
preserving transformations ofa non-atomic probability space X. They have the same
coboundaries ifand only iftr r+

If cr rn, n > O, and f Cob(or) (or f e Cobp (o’)) with f g g o tr, then
it is easy to check that f gl g o r, with g sn(g; r). Hence, f Cob(r) (or
f e Cobp(r)). It turns out that the converse to this statement is also true under the
same assumptions on r, tr and X.
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THEOREM 2. IfCob(tr) _c Cob(r), then tr zn for some n g. IfCobp(t7) C_
Cobp(z’) for some p, <_ p <_ o, then tr rn for some n g.

The next theorem is a continuous analog of Theorem 2.

THEOREM 3. Suppose (X, It) has a structure ofcompact metric space, the mea-
sure It is Borel and non-atomic, and r, tr are commuting minimal (i.e., all or-
bits are dense) homeomorphisms of X for which It is invariant and ergodic. If
Cobc (tr)

___
Cobc (r), then tr rn for some n Z.

Theorem is an immediate consequence ofTheorem 2, and the proofofTheorem 3
differs from the proof of Theorem 2 unessentially. Therefore, we prove Theorem 2
only, and later indicate the modifications necessary for Theorem 3.

2. Proofs

The proofofTheorem 2 is based on a slight modification of the Z2-Rokhlin lemma.
It can be called the "non-free" Rokhlin lemma, since the usual ZE-Rokhlin lemma
[C], [KaW] is formulated for free actions (the assumption of freeness is too restrictive
for Theorem 2).

Recall thataZE-action generated by r andtr isfreeifit({x X: tmo’nx X}) 0
whenever (m, n) # (0, 0).

One can easily verify (using the ergodicity of at least one of the transformations
r, tr) that if the Z2-action generated by r and tr is not free, then there exists a pair of
numbers (p, q), p 6 Z {0}, q 6 Z+, with the following properties:

(a) tyPo"q Id a.e.;
(b) if It(Am,n) > 0, where Am,n {x X’. tymo’nx x}, then (m, n) is an integer

multiple of (p, q).

Since it is clear that the numbers p, q are defined uniquely by the properties (a),
(b), we will say in this casethat the pair (r, or) is oftype (p, q).

The following statement is a weak form of the non-free Z2-Rokhlin Lemma.

LEMMA 1. Suppose that the pair (r, tr) is of type (p, q). Let M c_ X be of
positive measure. Then for every pair Nl, N2 of positive integers there is a set
A c M such that:

N!(i) It(Uk=oUr/orktrtA) > 1/4It(M).
(ii) If 0 < k, k’ <_ NI, and 0 <_ l, l’ < N2, then rktrl A f3 z’trrA unless

(k’, /’) (k, l)mod(p, q); if (k’, l’) (k, l)mod(p, q), then (obviously)
l’rtrIA r’tr A.
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Remark. Arguing as in [C], Theorem 3.1, one can obtain from Lemma a com-
plete non-free analog of the Z2-Rokhlin lemma, with M X and a condition

(u Ur o ’ )(i’) # k=0 tr A > e, e > 0 arbitrary,

replacing the condition (i) of Lemma 1. We do not give the details since this stronger
form will not be used in the paper.

proofofLemma 1. Both this’ lemma and its proof are "non-free modifications"
of Lemma 3.1 in Conze [C]. For completeness we provide a sketch of the argument.

First note the following general fact. Suppose a group G acts on X by measure
preserving transformations {rg}, g e G, and .T" {gl, g2 gn] is a finite subset
of G. Then every set M

_
X of positive measure contains a subset A

_
M, also of

positive measure, with the property that whenever a pair (i, j) satisfies < i, j < n
and g-lgj does not have fixed points mod 0, we have rg, A Iq rg. A 3.
We apply this fact to the set .T" {(m, n) Z2:0 < m < N, 0 < n < N2}, and

take the corresponding set A to be maximal with.respect to inclusions mod 0. Then
we must have

N N2

U U r’cr’A-M(md0)
k=-N I=-N2

(2)

since otherwise one could apply the above mentioned general fact once again, this
time to the set N M uV=-v, UV-v rkcrt A, and get a set C C N of positive
measure having the same properties of disjointness of its images as A. Adding this set
to A, one would get a bigger subset B A U C of M, still having these disjointness
properties, contradicting the maximality of A. The inclusion (2) actually proves (i)
since each of the four quadrants of the rectangle -N < k < N, -N2 < < N2
contains the same number of points which are pairwise non-congruent mod (p, q).

Proofof Theorem 2. Assuming that cr is not a power of r, we are going to con-
struct a function f L (X) which is a coboundary for tr, but not for r. Although we
will not be using the above mentioned Schmidt’s criterion explicitly, the idea is very
close to it in spirit: we construct a function f with "bounded behavior" of sn (f;
and "unbounded behavior" of sn (f; r). It turns out that we can use L-boundedness
instead of stochastic boundedness in our construction, and this allows us to keep the
argument completely elementary. More precisely, a function f L(X) will be
constructed to satisfy the following properties:

(a) there exists a constant C such that

IIs,(f; r)ll _< c, n 1,2 (3)
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(b) for every r there exist mr and a measurable set Dr, ll.(Dr) >_ , such that

ISmr (f; r)(X)l > r (4)

for all x . Dr.
It is easy to check that if f satisfies (3), then

f(x) g(x) g(trx) a.e.,

with g(x) SUPn_> Sn(f; or). Since g e L, this shows that f Cobo(tr).
On the other hand, property (4) guarantees that f Cob(r). Indeed, if f were a

measurable coboundary for r with a transfer-function g, then (1) would imply that
s,(f; r) g g o rn, and for any K with #({x" Ig(x)l > K}) < 6, one would
have

#({x: Isn(f; r)(x)l > 2K}) <
8

for any n, contradicting (4).
Therefore, both statements of Theorem 2 follow from (3) and (4).
The function f will be constructed as the sum of an infinite series f

in which every term fr is associated with a certain Rokhlin tower ’Tr for the Z2-action
generated by r and

Two cases should be considered separately, depending on whether this action is
free or not. We will discuss the "non-free" case only since the other case is simpler
and can be treated with the usual Rokhlin lemma, instead of its "non-free version".
Hence we assume that the pair (r, tr) is of type (p, q) for some fixed pair (p, q).
Note that we can also assume that p > 0, since otherwise we can replace r by r -l,
and that q > 1, since if q 1, then tr r -p, and we are done. In what follows we
will consider the case when q is even; some minor modifications necessary for the
case when q is odd, q > 3, will be given at the end of the proof.

In order to construct the functions fr’s, we will need to define two sequences: a
sequence of natural numbers {nr} o characterizing the sizes of the towers "Tr’s,
and a sequence of real numbers {at} $ 0 determining what values the functions fr’S
take. We will assume that

nr ( ot.)<’; r=,,2 (5,

and

It is easy to see that {nr and {tr satisfying (5) and (6) can be constructed induc-
tively. Once these sequences are fixed, for each r we define the tower T by applying
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Figure

533

vtr 2qn,., and getting the set At, theLemma with N NIr) 2pnr, N2 "2
"base" of the tower’Tr. This tower can be visualized as a rectangle of size 2pnr x 2qnr

2 blocks, each of size p x q every block consists ofconsisting of 2nr x 2nr 4n
p .q squares representing sets of the form rktrIA (see Figure 1). The horizontal
direction in Figure corresponds to the transformation tr, while the vertical direction
corresponds to r.

The function fr is defined to be zero outside the tower ’Tr. On the tower T it is
defined to be constant on each square (i.e., on each set rka Ar ). Moreover, this
constant for each square is always chosen to be either +t, or -t, where the choice
of the sign, plus or minus, depends on the square. Once we describe this choice, the
function fr will be defined completely. This choice is illustrated in Figure and is
explained below.

First, we observe that by Lemma it suffices to define fr on all blocks lying in the
bottommost row of blocks or in the leftmost column of blocks (this L-shaped area
is shaded on Figure 1). Note also that by Lemma all blocks in this area represent
disjoint sets, and the sets represented by different squares in any given block in this
area are also disjoint. For every other block in Tr there is a block in the L-shaped
shaded area representing the same set.

Consider the leftmost column of blocks in ’Tr (the vertical part of the L-shaped
area). It consists of 2n blocks half of which are below the thick line, and the other
half are above it. For each of the nr blocks in the lower half (below the thick line) we
choose the following pattern of pluses and minuses: in every row of squares in the
block the plus and minus signs are assigned in an alternative way, starting with the
plus on the left. For each of the nr blocks in the leftmost column which are above
the thick line we also assign alternating pluses and minuses in each row, but we start
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with the minus on the left. Note that, since q is even, every row has the same number
of pluses and minuses.

After fr is defined on the leftmost column of blocks, we define it on the second
from the left block in the bottommost row by copying the pattern ofpluses and minuses
from the topmost block in the leftmost column. On the other blocks in the second
from the left column fr is actually already defined because of (p, q)-periodicity.
This allows one to define fr on the third from the left block in the bottommost row
by copying the pattern from the topmost block in the second from the left column of
blocks, and so on. This completes the definition of fr.

Our next step is to estimate the sums s,, (fr or) and Sn (fr ’) for fixed r. The sums
s,,(fr; r) will be estimated from above in the uniform norm, while the sums s,,(fr; r)
will be estimated from below "in measure". Roughly speaking, these estimates will
be obtained from the following feature of the pattern of pluses and minuses in Figure
1. In every row of T the plus signs and the minus signs are put alternatively within
each block, while every column of ’Tr contains long string of elements of the same
sign.

The estimate from above is straightforward:

Isn (fr cr)l --< 20r, n 1,2 (7)

To get an estimate from below, let mr [:], and let

Dr ul7) Umr-.,!=0 rk’1Ar.
The set Dr is the set represented by the first mr bottommost blocks of the leftmost
column in Figure 1.

It is easy to check that/z(Dr) > g, and, for any x Dr,

ISmr (fr; ’)(X)I >_ mrOtr. (8)

Property (3) follows immediately from (7):

Is,(f; r)l < y. Is.(f; r)l < 2 =: C.
r=l r=l

To get (4), we first write, for fixed r,

IS,nr (f; r)l >_ S- E Ez,

where

S --ISmr(fr; r)l,

r-I

E, E ISmr (ft; r)l,
t=l
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and

a2 [Smr (fs;
s=r+l

The sum S has already been estimated in (8). The sum E2 can be estimated in a trivial
way:

E2 <__ mr Z Ors.
s=r+

(9)

To estimate El, one should be a little more careful. Fix t, < < r, and consider
the sum

Sm,.(ft; 15)(X) ft(x) "-... + ft(rmr-Ix).
The orbit segment A {x, rx rm"-lx} corresponding to this sum can be split
into subsegments of three different types. The subsegments of the first type are of the
form {y, ry ray}, all of whose points riy, 0 _< < a, are outside the tower ’Tt.
The subsegments of the second type are of the form {z, rz rNl-z} with the first
point z belonging to the bottommost row of "Tt, and the last point rNl-z belonging
to the topmost row of Ttt. In other words, a point in a segment of the second type runs
vertically up through an entire column of the tower "Tt, from the bottom to the top.

Finally, the segments of the third type (there may be at most two of them) corre-
spond to the situation when a point runs vertically up through a part of a column of
the tower T. This can happen only in the very beginning of the orbit segment A (if
x Tt), or in the very end (if rm"-x Tt).

It follows from the construction ofthe function f that the part ofthe sum Star (ft 15

corresponding to any subsegment of the first type is zero, since ft (x) 0 if x it
A part of this sum corresponding to any subsegment of the second type is also zero,
because any column ofTt contains the same number ofpluses and minuses. Therefore,
the only contribution to the sum comes from the two segments of the third type, and
we get

This yields

ISm,. (ft; 15)1 -< 2mtot,.

r-I

E < 2 _, mtott.
t=l

(10)

Combining (8), (9), (10), and taking (5), (6) into account, for every x Dr we get

ISmr(fr; 15)(X)l >_ (mrOtr- 2Z mtot,)- mr Z ors >_ 2r- > r.
t=l s=r+l

This proves (4) and completes the proof in the case when q is even.
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It remains to consider the case q is odd, q > 3. In this case the sequences {nr },
{Ctr }, as well as the patterns of pluses and minuses in the tower ’Tr, are defined in the
same way. The only change should be made in the definition of the functions {fr }.

Fix r > 1. We still set fr 0 outside the tower ’Tr, and the sign of fr is still
determined by the same pattern of pluses and minuses in Figure 1. But we no longer
want the absolute value of fr to be r on the entire tower T.

Fix a block in ’Tr, and fix a row in this block. Since q is odd, either this row both
starts and ends with the plus sign, or it both starts and ends with the minus sign. In
either case we define fr to be (sign fr)" 2 on the leftmost and on the rightmost square
of the row; on all other squares we define fr to be (sign fr) "tr, as before. It is easy
to check that with this definition of fr our proof of the properties (3) and (4) can be re-
peated verbatim, t--1

ProofofTheorem 3. Since, as was earlier mentioned, the proof is essentially the
same as the proof ofTheorem 2, we only indicate the necessary modifications without
repeating the argument.

Note that in our construction of the towers ’Tr’.S we can assume, without loss of
generality, that for each r the set Ar (the base of the tower Tr) is closed. Otherwise,
using the regularity of the Borel measure #, we can slightly shrink Ar to make it
closed. For , > 0 let ,r denote the open ,r-neighborhood of A. If Yr is sufficiently
small, the sets rm trn Ar satisfy the same disjointness,roperties as the sets :m tyn Ar },

N kand we can consider the outer tower T I,.Jk=0 I,.Jt=0 r tr Ar.
NThe function f is defined on "Tr I,.Jk=00 rkat Ar exactly as before. Outside

the outer tower r it is defined to be zero, and we use the Urysohn theorem to extend
fr to the entire space X so that f IIc _< a. Then for f rl f we get (3) and
(4) as before, and (4) implies that f Cob(r). By the Gottschalk-Hedlund theorem
[GoHed], (3) implies that f Cobc(cr).

Therefore, by argument ofthe proofofTheorem 2, ifCobc (tr)

_
Cobc (r), then for

somen we havetrx r"x for/z-a.e, x X. Since the support ofan invariantmeasure
of a minimal homeomorphism must coincide with the entire space X, the equality
cr rn holds everywhere. I-1

3. Concluding remarks and open questions

The assumption of commutativity of r and tr in Theorems 1-3 cannot be dropped.
In the measurable case (Theorems and 2) this is an immediate corollary ofthe follow-
ing result of K. Dajani, whose proof is based on Schmidt’s criterion for coboundaries.

THEOREM [D]. Suppose r and tr are two ergodic measure preserving transfor-
mations of a Lebesgue probability space X, and tr is a generalized power of ,
i.e., trx rmtx)x, x X, where m m(x) is measurable. If m L t(X),then
Cob(tr) __. Cob(r).
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By ergodicity, the transformations r and tr rmtx) can commute only if m(x)
is constant a.e. This gives many examples of non-commuting transformations r, tr

having the same coboundaries (r can be taken arbitrary, and tr of the form r"tx with,
say, bounded and non-constant function rn).

This argument admits a natural topological version for minimal homeomorphisms
of the Cantor set C. Using this version, one can produce examples of non-commuting
minimal homeomorphisms r and tr of the set C preserving the same Borel probability
measure on it and such that Cobc(r) Cobc(tr). Therefore, the condition of
commuting cannot be dropped in Theorem 3 either.

I am grateful to D. Volny for attracting my attention to the paper [D]. Actually,
without using the result of [D], D. Volny and T. de la Rue gave a simple example
showing that Theorem cannot be true without the assumption of commutativity.

Question 1. Suppose r and tr are two ergodic transformations of a probability
space, and Cob(a) c_ Cob(r). Are there any algebraic conditions weaker than
commutativity (amenability, solvability, nilpotency, etc) on the group generated by r
and or, under which one must have cr rn for some n Z?

Another direction for further work is to establish to what extent the sets Cob(r)
can be different for different r’s. To formulate this question more precisely, we first
make the following simple observation.

Suppose that two ergodic transformations, r and tr, commute. Then the set
Cobp(r) f)Cobp(tr) consisting of their joint LP-coboundaries is dense i’n L, for
< p < co. Indeed, any function f LP with f f 0 can be approximated in LP

by a function f which is a coboundary for tr, f g g o tr, with g L. Ap-
proximating g, in turn, by a function g which is a coboundary for r, gl h h o r,
we get a function f2, f2 h h o tr h o r + h o r o tr, which is LP-close to f,
and which is obviously a coboundary for both r and tr (due to commutativity). It
is clear that the same argument can be applied to any finite collection of commuting
transformations.

Question 2. Suppose r and tr are two ergodic, not necessarily commuting, trans-
formations of a probability space, and p is fixed, < p < o. Is it true that the set

Cobp(r) fq Cobp(tr) is dense in L?
If the answer to Question 2 is negative, it would be natural to ask how small the

intersection Cob(r) tq Cob(a) can be.

Question 3. Are there two ergodic transformations of a probability space such
that Cob(r) f3 Cob(a) consists of the zero function only?

It is known that for a single ergodic transformation r of a probability space, the
set Cob(r) tq L’ is dense in the set L with the L-topology ([K], [OSm], see also
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[KoKr]). Let now r and cr be two ergodic transformations of the same probability
space. The answer to the following question seems to be unknown even if r and tr

commute.

Question 4. Is it true that Cob(r) f3 Cob(a) fq L is dense in the set L with
the L-topology?

Finally, let us consider a"more invariant" situation when r and r are not necessarily
defined on the same space.

Using the theorem of H. Dye on orbit equivalence, A. M. Stepin [St] showed
that for any two approximately finite countable ergodic measure preserving groups of
automorphisms of non-atomic Lebesgue spaces their cohomology groups are isomor-
phic (as abstract groups). In particular, the cohomology groups of any two invertible
ergodic transformations r and tr, acting on the Lebesgue spaces (X, #) and (Y, v)
respectively, are isomorphic. A natural linear correspondence E: .A4 (X) --+ .M(Y)
between the spaces of measurable functions on X and Y (coming from the orbit
equivalence of r and tr) was defined in [St], under which E(Cob(r)) Cob(a).

The operator/2, however, need not be associated with any measure preserving
isomorphism between the spaces X and Y (and it cannot be of such form if, say, r
is weak mixing, but cr is not). Let us say that the transformations r and cr acting
on (X,/z) and (Y, v) respectively, are CB-equivalent (CB stands for coboundaries)
if there exists a measure preserving isomorphism 0: X Y taking r-coboundaries
onto r-coboundaries, i.e., f 6 Cob(a) if and only if f o 0 6 Cob(r).

It seems interesting to understand the relationship between the notion of CB-
equivalence and other notions of equivalence of measure preserving transformations.
Following [GPS], let us call r and r flip conjugate if tr is isomorphic either to r, or to
r -I (or to both). If r and tr are flip conjugate, then they are obviously CB-equivalent.

Question 5. Suppose r and tr are CB-equivalent. Is it true that they are flip
conjugate? Is it true that they are spectrally isomorphic?

It is known ([Ha], proof of Theorem 2) that the eigenvalues of a transformation
can be expressed in terms of the set of its coboundaries (taking two values mod
0). This means that for the transformations with pure point spectrum the answer to
Question 5 is positive. Moreover, in this case, if the space X is Lebesgue, the von
Neumann pure point spectrum theorem implies that r and cr are isomorphic. This
observation concerning the pure point spectrum was also made by I. Assani (personal
communication).
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