
ILLINOIS JOURNAL OF MATHEMATICS
Volume44, Number 1, 2000

SPIN(4) ACTIONS ON 8-DIMENSIONAL MANIFOLDS (I)

PHILIPPE MAZAUD

ABSTRACT. We study smooth Spin(4) actions on closed, orientable 8-dimensional manifolds, where
Spin(4) is isomorphic to the group SU(2)xSU(2). We examine the isotropy structures that can arise, and
give an equivariant classification in the case where the set of exceptional orbits, stabilized by finite-cyclic
goups, is empty.

O. Introduction

The object ofthis paper is to begin the study ofsmooth, effective Spin(4) actions on
closed, orientable, 8-dimensional manifolds. Spin(4) is defined to be the (universal)
double-cover of SO(4), and is isomorphic, as a Lie group, to S3 x S3, where S3

denotes the unit-quaternions.
One way topologists have constructed large, interesting families of manifolds is by

considering spaces that fiber over a surface, allowing for the existence of exceptional
or singular fibers, in some controlled way. The earliest and best known instance
of this approach is perhaps Seifert’s work on three-dimensional spaces fibered by
circles [Sei]. Recently, Richard Scott [Sco] has shown that any closed, 3-connected,
8-dimensional manifold, with Ha --- Z or Z x Z, smooth except possibly at a.finite
number of points, can be realized as (S3 x S3 x P)/., where P is an r-gon, and

prescribes how the fibers over the boundary of P are to be collapsed (a complete
set of algebraic invariants for 3-connected 8-manifolds manifolds was known from
C.T.C. Wall’s classification [Wal]).

As it turns-out, "relatively few" of our Spin(4) manifolds are 3-connected. In
fact, even if one were to restrict to the simply-connected case, r2(M) is generally
non-trivial, and one easily constructs examples where rk(H2 r2) is as large as one
wishes. But asking for the existence of a Spin(4) action certainly imposes symmetry
requirements on manifolds, yielding classes ofspaces that enjoy a nice "stratification":
essentially, they are parametrized by orbit data over a surface. We shall assume
throughout that the principal orbits are free. Our viewpoint is decidedly concrete,
the approach geometric with very explicit constructions, in the spirit of some of Orlik
and Raymond’s work concerning toral actions on 4-manifolds ([OR1] and [OR2]).

Equivariantly, one can distinguish between three general situations (cf. Section 1.2).
(a) The action is principal, so all orbits are free over a closed surface. Any such princi-
pal Spin(4) bundle is trivial, and diffeomorphic to Spin(4) x M2; so that the interesting
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situations are the following two. (b) "Seifert-like manifolds" over closed surfaces.
All orbits 13are 6-dimensional, but a finite number are stabilized by finite-cyclic
subgroups of Spin(4): these non-principal orbits of maximal dimension are called
"exceptional orbits" (and denoted E). The spaces that arise in this manner can be
viewed as bundles with singularities. Finally (c) comprises all the cases where sin-
gular orbits are present, that is, where some points in M have stabilizers of positive
dimension. This is the situation to which we devote much of our attention. The
quotient space M* is a surface with boundary. The singular orbits occur over this
boundary; the interior of M* consists entirely of free orbits, and possibly a finite
number of E orbits.

The main result in this paper is an equivariant classification of Spin(4) actions in
the case E 0. It may be stated as follows.

THEOREM A. Suppose Spin(4) acts on M according to the conditions given
above. Then, up to equivalence, the action is completely characterized by:

(1) The homeomorphism type ofthe orbit space M*.
(2) The isotropy weights.
(3) An element o Z2b, where b is the number of boundary components of M*;

given some fixed ordering of the components of the boundary, to the jth boundary
circle is associated an element in Z2, and this is the jth coordinate ofo.

Put differently, two actions on M0 and M1 are essentially the same, if there is an
isomorphism of the weighted orbit spaces M and M’. That is, a homeomorphism
h that takes any element in M with a given isotropy to one with the same isotropy
in M’; furthermore, assuming equivalent orderings of the boundary components so
that the jth component in M has the same isotropy as the jth in M’, we must have
o(Mo) o(M1).

The invariant o is directly interpreted as an obstruction to the "normalization",
or "uniformization" of a global section to the action (we show a section always
exists). An interesting question that arises naturally pertains to whether this invariant
encodes topological information, or whether it is strictly equivariant, i.e., distinguishes
between actions on the same space. We find examples where the former is true:

Spin(4) acts on two topologically distinct manifolds, with homeomorphic orbit spaces,
and the same orbit structure (so the only difference is in the value of o). On the other
hand, we give conditions under which o is purely equivariant. We do not have a
completely general answer to this question however.

The results of this paper are fairly specific. For instance, as far as we know, there
isn’t a precedent for the o invariant in the literature-though one might expect some
uniformization invariant of this kind to arise in other settings involving codimension-
2 actions of non-abelian, compact Lie groups. At the same time, Spin(4)-manifolds
make up an extremely rich class of spaces, and the equivariant data provides a great
deal of information on how these are built up. Thus a further investigation of the
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topology of these spaces is of interest, and a first step in that direction will be taken
in a follow-up paper.

Acknowledgements. This work is a part of my PhD thesis at the University of
Michigan. I am very grateful to my advisor Frank Raymond for his help and encour-
agement.

1. Weighted orbit spaces

As we indicated in the introductory remarks, Spin(4) is the double cover of SO(4)_
$3> SO(3). Spin(4)

_
S3 x S (S3 is the unit three-sphere), thus a compact,

6-dimensional Lie group. In turn S3 is Spin(3) (the double-cover of SO(3)). It is
easy to see that S3

_
SU(2). We almost always write an element in Spin(4) as

g x h (or (g; h)), where g, h S3. We write g as (gl, g2), where gj C, and
Ilgl 2 + IIg2112 1. With this notation, S3 multiplication takes the form

gg’ (gl, g2)(g!l, g) (glgl g2g2, gig2 + g2g).

Of course, it is not abelian; the center of Spin(4) is Z2 x Z2. Spin(4) is a semi-simple
Lie group, as the product of the simple Lie group S3 (the identity component of any
proper normal subgroup in S3 is trivial). The automorphism group of Spin(4) is
(Inn(S3) x Inn(S3)) > Z2 - (SO(3) x SO(3)) > Z2. Inn denotes the group of inner
automorphisms; the Z2 term corresponds to the outer automorphism that permutes
the factors in S3 x S3.

1.1. Closed subgroups. We wish to determine the possible isotropy types, that is,
conjugacy classes of Spin(4) subgroups occuring as stabilizers. These must always
be closed subgroups. There are many distinct conjugacy classes of Spin(4) closed
subgroups, but we shall see that relatively few do in fact arise as isotropy. In the
following subsections, "subgroup" will always be taken to mean "closed subgroup",
unless stated otherwise.

1.1.1. Closed subgroups ofS3. With the exception of the odd-order, finite cyclic
groups, all the proper, non-trivial subgroups of S3 arise as pull-backs of the closed
subgroups of SO(3), which are well known. In other words, they are Z2 extensions of
the SO(3) subgroups that they double-cover (see [Wol], for instance). To summarize,
we have:

(i) S, covering SO(2). We will often refer to the "distinguished" circle subgroup, . {(eiO, 0)l 0 < 0 < 2zr}.
(ii) O*, covering 0(2). It normalizes S in S3. Like O(2), it is topologically the

disjoint union of two circles: O* N(C) t7 LI , where t7 (0, 1)C {(0, eiO) }.
It is generated by C, and Z4 ((0, 1)). Since C N Z4 ((- 1, 0)) Z2, and
C Z4 Z4 C N(C), we can write N (tT) C >z2 Z4. Of course, a generic O*
is conjugate to this. Note that it is not isomorphic to 0(2): any element that is not in
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the component of the identity has order 4 (rather than 2 as in 0(2)). Note also that
N(O*)-- 0".

(iii) Finite groups" cyclic, DI,,, TI*2, O4, I0, the binary dihedral, binary tetra-
hedral, binary octahedral and binary icosahedral subgroups respectively. The only
proper, non-trivial normal subgroup of S is its center Z2 ,4-1.

1.1.2. Closed subgroups of Spin(4). (a) Finite subgroups. We shall not list all
such subgroups, for, as Lemma 1 will show, we need only be concerned with those
that embed as finite subgroups of 0(2).

(b) One-dimensional subgroups. The circle subgroups sit in the maximal toil
T2. We will refer to the group C x C {(e/a, 0) (ei3, 0) 0 < c,/3 < 2zr} as the
"distinguished", or "standard torus" (C as in 1.1.1 (i)). S(m, n) will denote subgroups
conjugate to the circle in C C defined by moe n3 0, (m, n) 1. In particular,
the distinguished S(1, 0) 1 x C (1, 0) (ei, 0) 10 </3 < 2rr (and similarly
for S(0, 1)). S(-4-m, 4.n) is conjugate to S(m, n) (conjugating by (0, 1) in one or
both S3 factors), and the outer automorphism of Spin(4) sends S(m, n) to S(n, m).
We note that S(m’, n’) is not the image of S(m, n) under any automorphism, unless
m, n, m’, n’ are related in one of these ways. We will see (Lemma 2) that no other
1-dimensional group can occur as isotropy. The other subgoups are subgroups of
O* F (F finite), and the 1-dimensional subgroups of O* O*.

(c) Two-dimensional subgroups. We have the tori and their normalizers N(T2),
and the normalizers N(S(m, n)) when m, n 0. The latter are the conjugates of
C CLI : clearly(uptoconjugacy),N(S(m,n)) c_ N(C) N((7) O* O*,
and one checks directly that neither C nor C normalizes S(m, n). Setting
AZ4 ((0, 1) (0, 1)) (a diagonal Z4), we have N(S(m, n)) C C. AZ4
AZ4 (7 x C, and C C f) AZ4 AZ2, hence N(S(m, n)) (7 C x,z2 AZ4.

If m or n 0, we have a factor circle whose normalizer, obviously, is isomorphic
to O* S3. We note that in all cases, N(S(m, n)) has two path-components: this
fact will play a crucial role in later sections (see 2.2).

N(T2) are the conjugates of N(C C)
_

O* O*. We note that these are the
"largest" 2-dimensional subgroups of Spin(4) (with 4 path-components, each one
a topological torus), and their own normalizers. Indeed, suppose H C Spin(4) is
2-dimensional. Let Hj be the image of H in S3 under the standard jtla projection
(j 1, 2) of Spin(4) onto S3. Clearly, H c_ H1 H2, and since there are no
2-dimensional subgroups of S3, H __. O* O*.

(d) Subgoups ofdimension > 3. First, we have either the "factor" S3’s: {1} S3

or S3 {1}, or the "diagonal" S3’s: AS3. The latter have the form {gogg
g g0 fixed, go, g 6 $3}. If go -4,1, AS3 {g g}, and we will often refer to this
subgroup as the "strictly diagonal" S3. Its normalizer is isomorphic to S3 Z2, and
consists ofthe elements {g g}U{g’ -g’}. So in particular, there is no automorphism
of Spin(4) that can can take a factor S (which is normal) to a diagonal one.

Any S3 subgroup must be either a factor or diagonal. To see this explicitly, suppose
is the inclusion of an S3 subgroup into S3 S3. Composing with projection on one



SPIN(4) ACTIONS ON 8-DIMENSIONAL MANIFOLDS (I) 187

factor gets a homomorphism of S3 into S3, whose kernel is either trivial, or S3 itself
(possibilities corresponding to the diagonal or factor cases), or else Z2; but S3/Z2 is
not a subgroup of S3, excluding that case.
We claim, furthermore, that any subgroup H ofdimension > 3 must be isomorphic

to S3 x G (G

_
$3). First, it is clear that there must be a surjective homomorphism

H ----+ S3 For H c_ H1 x H2, where Hj is the image of H in S3 under the projection
to the jth S3 factor, and least one of the Hj must be S3 (there are no 2-dimensional
subgroups of $3). Now consider the sequence (K c_ Spin(4))

{1}-----> K -----> H ---+ S3 {1}.

We need to examine the possibilities for K in dimensions 0, 1, or 2. In decreasing
order we have the following.

Dimension 2. This case must be excluded, since no 2-dimensional subgoup can
be normal in a subgroup of dimension > 2.

Dimension 1. If K is a circle, then it must be S(0, 1) or S(1, 0) (i.e., a factor),
since no S(m, n) with m or n 0 can be normal in a subgoup of dimension > 2.
Similarly O* would have to be a factor. But then H S3 x K.

Dimension 0. Since S3
_
H/K is simply-connected, H must be, as a space, a

product K x S3. We claim that as a group, it must also be a product. First, observe
that the connected component of the identity must be S3, so we have a copy of S3

that is a normal subgroup of H. Thus we consider

{1} S3 H -----> F ----+ {1}

where F
_
HIS3 is some finite group (Zro(H)), not necessarily isomorphic to K (the

finiteness actually is not needed in what follows).
In the diagonal case, since AS3 is normal in H, the only possibility is S3 x Z2 (the

normalizer itself). For a factor S3, say S3 x for definiteness, suppose we have

{1} ---+ S3 x {1} -----> H ----+ F {1}

so F H/(S3 x {1}). Consider H iL S3 x S3, and write lm(ij Hj,(j 1,2).
Then H

_
H1 x H2. Now ker(i2) H1 fq H S3 x {1} <1 H. Thus we have

{1} ----+ H1 H H ---+ H2 ---’-> {1}

so that HE H/s3x{1} F. Thus, F is some subgroup of S3, and H S3 x F, so
that in fact, H S3 x F.

1.2. Admissible weighted orbit spaces. What follows uses some terminology and
fundamental results from the theory of compact transformation groups, concerning
principal isotropy, the slice representation, and equivariant tubular neighborhoods.
Standard references for this are [Bre] (in particular Chap. II, 4, 5, and Chap. VI, 2),
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or [Bor2] (Chap. VIII, 3). We fix some notation: Gx denotes the stabilizer of a point
x M, Sx a slice to the action at x. M* is the orbit space, and generally, for any
K C M or x M, K* and x* shall denote their image under the natural projection
map r" M -- M*. We will often write an element in a cartesien product A x B as
a x b, when it makes a formula clearer or easier to read. By a weighted orbit space,
we mean an orbit space under a Spin(4) action, together with a specification of the
isotropy type for each orbit; this will typically be given as a labeled diagram.
We now proceed to show that many of the Spin(4) subgroups do not actually arise

as stabilizers: we will see shortly that this is forced upon us by the condition that M
be orientable, and by our assumption that the principal isotropy is trivial. Smoothness
and the slice theorem give an O(k) (k dim(Sx)) representation of the Gx action
on Sx. Since the principal orbits are free, the representation must be faithful; so
the subgroup must be embeddable in O(k). Furthermore, it also follows from the
freeness of principal orbits that the slice action is effective.

1.2.1. Stabilizersfor Spin(4) actions.

CLAIM. If Spin(4) acts smoothly on a closed, orientable, 8-manifold with free
principal orbits, the only possible isotropy at singular and exceptional orbits are: (i)
Spin(4), (ii) S3, (iii) S 1, (iv) T2, (v) S x S3, (vi)finite cyclic subgroups.

The lemmas that follow aim at eliminating any other case; our main tool throughout
is the slice representation, which we examine in each dimension (from 0 to 6). Then,
Theorem in Section 1.2.2 will make explicit the orbit structures that do arise.

LEMMA 1. Exceptional orbits are isolated, and Zn-stabilized.

Proof Suppose Gx F, finite, then the orbit through x is 6-dimensional, so the
transverse slice Sx . D2. That is, F must act effectively as an 0(2) subgroup. Now,
those elements in 0(2) not contained in SO(2) all have order 2, and are non-central.
The only order-two elements in Spin(4) are in the center. This leaves either the cyclic
groups, or D4 -- Z2 x Z2. The latter however, as well as Z2 acting by reflection,
would yield a Z2 stabilized edge in M* (two of these in the D4 case): it is seen further
below that this would contradict our orientability assumption (cf. the last part in the
proof of Lemma 4, after Figure 1). So the only remaining possibilities are the cyclic
subgroups, and the lemma follows immediately. [2]

A similar argument establishes:

LEMMA 2. The only one-dimensional isotropy is S.
Proof. For H one-dimensional, the slice at x must be a three-ball; so H must

embed in 0(3). Now, the closed, one-dimensional subgroups of 0(3) are SO(2), 0(2)
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(C SO(3)), and their Z2 extensions. Except for SO(2), these contain an entire circle
of (non-central) order-two elements, r-1

If the isotropy is 2-dimensional, then the orbit is 4-dimensional and so is the slice,
and we have a representation in 0(4).

LEMMA 3. T2 is the only possible 2-dimensional isotropy type.

Proof The slice is a 4-disc, and we consider the linear representation ofthe action
on the S3 boundary. First take O* x O*. Recall this is the (4-component) normalizer
of T2; in fact O* x O*/ T2 Z2 x g2. Also, note that up to isomorphism, we have
two Z2 extensions of T2 (2-component subgroups of O* x O*), namely S x O*
(" (7 x C LI x ), and N(S(m, n)) (" C x (7 LI x C), both sitting in O* x O*.
An effective T2 action on S3 gives a quotient I, with endpoints stabilized by S(m, n)
and S(m’, n’) respectively (cf. 1.1.2 for definitions, and see the proof of Theorem 1,
for further details on T2). Composing

we see that the Z2 x Z2 action on I is at least Z2 ineffective. Therefore, the O* x O*
action on S3 couldn’t possibly be effective if neither S x O* nor N(S(m, n)) can
act freely on the S x S fibers in S3 that sit above the interior points in I. But
this in turn is impossible, since the T: subgroup (_ C x C) acts transitively there.
Next, considering the groups N(S(m, n)) and S x O*, we see that if they could be
made to act effectively on S3, that would require gg to act effectively on I $3/T,
by reflection across an interior point. This would yield a Z2-stabilized edge in the
quotient space (upon coning), forcing the total space to be non-orientable (again, we
refer the reader to the proof of Lemma 4). Since there are no other 2-dimensional
subgroups beside the tori, the lemma follows. []

We have seen that Spin(4) subgroups of dimension > 3 must contain a copy of
S3, and that these have the form S3 x H (H _c S3) (1.1.2.d).

LEMMA 4. S3 x F does not occur as isotropy.

Proof. The slice here is a 5-ball, and S3 x F must act effectively as a subgroup
of SO(5); this can be viewed as coning the action on S4 Bd(BS). By a theorem
of Richardson [Ric 1 ], up to equivalence there is only one (effective) S3 action on S4,
the obvious suspension of S3 operating by (left, say) multiplication. We then have

/F
S4 /,

/S31 /S3l
I $4/(S3 F).
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S x { 1)

- SazZ

Figure la

S3 x {1} AZ2

- SxZ

Figure lb

Consider the bottom row. The only finite group that will act effectively on I is
F Z2. And F must act effectively in order for the total action to be effective.
Indeed, suppose it did not. Then there exists an element e F, such that
does not move anything in I S4/S3: therefore, must be acting non-trivially in
each S3 fiber over I. Thus, we would have an effective S3 x () action induced on
$3; in fact, it would have to be free (otherwise we would not get free principal orbits
upon coning). But the only positive-dimensional Lie groups that act freely on S3 are
known to be subgroups of S3 (see for instance Theorem 8.5 in III of [Bre]).

The only possibility then is F Z2, acting of course by reflecting across a fixed
interior point of I. Now, Z2 might simultaneously act linearly on the S3 fibers by
the antipodal map; alternatively, it might act trivially on those fibers. In fact, these
two Z2 actions are the only ones that comnmte with the S3 action by multiplication.
Indeed, given an involution of S3, (1) wo, for some wo e S3. Then for all
z S3,(z) (z. 1) z(1) zwo. But 1 ((1)) Wo2, implying that
wo =4-1.

If Za acts by the antipodal map of S3, then it is not hard to check that we have the
weighted orbit space shown on figure la. Alternatively, if Z2 does act trivially on the
S3 fibers, then the weighted orbit space is as shown in lb.

In Figure lb, all points correspond to free orbits, except for points along the semi-
circular arc: this arc is partitioned into two subarcs and a vertex, according to the
isotropy. Over the S3 x Z2 vertex, we have a copy of IP (3), and what maps down
to the given quotient is a tubular neighborhood. Its boundary sits over the arc c
(dashed line in figure) joining the 1} x Z2-stabilized edge to the S3 x {1} one (this
is an S4 bundle over 11P(3)) and it is non-orientable. To see this, consider a subarc
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of ct, joining an interior point to the Z2 stabilized end-point. Observe that above
this arc, we have the mapping cylinder of the natural map S3 x S3 -+ S x RP(3),

which is sax Op (4), where Op (4) P(4) {openball}. Now, crossing this
subspace with an interval yields an non-orientable, 8-dimensional submanifold of the
tubular neighborhood. This implies that the neighborhood, and therefore M, cannot
be orientable.

Finally, we a have a diffeomorphism from the space yielding the weighted quotient
in Figure l a to the one yielding Figure lb. It is induced by a diffeomorphism of
the boundary, itself descending from h S3 x S3 x I --+ S3 x S3 x I defined by
(u, v, t) - (vu, v, t) (u, v S3, 6 I). I21

LEMMA 5. S3 x O* cannot occur.

Proof. The slice is 6-dimensional with S5 boundary. Again by a theorem of
Richardson [Ric2], there is only one effective S3 action on the 5-sphere (up to equiva-
lence); view S5 as thejoin S3,S1, using S3 multiplication on the S3 term (equivalently,
as the double suspension E ES3 and multiplying in the obvious way). The weighted
quotient is a 2-disk with a boundary of fixed points. We have

$5/_s D2/_o* I.

The O* action cannot be effective on D2 (O* does not embed in 0(2)), and so
effectiveness will fail unless S3 x O* can be made to act freely on the S3 x S
subspaces of S5 (sitting over the concentric circles of D2): but this is not possible.

1.2.2. Quotients and orbit structure.

THEOREM 1. Suppose Spin(4) acts effectively and smoothly on a closed, ori-
entable 8-manifold M, withfree principal orbits. Then:

(1) M* is an orientable 2-surface, possibly with boundary.
(2) All singular orbits occur on the boundary ofM* (which consists only ofsuch).

Locally, the orbit structure is determined according to the possibilities (a)-(d) de-
scribed below (Figure 2).

(3) The interior ofM* consists entirely offree principal orbits, exceptpossiblyfor
afinite number of isolated exceptional orbits.

Note. In Figure 2(a), $1 $2, with Sj {1} x S3, or S3 {1}, or AS3. In 2(c),
we must have det (mm, ,) 4-1. In Figure 2(d), H equals S(m, n) or an S3.

Remarks. 1. Fixed points, S3 x S and T2-stabilized orbits are isolated (we will be
using the above graphic conventions consistently in the sequel); S3 and Sl-stabilized
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Spin(4) S xS

1) {1} x S

(a) (b)
T2

S(m,n)(m’,n’)

3 X S

S(1,n) x {1}

(c) (d)

Figure 2

orbits form arcs. This determines a partition of each circle boundary-component of
M* into vertices and edges. Of course, a boundary circle can very well not have any
vertices (in which case, it consists entirely of orbits with the same S or S3 isotropy
type).

2. Each one of the weighted quotients pictured in Figures 2(a)-(c) is the image
of a disc bundle over the singular orbit sitting above the vertex. In (a), of course,
the singular orbit is just a point, and the neighborhood an 8-ball; we can directly
see its boundary S7 (above c) as the join S3 S3. In (b), we have S2 above the
vertex, and the tubular neighborhood is the non-trivial, orientable B6 bundle over S2

(recall that such orientable k-disk bundles are in 1-1 correspondance with elements
in zrl (SO(k)) Z2, for k > 2). Above the vertex in (c) sits an S2 x S2 subspace of
M, and we have a D4 bundle over S2 x S2, with structure group T2. For example, if
(rn, n) (0, 1) and (m’, n’) (1, 0), this is exactly a product ofHopfbundles, where
the Hopf bundle is CP(2) with an open 4-ball removed (equivalently, the closed disc
bundle of the canonical complex-line bundle over CP (1)).

Note that some of the above remarks make implicit use of the fact that there is a
local section to the action (this is because there is one to the linear slice representation).
We will be returning to this with greater care in Section 2, where the question of a
global section is taken-up.

3. In Figure (d), it is not too hard to check that if H S3, the pictured quotient
corresponds to S3 x D5 (it is easy to see that Spin(4)/S3 is a 3-sphere). If H
S(m, n), Spin(4)/H S3 x S2. This is immediate if (m, n) (0, 1) or (1, 0), as
is the fact that the tubular neighborhood is diffeomorphic in this case to the product
with S3 of the non-trivial D3 bundle over $2; this D3 bundle is isomorphic to I x
Hopf. The statement regarding the topology of Spin(4)/S(m, n) is not completely
obvious in the general case, and we now supply an argument, as follows.
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Let N Spin(4)/S(m, n) ((m, n) is a relatively prime pair). It follows from the
homotopy sequence of the principal S bundle: $1,- S3x S3 ----+ N that N is a

/S(m,n)

simply connected 5-manifold, and that r2(N) - Z H2(N). Then by Barden’s
classification [Bard], N is diffeomorphic to either S3 x S2 or S3 S2. Showing the
second Whitney class w2(N) to be zero will establish the claim.

Take S(m’, n’) such that (mm, nn,) 1. It acts freely on N with S2 x S2 quotient.

Thus N is a (principal) S bundle: S -> N -P S2 x S2. Then, we have
/S(m’,n’)

w2(N) w2(TS p*(S2 $2))
w2(TS1) "Jr Wl(TS1)Wl(p*(S2 x $2)) q- wz(p*(S2 x $2))
O.

4. If Spin(4) acts smoothly on an 8-manifold, then we must get a weighted orbit
space satisfying the local conditions of theorem 1. On the other hand, given some
2-dimensional complex, we can assign any orbit structure to it; certainly, there must
be a Spin(4) action on some space X that could give rise to it. Indeed, we may take the
cartesian product of the complex with Spin(4), and collapse each fiber to a (left) coset
according to the isotropy: Spin(4) acts on the resulting space (by left multiplication
on the cosets) with the desired orbit structure. If X* is a 2-surface, we speak of an
admissibly weighted orbit space, if the orbit structure satisfies the conditions of the
theorem.

Two observations are in order now. First, if we are given an admissibly weighted
space, then there exists a smooth Spin(4) action giving rise to it. Indeed an action is
a certain map q" Spin(4) x X X, and we can assume that locally, this map is
given (by the differentiable Slice Theorem) as a smooth map

Spin(4) x N’(Ox) -- N’(Ox)

where A/’(Ox) is an equivariant tubular neighborhood of the orbit Ox for any x 6 X,
under the Spin(4) action. This neighborhood is parametrized by Spin(4) x t4 Sx,
where H is the stabilizer of x, and Sx a slice at x on which H acts linearly (slice
representation); Spin(4) acts by (left) multiplication on the first factor.

Second, the (admissibly) weighted orbit space basically describes a stratification
of the total space X, but it is by no means obvious that X is topologically entirely
specifed by it, or that the action is uniquely determined (up to equivalence) by the
weighted quotient. This uniqueness question is in fact the object of Section 2.

ProofofTheorem 1. Part (1) follows from the local picture prescribed by (2),
(3) and the Figure, as well as the orientability condition on M. Part (3) has been
established in Lemma 1.

Ifx is a fixed point, Sx B8, and the action is the coning of a linear action on S7.
The latter is a codimension 1 action. It has a section, and S7 must decompose as the
union of two mapping cylinders of pj" S3 S3 --’+ S3 S3 /Hj (j 1, 2) where
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Hj is a subgroup of Spin(4) ([Bre], IV, Theorem 8.2). It is easy to verify that we
must have Hj Sj (as shown on Figure 2a). Taking S7 S S3, we easily check
that (i) (g h). (u; v; t) (gu; hv; t) or (ii) (guh-1; hv; t), where u, v 6 S3, 6 1
(collapse the first factor at 0, the second at 1, or vice-versa) will yield the
quotients of Figure 2a. Up to equivalence any Spin(4) action must have this form.

If Gx is an S3, or S(m, n), the slice representation is uniquely determined; Sx is a
five or a three-ball, on which Gx acts by coning the linear action on ES3, or on ES
respectively, and we get the weighted quotients in Figure 2(d).

In the torus case (Figure 2(c)), the action on the 4-ball slice viewed as D2 D2,
given by

(eiv x eiX) (Pl, ei x P2, ei) (Pl ei(+mr’-nx) x p2ei(+m’r’-n’x)),
is effective iff det (mm, ,) --1--1, and the local picture is given above.

Finally, consider the linear action of S x S3 on the boundary S5 of the slice
As in Lemma 5, we view S5 as the join S S3 (collapsing S at 0, S3 at 1),
so a typical element may be written as (s; u; t), where s S1, u e S3, I. Let
x g S x S3. By [Ricl], S3 acts by (left) multiplication on the S3 factor, with

D2 quotient, on which S acts in the standard (linear) way. We have

(s; u; t) ) (s; gu; t)
$. .

(ns; um; t) 5 (ns; guam; t).

One checks immediately that at 0, the isotropy is S(m, 1). Note, furthermore,
that if n -7/: 1, we either get Zn principal isotropy, or S if n 0. Clearly, we have
1 x S3 isotropy at 1, and obtain the quotient pictured on figure 2(b).
As this slice representation suggests, there cannot be adjacent S(m, n) and AS3

edges. Notice in particular that these subgroups do not generate S x S3 (whereas
S(1, n) and S3 x 1 do). Indeed, first consider the case of H generated by C 1
and AS3. Simply notice that (g x g). (eig-1 x g-) geig- x {1}. Since every
element in S3 can be obtained as the conjugate of some ei, this means S3 x 1 C
H, and since AS3 C H, it follows that H S3 x S3. More generally, for any
(m, n) (1, 1), again we have H (S(m, n). AS3) S3 x S3 (if (m, n) (1, 1),
S(1, 1) C AS3). By the previous case, it suffices to show that C x {1} C H. Just
multiply einO x eimO

_
S(m, n)by e-imO x e-imO AS3 to get ei(n-m)O {1}" unless

n rn 1, we can obviously hit all elements in C x 1}. Thus, the local orbit
structure for X*, if it did arise from a linear slice representation, would give a vertex
corresponding to afixed point, rather than S2 (with a pair of issuing edges, weighted
by S(m, n) and AS3): so the neighborhood of that fixed point would be a cone over
what sits above an arc joining the edges, and that cannot be a 7-sphere (for instance,
an easy Mayer-Vietoris sequence gives H5 -- Z). In other words: one could certainly
construct a space X with a Spin(4) action yielding this weighted quotient Oust take
D2 x Spin(4) and then collapse over the vertex and the edges by a subgroup in the
appropriate isotropy type), but X could not possibly be a manifold, v1
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2. An equivariant classification

Our primary goal in this section is to establish TheoremA stated in the introduction.
E 0 is assumed in what follows.

Recall that two actions on M are equivalent if there exists an equivariant diffeo-
morphism q of M, so q (g. m) g (R) q (rn), for all g Spin(4), and rn M (where
and Q denote the actions).
Once an admissibly weighted orbit space is given, one might reasonably hope that

it contains all the equivariant information regarding the action, up to equivalence; this
is the case, for instance, in the context of toral actions on 4-manifolds, with singular
isotropy and E 0. The key question is whether one can find a global section to the
action. For Spin(4) actions, we do find such a section, but the discussion centers on
a possible obstruction to "normalizing" it. We’ll obtain the extra invariant o, which
is made necessary, roughly speaking, by the fact that Spin(4) is not abelian.

First note that there is no obstruction to a global section over M, where M0 is
any subset of the union of principal orbits, including cases where M M* M2

a closed surface For such an obstruction would lie in H2(M; 7t’ (Spin(4)) {0}
[Ste]. Generally, one finds no obstruction to extending a section over some K* C M
to one over M, for the same reason. In particular, all principal Spin(4) bundles over
a closed ME are trivial. So we consider henceforth the case where M* is a surface
ME with boundary.

In what follows, we explicitely construct a global section, but the question that
needs to be addressed simultaneously has to do with how much control we have over
the image of that section. Namely whether it can be made to pass through points that
are stabilized by specific subgroups of Spin(4), which could remain fixed for orbits
of the same type, rather than determined only "up to conjugation". If such a section
can be obtained, we call it a normalized section. More precisely"

Definition 1. A normalized section (n-section for short) is a section such that
orbits with S x S3, S x S and S(rn, n) isotropy are mapped to points stabilized
by C x S3, C x C, and S(m, n) C C x C, respectively, and the AS3 orbits to points
stabilized by {g x gig S3 (strict diagonal).

We will see that the obstructions to this normalization lie, essentially, in 7r0(N (H)),
where N(H) is the normalizer of H in Spin(4), H S(rn, n), or AS3. As we’ve
indicated, once a section over an annular neighborhood for each boundary component
of M* is obtained, then there is no difficulty in extending the resulting section, whose
domain is a disjoint union of annuli, to one that is globally defined on M*. So we
need to examine a genetic (half-open, say) annular region 4. The point is this: if
we can construct an n-section, the total space is obtained by taking the cartesian
product .A x Spin(4), and then collapsing each singular orbit over the boundary by
its isotropy in a uniformly specified way. Indeed, for each isotropy type that occurs
on the boundary, we collapse by the corresponding distinguished subgroup H, to
Spin(4)/H. Spin(4) then acts by (left) multiplication on the Spin(4) factor of the
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H
{1}

X’=IxI

Figure 3

resulting quotient. Now, if the obstruction mentioned above does not vanish, this
uniformity fails in the sense that we can no longer assign a fixed subgroup to each
isotropy type. However, it does not fail badly, as the explicit construction will make
apparent. For there still exists a section over .A. Furthermore, we can still fix the
isotropy subgroup over all but one edge of Bd(.A); and even there, we have control
over the conjugates of the distinguished subgroup we collapse with. In other words,
what we will show is that there are at most two distinct actions yielding a given t
and isotropy weights.
We now proceed to establish theorem A, which we restate, in a slightly differ-

ent form, in Section 2.3. The proof is constructive and occupies Sections 2.1, 2.2
and 2.3. The strategy, for a given annular neighborhood, is to get local n-sections
(Section 2.1), and then attempt to fit them together suitably: the possibility of an
obstruction becomes evident (2.2.1), and explicit models exhibit the actions where it
does arise (2.2.2 and 2.2.3).

2.1. Local n-sections near singular orbits.

LEMMA 6. Let X* be any closed rectangular neighborhood ofan S2 S3 orbit
in M* as shown on Figure 3. Then there is an n-section over X*.

Proof. Choose a point x in X stabilized by H S(m, n) C C x C, and mapping
to a point x* e {0} x int(l). The orbit is 5-dimensional so the slice Sx is a transverse
3-ball to that orbit, on which S acts as SO(2). This action has a section, the image
of which is in fact transverse to all the orbits in X that it intersects: thus, it can
be viewed as the image of a section to the Spin(4) action itself. We now have a
section Crx over Sx* which must be extended to X*. We may take ,Sx*

_
X* to be

closed.
Now consider a singular orbit y* e Bd(Sx*) fq {0} x I (see Figure 4). We can find

similarly another section Cry to the slice action about some y such that zr(y) y*, and
y is also stabilized by the standard S(m, n). Next, we need to "fit" the two sections
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Z

X

Figure 4

together over the arc cz* Bd(Sx)* fq ,5, joining y* to p* (clearly, the images of
under ax and Cry will in general not be equal). To do this, we will deform Crx suitably.
We may assume that we have a smooth path c: I ---> Im(crx) over c*; then for each
c(t), there is a unique corresponding point in Im(cry), lying on the same Spin(4) orbit.

The image of cz* under Cry is the path &(t) g(t) or(t) in Cry(S), with g(t)
a unique smooth path in Spin(4) (necessarily, g(0) 1). Pick a point z* lying
between y* and x* on the S(m, n)-edge of Sx*, and form a region R parametrized
by the square (y(s), .(t)), (s, t) e I x I; so z* (y(0), Z(0)), y* (y(0), .(1)),
p* (y(1), .(1)), q* (y(1), .(0)).
We now "match" the images of the n-sections crx, Cry by

ax(y(s), )(t)) -> g(st) ax(y(s), )(t)).

In particular, the arc joining z* to q* (corresponding to the bottom edge 0 of
I x I) is sent to its image under o’; the arc c joining y* to p* (corresponding to the
upper edge 1) is sent to g(s) a(y(s), ;(1)) g(s) c(s) fi(s), that is, its
image under ay.

Note that to ensure smoothness, we can straighten the angle along the (smooth)
arc ax(,(s), .(0)) in Sx, as well as along in St. Finally, it is clear by compactness
that a finite number of such matched slice sections will result in an n-section over a
subset of M* that contains x and x’ and, therefore, contains X*. rl
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Figure 5

LEMMA 7. Let X* be any rectangular neighborhood of an S3 orbit in M*, as
shown on Figure 3. Then there is an n-section over X*.

Proof. As in the previous lemma, we choose a point x stabilized by H S3

(strictly diagonal for AS3 orbits), and mapping to x* in {0} x int(I). The slice
representation gives an effective S3 (- SO(5)) action on Sx B5, which is the
coning of the S3 action on S4 Bd(Sx). By Richardson’ theorem [Ricl], any
effective action of S3 on S4 is conjugate to the suspension of the standard linear
action of S3 on S3. Thus the slice representation is equivalent to a multiplicative
action on B5 Cone(ES3), and there is no difficulty in finding a section. We obtain
an n-section over S;, and we extend it to one over X* proceeding as before.

LEMMA 8. Let X* be any rectangular neighborhood ofan S2 S2 orbit in M*
oftheform given on Figure 5. Then there is an n-section over X*.

Proof Choose x 6 S2 x S2 with stabilizer C x C generated by H1 S(m, n)
and H2 S(m’, n’).. The slice representation gives S x S acting as SO(2) x SO(2)
C SO(4) on Sx B4. From a result in [OR1], there is a section to such an action,
and in turn this is an n-section to the Spin(4) over Sx*. Sx* may not coincide with X*,
but one extends appropriately as previously.

LEMMA 9. Let X* be any rectangular neighborhood ofan S2 orbit in M* (refer
to Figure 5). Then there is an n-section over X*.

Again the slice representation at Sx is the coning of a linear action on S5 , S S3

which has a section. As before, we make an appropriate choice for x in X to get an
n-section and extend over X*.

LEMMA 10. Let X* be any rectangular neighborhood of a fixed point in M*.
Then there is an n-section over X*.
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Proof. By Lemma7 we can ensure that in the cases where one ofthe two incoming
edges is AS3 stabilized, the section sends that edge to strictly diagonal points. That
is, we may assume that we have an n-section over the shaded area in Figure 6: we
extend it by coning over the arc Z*.

2.2. Global sections and the normalization obstruction. Given a boundary com-
ponent C of M* with vertices Vl Vm (ordered, say, counterclockwise), we now
have rn n-sections crj over closed neighborhoods Vj of vj, which cover the (closed)
annular neighborhood .A of C, as shown (Figure 7). We let lj denote the intersection
V[j] ("1 V[j+l](modm).

Ofcourse, these sections may not fit together. In particular, the images x0 aj (x*)
and xl aj+l (x*), (x* Ij f3 Ck) may be distinct points. Generally, x0 . Xl,
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Figure 8

where N(Hxi), the normalizer in Spin(4) of the isotropy subgroup of both
points.

Starting at x* 11 tq Ck, if or1 (x*) xl . x2, x2 crg_(x*)), we translate
the entire image Im(tr2) to . Im(cr2). This evidently defines a new n-section (call it

tr again), which now agrees with trl over 11, possibly after an additional adjustment
of the free orbit points in cr(I1), analogous to that made in the proof of Lemma 6.
We proceed in this fashion, always modifying crj+l if it doesn’t agree with crj, until
we get to the final pair O"m and trl. These need to agree over In, but here we can no
longer repeat the same procedure.

The edge Iv1, Vm] is stabilized either by (i) S3 x 1 }, 1 x S3, or (ii) AS3, or (iii)
S(m, n). We examine these in turn.

2.2.1. The obstruction over an annular neighborhood. Suppose we can set
[1)1, l)m] to have isotropy (i). Letx* In 0 Ck, o’1 (x*) x1 ’" Xm, Xm On(X*),
where 6 N(S3 x {1}) N({1} x S3) Spin(4). Choose a path (t) in Spin(4)
joining 1 (0) and (1). Pick a point y in Im(trm) such that y* Ck be-
tween x* and Vm. Let or(t) parametrize the arc ct on Ck joining y* to x*, ct(0) y*,
c(1) x* (see Figure 8).

Viewing the region R in Vm asa x In {c(t) x Imlt I}, we deform Crm(Ot x In)
to {(t). a,,((t) x Ira)It I}. The resulting modified image of Vm in X is that of an
n-section which agrees with crl over In (possibly after some additional straightening).
We are done in this case.

Thus, given a boundary circle of M*, whenever there is at least one 1 x S or
S3 x 1 }-stabilized edge, we may take this edge to be the mth or last edge in the
ordering; so that the construction above applies to get the n-section. The crucial
feature was that we had a path in the normalizer joining to 1. But in cases (ii) and
(iii), N(H) is disconnected, in fact we have

rro(N(S(m, n)) Z2 zr0(N(AS3))

Therefore, if is not in the component of the identity, we can still get a global section,
but it cannot be normalized: for the image in M of the arc ct on Ck will have to contain
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points that are stabilized by distinct conjugates of the given isotropy group.

2.2.2. AS3-weighted boundaries. We consider the AS3 case: here, the entire
boundary component of M* must be AS3 stabilized (otherwise we are in case (i)).

Suppose p M is such that its stabilizer is strictly diagonal. If/3 Orbit(p)
and/3 # p, then the stabilizer of/3 is strictly diagonal as well iff/3 (g x -g) p,
g S3. Furthermore this/ is unique, indeed Yg, S3,

p (g-l x g-l,).p (g-1 x -g-l)( x -,).p

4== (, x -) p (g x -g) p .
So we may write/3 (1 x -1) p. Now suppose that in attempting to construct a
section cq over the annular neighborhood of Bd(M*), we end up back in Orbit(p)
at/3.

Starting again at/3, we proceed as before to get a second section tr2. Observe that
the union of the images of Bd(M*) under the two sections form a circle that double-
covers Bd(M*). When forming the slice at/3 (after having gone around Bd(M*)
once), we intersect orbits projecting down to points y* in Bd(M*) for which we had
already found an image y under trl; obviously (- crz(y*)) must be distinct from y
if/3 p, in fact (1 x -1). y.
We now give a model for such an action, as well as a model for the normalizable

case. Both models describe the actions over Bd(M*) S1, that is, the S3 x S3 actions
on S3 x S with the single diagonal S3 isotropy type.

(a) n-sectioned action. For (g x h) 6 Spin(4) set

(g x h) (v x s) gvh-1 x s, (v S3, s ( S1).

It is clear the n-section is given by

s-- 1 xs(or -1 xs).

Slightly more generally, one could write the action as:

(g x h) (v x s) (wogwl)vh- x s(where wo S3 is fixed).

-1We see that if v 4-wo, then wogwo vh-1 q-wogh-1 4-wo v iff g h.
(b) Non-n sectioned action. We make wo dependent on s ei, setting

(g x h) (v x ei) ei/2ge-i/2vh-1 x ei.

Note this is well defined: we vary the angular parameter 0 from 0 0 to 2rr,
where we conjugate trivially by ei2rc/2 --1 in the center of S3. We also see that
z]zei0/2 x eiO is strict AS3 stabilized (00 fixed). In particular, starting at 0 0, and
picking 1 x 1 in that orbit, we then move continuously to the neighboring fibers,
passing through ei0/2 eiO as we vary 0, to wind back at eiErc/2 x eiErc -1 x 1.
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Remark. The two actions are not equivalent.

Proof. Suppose ap were a weakly equivariant map of S3 x S1. Then in particular,
letting cr be an n-section,

ap(a(x)) (Ag. a(x)) aut(Ag), ap(a(x)), (.)

where Ag e AS3 is strictly diagonal, and aut is an automorphism of Spin(4). Now
any automorphism will send AS to {gogg x gig, go S3, go fixed}. For the non
n-sectioned action, the points in S3 x S that are stabilized by aut(AS3) form a single
circle C. (.) says that the image under ap of the circle Im (a) is this circle C. But
C must also be the image of (-1 x 1) Im(a) (7 Im(a)), so that ap could not be a
homeomorphism, yl

2.2.3. Boundaries with S(m, n) weights. We now examine the case where all
edges in Bd(M*) are stabilized by subgoups of the form S(mj, nj). First we will
consider the special case where there are no vertices; the general situation will then
proceed with only minor modifications.

Suppose all points in Bd(M*) are S(m, n) orbits. In fact, we’ll first assume that m
or n 0, and consider S(0, 1) for definiteness; we will be using this particular case
in Section 3. Recall that S(0, 1) (J x {1} and conjugates. N(S(0, 1)) is a conjugate
of N(C) x S3, where N(C.) has two components, C {eilO [0, 2zr)} {(ei, 0)}
and (0, 1)C (0, ei) }.

Proceed exactly as in the AS3 case, attempting to construct a section crl over the
annular neighborhood of the boundary component through C stabilized points. Note
that there are two disjoint copies of S3 of such points above each point in Bd(M*).
Starting at some p, we wind back to hit orbit(p) at/3, where/3 (n x g) p, and
n x g N ((J) x S3. If n C, we can alter al so as to get/3 p, and we are done.
This can certainly occur, and it is easy to write out a model for such an action (a
product action on S2 x S3 x S1). We omit the details. But if we had n (0, eia), we
would not be able to modify the section without hitting points that are stabilized by
conjugates of C. However, we could certainly arrange for/3 ((0, 1) x 1) p, and
then, constructing a2 starting at/3, similarly arrange ((0, 1) x 1) y, (for each
e Im(a2) in the same orbit as y e Im(trl)). We would then wind back at

((0, l) x 1)((0, 1) x 1).p (-1 x 1).p p.

Again, Im(cr) t2 Im(a2) above Bd(M*) traces out a circle double covering Bd(M*).
We need to give an explicit model for this action.
We begin with the non-trivial S2 bundle over S (it is non-orientable), viewing it

as (S2 x I)/ ".., where we glue by the antipodal map a: S2 x {0} S2 x {1}.
Expressing S2 as S3/C, the following assignment is well defined and equivalent to a:

[u] uC -> u(O, 1)C [u(0, 1)].



SPIN(4) ACTIONS ON 8-DIMENSIONAL MANIFOLDS (I) 203

S(mk,nk)

S(m2,n2)

Figure 9a

(Note that uC ueiaC, uei (0, 1)C u (0, 1)e-iC u (0, 1)C.) Next, define
an S3 action on the left in the obvious way; it is clear we have an S3 x S3 action on
($2S1) x S3 (using left S3 multiplication on the S2 $3/C factor, and on the S3

factor), which gives an S quotient with S(0, 1) isotropy, and such that the strictly C
stabilized points form a single circle (x S3) double-covering the projection to S
Now view S3 x S as (S3 x [0, 1])/~ where we glue S3 x {0} to S3 x {1} by:

u x 0 -> u(0, 1) x 1. Let Cyl() be the mapping cylinder of

: S3 x S S2 S

(u x t) ([u] x t).

is equivariant with respect to the left S action (by multiplication). Thus, we have
obtained an S3 x S3 action on Cyl() x $3; the weighted orbit space is an annulus
with one boundary circle made up of S(1, 0) points (all other orbits principal), and
the action has a non-normalizable section.
We now indicate briefly how to generalize the preceding discussion. First, if the

entire boundary consists of S(m, n) orbits. The standard S(m, n) {einO X eimO};
recall also that for m, n :/: O, N(S(m, n)) C x C LI (0, 1)C x (0, 1)C. Take
(S3 x S3/S(m, n)) x [0, 1], and then glue in one of two possible ways:

(i) [u x v] x {0} -> [u x v] x {1} (normalizable case)
(ii) [u x v] x {0} -> [u(0, 1) x v(0, 1)] x {1} (non-normalizable case)

The gluing maps are equivariant with respect to the usual left Spin(4) action by
translation, and we easily extend this to a mapping cylinder as before.

Finally, suppose there are several distinct S(m, n) (refer to Figure 9a).
Let to < tl < < tk be k + 1 real numbers. Form the product S3 x S3 x [to, tk].

Next, over,.each interval [tj-1, tj], collapse the S3 x S factor by the appropriate
S(mj, nj), which we may take to be the circle {einiO x eintO} in the distinguished
maximal torus. We collapse on the right, so over the interior points of [tj_l, tj we
have cosets (u x v)S(mj, nj), i.e., classes [u x v] x [ueintO, veintO] x t. Over
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each tj, we have S3 x S3 collapsed to So. x So. S3 x $3/To. S3 x S3/S(mj, nj).
S(mj+l, nj+); we also collapse over the end points to and tk by S(ml, n) and
S(mk, n).

Now, glue the So. x So. fibers above to and t in one of two ways:
(i) by the identity,
(ii) by the map a x a, where a is the "antipodal" map as previously defined, that

is, using multiplication on the right by (0, 1).
Clearly, the linear left Spin(4) action on the complexes makes sense; the gluing

maps are equivariant with respect to the restriction of the action to the fibers above to
and t. The circle quotient has the same isotropy weights as the circle boundary of the
orbit space on Figure 9. We will have our models after forming the mapping cylinders
Cyl() defined in the obvious way. Namely, letting S3 )< S3 X S be obtained by
gluing the fibers over the end-points of S3 x S3 x [to, t] together according to either
(i) or (ii), for each 6 [to, tk], where q It is the natural map u x v -> [u x v].
Spin(4) acts on the left, q is well defined and Spin(4)-equivariant, and the induced
action on Cyl(q) gives the desired weighted annular region. (i) is the model for the
n-sectioned action, and (ii) for the non-n-sectioned one.

2.3. An equivariant theorem. Let M be a smooth Spin(4)-manifold (E 0),
and let e be a specific orientation for the 2-manifold M*. Let g denote its genus.
Order the boundary components from to b (b number of components), writing
them as C, Co., Cb. Let (gj(M) be the orbit structure on Cj; that is (given
the sense determined by ), an admissible sequence {Hjk }1 <k<m of isotropy types,
subject to the equivalence: Hjk H }, iff H:si HJ n:sm HJm-,+ H!st
H_,+ H,_ Hj, for some 1 m}.

Let o(m) (ol(m), 02(m), ob(m)) Z2b, where oj(m) 0 or 1, accord-
ing to whether the action admits an n-section over an annular neighborhood Aj of Cj,
or does not. Note that if a boundary component contains points that are stabilized by
a factor S3, the corresponding coordinate of 0 is necessarily 0.

THEOREM 2. Suppose M and M’ are closed, orientable 8-manifolds on which
Spin(4) acts smoothly, with E 0. Then there is an equivariant orientation-
preserving dOrfeomorphism between M and M’ iff there exists an ordering of the
boundary components ofM* and M’* such that,

(, g, b; o(M)) (’, g’, b", o(M’))
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and

O (M) O (M’), Ob(M)

Proof. Let zr denote the orbit map of M into M*, and Gx denote the stabilizer
subgroup of x (x 6 M or M’). If o vanishes everywhere, we have two smooth,
normalized global sections tr and tr’, and a (smooth) homeomorphism h" M* -----+
M’*, such that

Gror(x)) Gr’(h(r(x)).
If o does not vanish, notice that the identity is still satisfied. Indeed, for each of

the distinguished subgroups H of type S(m, n) or AS3, we can once and for all fix
the conjugates that stabilize points where the section fails to be normalized (which
may happen over a small arc lying in the interior of an edge): this amounts to fixing
a suitable (smooth) path in Spin(4), from the component of N(H) not containing the
identity, to the identity.

Now, identifying M* and M’* with their images under r and or’, we extend h to
H" M ---+ M’ in the obvious way. Namely, set

n(x) g E) h(y)

where x g y, for a unique y 6 M* and some g 6 Spin(4). It is not hard to check
that H is well defined and a homeomorphism. For the sake of expliciteness, we show
it is smooth at all x 6 M.

If x lies in a free orbit, this is immmediate. Indeed there is a tube D2 x Spin(4)
consisting only of free orbits, with D2 x 1} C M* a disk about y. In particular,
x (y, g) for a unique g. Over the entire tube, H has the form h x Idlspin(4).

If x is in a singular orbit, then we have local coordinates Sx x A/I, where Sx
is a slice centered at x, and .N’I is the image in Spin(4) of a smooth local section
)" U cSpin(4)/Gx ----+ Spin(4), U an open ball about 1 Gx, and X(1 Gx) 1.
In these local coordinates, H x Id, where is the obvious extension of h over
Sx; in particular, it is equivariant with respect to the linear Gx action. Clearly H is
smooth if t is. Now let ,(t) be any smooth path in Sx through x (,(0) x). It may
be written as ’(t) g(t). or(t) gt(ot(t)), where gt is a smooth path in Gx through
1 (go 1), and ct is a smooth path in Sx* C Sx, through x. Then

(?’(t)) (gt(ot(t))) gt((ot(t))) gt(h(ot(t))).

Taking ’ (t) to represent a vector v in TxSx (t represents a vector w in TxS), we see
that h must be differentiable a x, and that, in fact,

ddtx(V) -gt(h(ot(t)))lt=o- .(dhx(w))

where . g(t)lt=o (we have an induced action of Gx on ThCx)Shx)). This
concludes the proof of the theorem.
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Remark. We wish to emphasize that this result will underlie many of our sub-
sequent discussions. It is what makes it permissible to view, as we will, the total
space as Spin(4) x M, with Spin(4) collapsed to cosets over the boundary, and the
group acting only on the first factor. This is a global statement, not simply a local
parametrization of the action. In particular, it enables us in some cases to directly
"read off" from the weighted quotient the manifold which sits above it.

2.4. Examples. We identify a few simply connected Spin(4) manifolds. Recall
that the orbit structure on a boundary circle partitions it into vertices (weighted by
T2, S x S3 or Spin(4)) and edges (weighted by S(m, n), or $3), and satisfies the
local conditions given in Theorem 1, Figure 2 (1.2.2). We will take M* to be a
disk, and since we will assume the presence of fixed points, o automatically van-
ishes.

1. Suppose there are two vertices, both of which are fixed points. Then M S8,
the eight-sphere. Indeed, the invariant subspace in M that projects down to a straight
arc in M* joining an interior point in one edge to a second point in the interior the
other edge, is either exactly the join S3 S3, or diffeomorphic to it. We have a one-
parameter (t [0, ]) family ofthese, collapsed at the two fixed points (t 0, 1)" that
is, the suspension of S7 (alternatively, the Spin(4) -invariant 8-ball neighborhoods of
the fixed-points are glued by the identity along their invariant S7 boundaries).

2. Suppose we have three vertices, all ofthem fixed points. Moving, say clockwise,
this forces the three edges to be weighted either by S3 x {1 }, {1} x S3 and AS3, or
by {1 x S3, S3 x {1 and AS3, respectively. We see directly from the orbit data,
that above one closed edge (here, this includes two fixed points on the ends) sits an
invariant 4-sphere (suspension of $3), i.e., HP(1), the quaternionic projective space
of (quaternionic) dimension one. Then the total space is obtained by attaching an
8-cell (the interior of which is a neighborhood of the third fixed point) to this sphere
by a Hopf map; thus M must be HP(2). It can be shown that the two distinct isotropy
structures correspond to ]HIP (2) and ]HIP (2) respectively, the quaternionic projective
spaces with opposite orientations.

3. Given four vertices, all of which are again fixed points, there are two situations"
either only two of the three S3 isotropy occur, or all three do. In the former, M
S4 x S4. Viewing S4 as the suspension I]S3 and using S3 multiplication, it is not
hard to give the explicit forms that the action can take; these actions yield the desired
weighted orbit space, and in turn, Theorem 2 guarantees that, up to equivalence, they
are the only ones that do so. In the second situation, observe that we can always find a
Spin(4)-invariant 7-sphere that does not bound an 8-ball: it sits over an arcjoining two
non-contiguous edges. So that, following Example 2, M is seen to be an equivariant
connected sum ]HIP(2)# ]HIP(2) (note in particular that -4-(IHIP(2)# IHIP(2)) cannot
occur).

4. The general case for all. n vertices corresponding to fixed points proceeds
similarly. It turns out that for n 5 in particular, one can deduce directly from
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consideration of the orbit spaces that

2
/HIP(2) # (S4 x S4) ]HIP(2) # (# ]HIP(2)) (1)

2
IHIP(2) # (S4 x S4) (# HP(2)) # HP(2) (2)

paralleling analogous identities that exist in dimension 4, relating S9 x SE, CP (2) and
CP (2). As a result, Spin(4) manifolds with M* a disc, and all vertices (n > 3) fixed
points, must be either connected sums of S4 x S4 if only two of the three possible S3

isotropy types occur, or connected sums of ]HIP (2) and ]HIP (2) terms otherwise. We
note here that these are the only 3-connected manifolds that arise in our context.

Remark. Other families of Spin(4) manifolds do not generally allow for such a
straightforward topological identification.

3. The invariant o 7"/2b

We begin by examining two instances where o encodes topological differences.
First, we construct two actions with a disc quotient and AS3 isotropy on the boundary,
and show these actually correspond to actions on two topologically distinct manifolds
(indeed, they are homotopy-inequivalent).

(i) LetM (DExSpin(4))/~,wherethesecondS3factorinSpin(4)issquashed
to a point over Bd(D2). Let (eiO, p), p [0, 1], denote an element in DE, u, v E S3,
and Spin(4) act by

(g x h). ((eiO, p) x u x v)= (eiO, p) x guh-1 x hv

It is immediate that M* DE with AS3 stabilized orbits forming the boundary, and
that there is an n-section to the action. It is also not hard to see that M S3 x S5.
Indeed, ignoring the first S3 factor, we have S4 E; (S3) above a diametral segment
in DE; taking the suspension again, and now crossing it with S3, gives M.

(ii) The non-n-sectioned action on S x S3 given earlier (cf. 2.2.2) induces one
on V D4 X S3 X S1, with D4 ([1/2, 1] x S3)/~, collapsing S3 to a point at
t--l"

(g x h) [t, u] x v x eiO [t, gu] x ei/2ge-i/2vh-1 x eiO.

V* is an annulus, and we can then extend this action to one on M with M* D2 as
follows. LetH DE S3 x S3 (S x [0, 1/2])/~ x S x S3, and let Spin(4)act
by

(g x h) ((eiO, t) x u x v) (eiO, t) x gu x oh-1.
Next, glue Bd(H) --+ Bd0)) by an equivariant diffeomorphism p given by

eiO u v I- u ei/Eue-i/2v x eiO.
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CLAIM. M , SU(3).

First note that as a space, SU(3) is known to be distinct from S3 x S5 In fact, their
homotopy groups differ; for instance zr4 vanishes for SU(3) (cf. [Borl], for instance),
whereas it is Z2 for S3 x S5. Thus, it suffices to show that there is a Spin(4) action
on SU(3) with free principal orbits and disc quotient with boundary consisting of S3

stabilized orbits. Call f the canonical isomorphism S3 SU(2). Take the S3 x 1}
action to correspond to left multiplication by elements in (s2, ) C SU(3). Thus,

1).a (s(0g) )a, where a SU(3). Take the {1 x S3 action to correspond to(g x

(0 ) (: 0)fight multiplication by elements in sol2) as follows: (1 x h). A A Sh)_l
This obviously defines a left Spin(4) action on SU(3). Observe that for A Id,

(g x h) Id Id iff g x h 1 x 1. Therefore, the principal orbits are free. Now
SU(3)/SU(2) ,- S5, so we have SU(3)/(S3 x 1}) ,- S5. Further, S3

_
1} x S3

must be acting effectively on that quotient, and again by Richardson [Ric2] there is
only one such action (up to equivalence) of S on S5, which has D2 quotient with
boundary consisting of S3-stabilized orbits.
We have established:

PROPOSITION 1. Suppose Spin(4) acts on a closed orientable M8, with the quo-
tient space a 2-disc whose boundary consists only ofAS orbits. Then M S3 x S5

ifo 0; M SU(3) if o 1.

We can also show:

PROPOSITION 2. Suppose Spin(4) acts on a closed orientable M8, M* a 2-disc
with boundary consisting only of S(O, 1) orbits. Then M . S3 7< S2 x S3 if o O,
where S3 ;<S2 denotes the orientable, non-trivial S3 bundle over the two-sphere.
M . SU(3)/SO(3) x S3 ifo-- 1.

Proof (i) Taking D2 x S3 x S3 and collapsing by/S(0, 1) over the boundary,
and then letting Spin(4) act on the left in the obvious way, gives M* D2 with
boundary consisting only of S(0, 1) orbits; obviously the action has an n-section. It
is also clear that M is the product of a 5-manifold N with S3. Further, N5 S3 S2.
Indeed it is the double of I x H, where I [0, 1 and H is the mapping cylinder of
the Hopf fibration S3 -----> S2. We have

N 79(1 x H) Bd(l x I x H) Bd(B4S2) S3S2.

(Note that it.turns out that in all cases where the boundary of the D2 quotient consists
of S(m, n), the total space is homeomorphic to the manifolds above.)

(ii) Now suppose that the isotropy weights are as in (i), but the action does not
have an n-section. First note that the total space still has the form N x S3. N is a
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5-manifold with S3 acting to give N* D2 with a boundary of S-stabilized orbits. It
is constructed following the prescription given in 2.2.3 for the subspace sitting above
an annular neighborhood of Bd(N*), and extending it as follows. View Int(N*) as
a family of circles indexed by t [-1, 1) (the circle at -1 collapsed to a point),
above each of which we have (St3 x I)/.,. The gluing St3 x {0} ----+ St3 x 1 is as
before for 6 [0, 1); for [-1, 0], it is given by u x {0} uk(t) x {1}, where
Z: [-1, 0] ----+ S3 is a smooth path with .(-1) (1, 0) (the identity in $3), and
X(0) (0, 1).
We can compute the homology of N using a Mayer-Vietoris sequence with N

U t2 V, U S3, and V S2S1, so U* is a (closed) disk in M*, V* an annulus
containing Bd(M*). One obtains Z in dimensions 5 and 0, and Z2 in dimension 2.
Thus, according to Barden’s classification of simply-connected 5-manifolds, N is
X_ [Bar]. It turns out that X-1 , SU(3)/SO(3). We can see this directly as follows.

(o o)Take S3
_

SU(2) svcz) SU(3). It acts by left multiplication on SU(3),
hence on the coset space SU(3)/SO(3); here, we view SO(3) as those matrices in
SU(3) with real entries. Clearly, g S3 stabilizes (A), the equivalence class in
SU(3)/SO(3) of the matrix A SU(3), iff A-gA e SO(3).

( oo)Now take A s 2) and g 0 b
0 0 -b

Then:

+ aldl2 -dd a-dd
a-lgA -___ac-d Idl2 --..._alcl 2

bd -bc

We can asssume c, d JR. For the (1,1)-entry to be real, we would need a e R. But
entry (1,2) is (1 a)d, so (for a 1), we can certainly arrange ?d 1, so that g -Id does not stabilize (A). Therefore, the principal isotropy for this action is trivial.
Observe that (Id) is Sl-stabilized. Thus (Id)* lies on the boundary of the orbit space
which must be a disk since SU(3)/SO(3) is simply connected. The fact that, for S3

actions on M5, each boundary component must consist of only one singular orbit type
concludes the argument, tl

In both examples, o encoded topological differences between the spaces whose
homeomorphic quotients had the same isotropy weights. Is this tree generally? We
now show that this is in fact not always the case. In particular:

PROPOSITION 3. Let Mj* D2, (j 0, 1), with only S or T2 isotropy over the
boundary, and o j. Suppose that there is an S(1, 0) weighted edge contiguous to
an S(0, 1). Then Mo , M1.

Proof Consider annular neighborhoods of Bd(M/*). Refering to Figure 9, we
may assume that S(1, 0) S(m, nl) and S(0, 1) S(m2, n2). Set to 0, t 1/2
and t2 1 for definiteness.
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It is clear how M0 is obtained, starting from the mapping cylinder that we defined.
Write the cylinder parameter as p, ranging over the interval 1/2, 1 ]. We have another
mapping cylinder for the map S3 S3S1--- $3 S3givenby(uv)t -, (uv);
write the cylinder parameter as/9 again, but ranging over the interval [0, 1/2], with
the target S3 S3 sitting at/9 0. The resulting two spaces are glued together by
the identity along S3 S3 S l, at p 1/2 (so in the disc quotient, p is the radial
coordinate). To obtain M, take the S S3 S as defined earlier: recall that we
attached by a a: u v tk u (0, 1) o(0, 1) to, so directly forming another
mapping cylinder as in M0 for 0 </9 < 1/2, would not be well defined. However it is
clear that we can deform the way we attach by homotoping a to the identity: just pick
a path ?,(/9) in S3 (p e [0, 1/2]) joining (0, 1) to (1, 0), and attach by multiplying
with ?,(1/2-/9) ?,(1/2-/9).

Define a path ,k" [a, b] --+ S3 parametrizing an arc joining (0,-1) to (1, 0). In
fact, choose this arc to be {?, (p)- }, made up of the inverses (with respect to the S3

product) of the points in Im(?,). Let .(t) be constantly (0, -1) for 0 < < 1/6;
over the interval [a, b] [1/6, 1/3], Zl ,, and for 1/3 < < tk, ) _-- (1, 0).
Define L2 in exactly the same way, but over the intervals [0, 2/3], [2/3, 5/6], and
[5/6, tk] respectively. Let j C Mj be the mapping cylinders that map down to the
annular neighborhoods of Bd(Mj*) (corresponding to/9 e [1/2, 1]). The following

assignment defines a homeomorphism/fl /0"
(u x v) x x p -> (u;L(t) x v.2(t)) x x p

Indeed we see that

u x v xtk x l -> u x v xt x l

III III
u(0, 1) x v(0, 1)xt0x 1 -> u(0, 1)(0,-1) x v(0, 1)(0,-1)xt0x 1 uxvxtoxl

It is not difficult now to extend this map to all of the Mj’s. The assignment will
have the same form, except that for each 0 < p < 1/2, we take L(p) to parametrize
the portion of the arc Im(Z) that starts at ?,(1/2 -/9)-1 (ending at (1, 0)); the . ’s
are defined from ;k(’) in the same way as j from ;L. At p 0, we get the identity
map of the S3 x S3 fiber. E!

Example. Take M CP(2)CP(2) x CP(2)#CP (2), where each factor is ob-
tained from S4 E (S3) by blowing-up the two suspension points. Then there is an
obvious (left) Spin(4) action on M given by the S3 actions on CP (2)#?C-ff(2) induced
by the linear action on S4 (using S3 multiplication on the left). One checks that the
resulting weighted quotient is a disc with two S(1, 0) and two S(0, 1) edges, and
exactly four T2 vertices. In this case, o 0. But there must be an inequivalent action
on M resulting in the same weighted disc, except with o 1.

At present, we do not know whether the condition in the proposition that there
be contiguous S(1, 0) and S(0, 1) edges is necessary; but our explicit construction
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would definitely fail to work using arbitrary weights. Let us note also, that if we have
an orbit space with jth boundary component weighted by a diagonal S3 and there
is a factor S3 occuring on another component, then oj 0 or 1 does not affect the
topology (this will become obvious in the follow-up study).

Remark. From the proof of Proposition 3, we see that generally, if M0 and M
have homeomorphic orbit spaces (not necessarily discs), with the same weights ev-
erywhere, except possibly for o on boundary components satisfying the conditions of
the proposition, then M0 M1.
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