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METRICS OF CONSTANT CURVATURE 1 WITH THREE
CONICAL SINGULARITIES ON THE 2-SPHERE

MASAAKI UMEHARA AND KOTARO YAMADA

ABSTRACT. A necessary and sufficient condition for the existence and the uniqueness of a conformal
metric on a 2-sphere of constant curvature and with three conical singularities of prescribed order is
given.

Introduction

Let Met (E) be the set of positive semi-definite conformal metrics of constant
curvature 1 with conical singularities on a compact Riemann surface E. Suppose that
dcr2 Metl (E) has conical singularities at points pj E (j 1 n) with order
j (> -1); that is, the metric admits a tangent cone of angle 2zr(j + 1) > 0 at each
pj. We call a formal sum

D px +’" + nPn
the divisor of dcr2. By the Gauss-Bonnet formula, the total curvature

(0.1) 1[X(, D) "= clAds2

of the metric dtr 2 satisfies

X (E, D) x (E) +

_
flj >0.

j=l

We define a constant 8(, D) as

(O.3) 3(, D) "= X(E, D) 2Minj=l n{1, j + 1}.

The divisor D is called subcritical, critical, or supercritical when 8 (E, D) is negative,
zero, or positive, respectively. Troyanov IT2] showed that for a divisor D satisfying
X(E, D) > 0, there exists a pseudometric in Metl(E) with the desired conical
singularities whenever it is subcritical. Moreover, when the genus of E is zero and
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--1 < 3j < 0, the uniqueness of such a metric is shown in Luo and Tian [LT], and
this unique metric is realized as a spherical polytope. On the other hand, when the
genus is zero and the divisor D is supercritical, several obstructions are known [LT],
[T2], [CL]: For example, there is no such metric with only one conical singularity.
Troyanov [T2] gave a classification of metrics of constant curvature with at most
two conical singularities on the 2-sphere.

In this paper, we shall give a necessary and sufficient condition for the existence
and uniqueness of a metric with three conical singularities of given order on the
2-sphere. Conformal metrics of constant curvature 1 with conical singularities on
a closed Riemann surface E correspond bijectively to branched CMC-1 (constant
mean curvature 1) surfaces in the hyperbolic 3-space with given hyperbolic Gauss
rnap defined on E excluding finite points (see [UY2] and also [RUY1]). Several
techniques as in [UY2], [UY3] and also [RUY1] will play important roles. In Section
1, we recall some basic properties of null meromorphic curves in PSL(2, C). The
irreducible metrics are classified in Section 2 using the study of CMC-1 surfaces
developed in [RUY1] (Theorem 2.4). Moreover, applying the same method, we
classify all genus zero irreducible CMC-1 surfaces with three embedded regular ends
(Theorem 2.6). In Section 3, we give a method for explicit construction ofall reducible
metrics with three singularities (Theorems 3.3 and 3.5).

The authors thank Wayne Rossman and Mikio Furuta for fruitful discussions and
encouragement. They also wish to thank Yoshinobu Hattori for informative conver-
sations, and the referee for careful reading.

1. Preliminaries

In this section, we recall fundamental properties of null meromorphic curves in
PSL(2, C) := SL(2, C)/{-+-id}.

Definition 1.1. Let F: E PSL(2, C) be a meromorphic map defined on Rie-
mann surface E. Then F is called null if

det(F-1. Fz) 0

holds on , where z is a complex coordinate. (The condition does not depend on the
choice of coordinates.)

Let F: E PSL(2, C) be a null meromorphic map. We define a matrix c by

\

12) := F-1. dF,
t22 /

and set

(1.1) g := t11/021, (.0 :’-" 021.
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Then the pair (g, co) of a meromorphic function g and a meromorphic 1-form co on
E satisfies the equality

(1.2) F- dF (g _g2)1 -g

Conversely, let g be a meromorphic function and co a meromorphic 1-form on E.
Then the ordinary differential equation (1.2) is integrable and the solution F is a null
map into PSL(2, C), however F may not be single-valued on E. Moreover, F may
have essential singularities. We call the pair (g, co) the Weierstrass data of F.

Definition 1.2. Let

F= (F,1 F12)F21 F22
be a null meromorphic map of E into PSL(2, C). We call

dF dF(3".=
dF2 dF22

the hyperbolic Gauss map of F. Furthermore, we call g in (1.1) the secondary Gauss
map and Q codg the Hopfdifferential of F.

Let F: E ---> PSL(2, C) be a null meromorphic map. Then for a, b 6 PSL(2, C),
/ a. F. b-1 is also a nulleroorphic map. The associated two Gauss maps ,, and the Hopf differential Q of F are given by

(1.3) =a,G, =b,g, and 0=a.
Here, for a matrix a (ai)) PSL(2, C) and a meromorphic function g, we denote
by

allg + a12(1.4) a, g
a21g + a22

the Mtibius transformation of g by a.
Let (U; z) be a complex coordinate of E. Now we consider the Schwarzian

derivatives S(G) and S(g) of G and g respectively, where

[(G"’I(G"21 (,d)(1.5) S(G)= \-Tj- --Tj dz2 =’z
The description of the Schwarzian derivative depends on the choice of complex co-
ordinates. However, any difference of two Schwarzian derivatives, as a holomorphic
2-differential, does not depend on the choice of complex coordinate. The following
identity can be checked:

(1.6) S(G) S(g) 2Q.
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We remark that the Schwarzian derivative is invariant under M/Sbius transformations:

(1.7) S(G) S(a , G) (a PSL(2, C)).

Conversely, the following fact is known:

FACT 1.3 [Sm], [UY2]. Let G and g (S(G) S(g)) be non-constant meromor-
phic functions on a Riemann surface E. Then there exists a unique null meromor-
phic map F E --+ PSL(2, C) with the hyperbolic Gauss map G and the Hopf
differential

1
Q -- (S(G) S(g)),

such that (g, Q/dg) is the Weierstrass data of F.

Moreover, the following fact plays an important role in the latter discussions:

FACT 1.4 [UY3]. Let F: E --+ PSL(2, C) be a null meromorphic map with
hyperbolic Gauss map G and secondary Gauss map g. Then the inverse map F-1 is
a null meromorphic map with hyperbolic Gauss map g and secondary Gauss map G.
In particular, F satisfies the ordinary differential equation

-F d(F-1) dF F- ( G
1

Finally, we point out the following elementary fact from linear algebra:

FACT 1.5 [RUY1 ].
oftheform

A matrix a SL(2, C) satisfies a id ifand only ifa is

a=( piY2 iy’l)j (q, F2 6 R, p/5 + ’1 ’2 1).

Moreover, a can be diagonalized by a real matrix in SL(2, R) whenever it is semi-
simple.

2. Irreducible metrics with three singularities

Recall that Meh (E) denotes the set of (non-vanishing) conformal pseudometrics
of constant curvature 1 on with finitely many conical singularities. Let da2

Met (E) with divisor

D fllPl q-’" q- nPn (pj , j > -1).
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Then there exists a meromorphic function g defined on the universal cover Zp p,

of Ep p, := E \ {p Pn such that the metric is the pull-back of the canonical
metric d%2 := 4dzd/(1 + Iz12)2 on S2 C {o}, that is, we have an expression

(2.1) dr2 g*dr 4dgd,
(1 + [g 12)2.

Such a function g is unique up to the change

(2.2) g - a * g, where a 6 PSU(2) := SU(2)/{+id}.

For a metric do"2 Metl (3), we define the Schwarzian derivative as

(2.3) (do"2) :-- S(g)

where g is the function satisfying (2.1). This definition is independent of choice of g
because of (2.2).
We denote by rr" p p, --+ Zpt p. the covering projection. Fix a base point

0 on p p. and set z0 r(0). For each z 6 r-X(z0), there exists a unique deck
transformation T such that T(0) z. Thus the fundamental group Zrl (Ep p,)
is identified with the deck transformation group. By (2.1) and (2.2), there exists a
representation pg: zr (Ep p.) --+ PSU(2) such that

(2.4) g o T-1 pg(T) . g, (T rx(Zp, p.))
Later, we will see that the representation pg can be lifted to an SU(2)-representation.

Metrics in Metl (E) are divided into the three classes defined below.

(1) A metric is called irreducible when the image of the representation pg can not
be diagonalized.

(2) A metric is called 7-[1-reducible when the image of the representation pg can
be diagonalized but non-trivial.

(3) A metric is called 7-[3-reducible when the image of the representation pg is
trivial.

If there exists a 6 PSL(2, C) such that the image of the representation a pg a-is also contained in PSU(2), then another metric dr2a "= (a, g)*dr has the same
divisor and the Schwarzian derivative as dtr2. Hence,

(2.5) Ida,- := {dtrEa (a, g)*dtr a PSL(2, C) a. Imps. a-1 C PSU(2)}
is the set of the metrics whose divisors and the Schwarzian derivatives coincide with
those of dcr2 deriV. Since dora2 dcr2 for a 6 PSU(2), the set Ida2 is identified
with the subset Ir of the hyperbolic 3-space in Appendix B, where 1" Im pg. By
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Lemma B in Appendix B, we have the following:

FACT 2.1 [RUY1]. For an irreducible metric dcr2, the set Ido2 consists of one
point. For an 7-[l-reducible (resp. 7-[3-reducible) metric dcr2, the set Id2 coin-
cides with a totally geodesic subset ofdimension one (resp. three) in the hyperbolic
3-space.

We now determine all the irreducible metrics in Met1 (S2) with three conical sin-
gularities. The reducible case is discussed in the next section. We identify S2 with
CU c} by the stereographic projection, and let z be the canonical complex coordinate
of C. Let do"2 E Metl (S2) with divisor

(2.6) D := 1Pl + f12P2 -4c- f13P3 (Pj E $2, flj > -1)

and take a function g as in (2.1). Since the M6bius transformation group acts on the
sphere, without loss of generality we may assume

(2.7) Pl --0, P2 1, and P3 0.

For each pj, there exists a 6 PSU(2) such that

(2.8) a, g (z pj)#+l (go + gl (z pj) +...) (go 0).

Hence (dcr2) can be written with the following leading terms in the Laurent expan-
sions at z pj"

(2.9) (dtr2) [ /3j (/j + 2) 1 ]2 (z p])2 +"" dz2’

and (do"2) is holomorphic on S2pl,p2,p3 By (2.9), the Schwarzian derivative (do"2)
is uniquely determined by D, since the total order of a holomorphic 2-differential on
S2 is 4. By (2.7) and (2.9), we have

(2.10) (d’2) [ c3z2 q- (c2 cl 3)z nt" cl

1)2
dz2,

where cj -j(t3j + 2)/2 6 R (j 1, 2, 3).
Now we set

(2.11) G := z and
1 (c3z2t(c2-cl-c3)z-t-cl)Q :=

Z2(Z- 1)2
dz2

where cj -/3j (/3j + 2)/2. By Fact 1.3, there exists a unique null holomorphic map
F" 2p,p,p3 PSL(2, C) such that G o zr and g are the hyperbolic Gauss map and
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zo
Cx:) p3

Figure 1. Generator of the fundamental group

the secondary Gauss map respectively. Since
re,t,3p, is simply connected, F can be

lifted to a null holomorphic map P: p21,P2,p SL(2, C). By Fact 1.4, we have the
following relations:

d. p-1 (G(2.12) 1

dF2(2.13) g
d/

-G2 ) Q
-G ’dF22

dF21

where/ (:ij). The right-hand side of (2.12) is single-valued and has poles at pl,

p2 and P3. Thus, there exists a representation pp" zr (S2pl,p2,p3) SL(2, C) such
that

(2.14) " o T if’. p?(T) (T 1 (S2p,pz,p3))
By (1.3), we have

(2.15) pg(T) :kpp(T) PSU(2) (T 7rl(S2pl,p,p3)).
Here, we consider -+-a (a 6 SL(2, C)) as an element of PSL(2, C). In particular, pp
is an SU(2)-representation of zr (S2pl,pz,p3).
Now we describe the converse_ procedure. Consider the differential equa.tion (2.12)

for G and Q as in (2.11). Let F ofbe a solution of (2.12) with initial data F(0) id,
where 0 is a base point on p2,p,p3. Then a representation p#: 7’fl(S2pl,p:z,p3)
SL(2, C) satisfying (2.14) is induced. Let ,j" [0, 1] ---> S2p,,m,p3 be a loop at z0
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zr(o) surrounding pj for each j 1, 2, 3, and j" [0, 1] --+ p21,P2,p the lift of

yy satisfying j(0) 0. Let Tj be the deck transformation of 2p,p2,p3 satisfying
Tj (0) j (1) (see Figure 1). The following lemma holds.

LEMMA 2.2. Let 1" 2 SL(2, C) be any solution ofthe equation (2 12)P,P2,P3

for G and Q as in (2.11). Then the eigenvalues ofpp(Tj) are {-eisj -e-isj }, where
Bj rc (fly + 1) (j 1, 2, 3). In particular, Trace p# (Ty) -2 cos By holds.
Moreover if pp(zrl(S,m,p3)) lies in SU(2), then the metric defined by (2.1) and

(2.13) belongs to Metl (S2) with the divisor D.

Proof Let Fo be the solution of the initial value problem

(2.16) do l (G -G2 ) Q
-G -’ o(0) id

for the divisor D, where 0 p21,P2,p is a base point. By Fact 1.3, the func-

tion g defined by (2.13) can be expressed as in (2.8). Since /o is a solution of
the equation (2.12), the monodromy representation po" Zrl(Sp,p,p3) SL(2, C)
with respect to /o is conjugate to pp. Let g be a function defined by (2.13) for
given /. Then there exists a representation pg" zrl(Sp,,p,p3 PSL(2, C) as

(2.14), which satisfy pg(T) 4-pp(T) for each T 7rl(S2p,pz,p3). On the other
hand, by Fact 1.3, the function g should be expressed as in (2.8), and then the
eigenvalues of pg(Tj) are 4-e+ioj (j 1, 2, 3). Hence rj "= Trace po(Tj) satis-
fies

ry "= Trace po(Ty) Trace p#(Ty) 4- Trace pg(Ty) 4-2 cos Bj

for each j 1, 2, 3. Since (2.16) is real analytic in parameters (/31,/32,/53), the ry’s
are also real analytic functions in/Sj. When/51 f12 3 0, JD is constant
because Q 0, and hence each po(Ty) is the identity matrix. Thus we have

j I(/,/h,/h)-(o,o,o) 2 -2 cos By I(,z,/h)=(o,o,o),

and, by real analyticity, ry -2cos By for all (/31,/32, f13). Hence Trace p#(Tj)
Trace po(Tj) -2cos By, and the eigenvalues of po(Tj) are -e+/-isj. The final
assertion is obtained since the metric dr2 defined by (2.1) and (2.13) is single-valued
on S2p,p2,p3 if and only if pp(rrl (Sl,P2,P3)) C SU(2). [3

Since T1 o T2 o T3 id, Lemma 2.2 and Lemma A in Appendix A imply:

COROLLARY 2.3. Let dcr2 Met1 (S2) be a metric with divisor D as (2.6). Then
we have the inequality

(2.17) COS2 B1 + COS2 B2 q- COS2 B3 -1- 2 cos B1 cos B2 cos B3 _< 1,
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where Bj zr(j + 1) (j 1, 2, 3). Moreover, dcr2 is reducible if and only if the
equality of (2.17) holds.

Now we prove the following result.

THEOREM 2.4. There exists an irreducible metric dcr2 E Metl (S2) with a given
divisor

(2.18) D := flPl + f12P2 + f13P3 (Pj ( $2, flj > --1)

ifand only if thefollowing inequality holds:

(2.19) cos2 B1 + cos2 B2 + cos2 B3 + 2 cos B1 cos B2 cos B3 < 1,

where Bj := r(/3j + 1) (j 1, 2, 3). Moreover, such a metric dcr 2 is uniquely
determined.

Remark 1. The condition (2.19) implies the inequality (0.2). (See (A.2) in Ap-
pendix A.) Moreover, all the/j (j 1, 2, 3) are not integers. In fact, suppose one of
the/3j’s, say/3, is an integer. Then cos B 4-1, and hence (2.19) fails. Conversely,
if all the/3j (j 1, 2, 3) are not integers, the metric is automatically irreducible
(Corollary 3.2).

Remark 2. If a metric dcr 2 6 Metl (I]) with divisor D in (2.6) is reducible, then
the equality of (2.17) holds. However, even if D satisfies the equality of (2.17), it
does not imply the existence of the metric. In fact, if/31,/32,/3 9( Z, such a metric
never exists (see Lemma 3.1 and Corollary 3.2).

ProofofTheorem 2.4. Assume there exists an irreducible metric dcr2 6 Met(S2)
with the divisor (2.18). Then the Schwarzian derivative (do"2) is uniquely deter-
mined. Hence irreducibility implies the uniqueness of the metric. Moreover, by
Corollary 2.3, (2.19) holds. Hence it is enough to show the existence of the metric
under the condition (2.19).

As in (2.7), we identify S2p,p,p3 with C \ {0, 1 }. Let/z be the reflection (i.e.,
conformal transformations reversing orientation) on C \ {0, 1} along the real axis.

"2 as follows: We mayWe define three transformations/2, (k 1, 2, 3) on Spl,p2,p3
assume that the base point z0 rr(0) lies on upper half-plane. We choose three
points on the real axis such that

(2.20) z 6 (-cx, 0), z2 6 (0, 1), z3 E (1, cx).

Let rj" [0, 1] --+ Sp2,,
lift fj" [0, 1] p21,p2,p

be a line segment from z0 to zj. Then there exists a unique
of rj such that ’j (0) 0. We set

(2.21) j "= {j(1) (j 1, 2, 3).
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"2 we take a path j" [0, 1] -- 3p21,P2,P3 from the baseFor each point Sp,p2,p3
point j to . Then/2j () (j 1, 2, 3) is defined as the end point of the lift of the
loop/z o 7r o j. This definition of/2j () is independent of the choice of the path j.
Moreover, we have

rr o/2k =/zor (k 1,2,3).

The deck transformations Tj induced from ?’j as in Figure (j 1, 2, 3) are repre-
sented as

(2.22) T1 1 o/2, T2 ---/-2 o/3, and T3 3 o/1.

Let/ be a solution of the equation (2.12). Then P /2k (k 1, 2, 3) is also a solution
of (2.12) because

(2.23) Q o/z Q, and G o/z G.

Hence, there exist matrices pp(/2,) 6 SL(2, C) such that

Since/2k o/2k id, it follows that

(k 1, 2, 3).

(2.24) pp(Zk)" pp(fZk) id (k 1, 2, 3),

and by (2.22), we have

/9#(/1)" P(/-2) P#(T!),

(2.25) pp(/22). P(/3) p(T2),

p#(/23)" pp(fzl) p,(T3).

If there exists a solution F of (2.12) such that

(2.26) pp(zk) SU(2) (k 1, 2, 3),

it follows from (2.25) that pp(Tj) E SU(2) for j 1, 2, 3. For such an F, weset g as
in (2.13) and do"2 as in (2.1). Then pg(T) a_. PSU(2) for each deck transformation T
on p,,p,p3. By Lemma 2.2, this implies that dcrz 6 Meh ($2). Moreover, the divisor
of dcr2 is D by (1.6).

Thus, it is enough to show that there exists a solution F of (2.12) which satisfies
(2.26). To do this, we use the following argument similar to the proof of Proposi-
tion 6.7 and Proposition 5.6 in [RUY1 ].

Step 1. Let z be a point on the segment (-cx, 0) of the real axis on C, and
1 Sp,p2,p3 the lift of Zl as in (2.21). Take the solution F of (2.12) satisfying

P(I) id. By (2.23),/ o ]-1 is also a solution of (2.12). Moreover, since/21 (0)
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0, 0 ]1 has the same initial condition as ft. Hence we have/ o ]1 /, and then
p#(/2) id.

Step 2. Let/ be as in the previous step. By (2.25) and Lemma 2.2, the eigenvalues
ofpp (/2E) are --e+/-iB2. Moreover, sin BE 0because f12 is not an integer. In particular,
pp(/22) is semi-simple. By Fact 1.5 and (2.24), there exists a matrix u SL(2, R)
such that

-1 _e B2
p(#), u

0

Let "= P. u. Then " is also a solution of (2.12) and

p,(/21) U -1" p,(/21)"/ U-1" p(/21)" U id,

(2.27)
p(/22) u -1 pp(/22)"/ U-1" pp(/22) U

0 --e-iB2

because u is a real matrix.
Step 3. Let/ be as in Step 2. By Fact 1.5 and (2.24), p(/23) can be written as

q il )p(/23) i2 t (tl, t2 R, qt + tlt2 1).

Then by (2.25) and Lemma 2.2, we have

sin B1
(COS B2 d- eiB cos B3).

Hence, by the assumption (2.19),

tlt2 1 q
COS2 B1 "+" cos2 BE "+" COS2 B3 q- 2 cos B1 cos BE COS B3

sin2 B1

Let

J" ((tl/t2)l/40
Then is a solution of (2.12) and

0 )(t2/tl)l/4 SL(2, R).

(-ein’ 0 ) ( i)p,(/21) id, p/(/22) 0 _e_iB P(/23) 6 SU(2),

where 3 (tlt2) 1/2. Thus, we have a desired metric do"2 induced from g
-d’lE/dll. I-I
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Metrics with conical singularities are closely related to CMC-1 (constant mean
curvature 1) surfaces in the hyperbolic 3-space H3. In fhct, as shown in [UY2,
Theorem 2.2], the set Met1 (E) corresponds bijectively to the set of branched CMC-1
immersions of E excluding a finite number of points, of finite total curvature with
prescribed hyperbolic Gauss map. One direction of the correspondence is given as
follows: Let x: M := E \ {pl Pn} H3 be a conformal CMC-1 immersion
whose induced metric ds2 is complete and of finite total curvature. We set

:= (-K)as

where K is the Gaussian curvature of the induced metric ds2. Then it can be ex-
tended to a pseudometric on E and dcrx2 Met (E) holds (cf. [B]). The converse
correspondence is described in [UY2, Section 2].

Definition 2.5. A regular end of a CMC-1 immersion x is called Type I, if the
Hopf diff6rential of the immersion has pole of order 2 at the end (cf. [RUY2]).

As seen in [UY 1, Section 5], a regularend ofthe CMC- 1 immersion x is asymptotic
to a certain catenoid cousin end ifand only if the end is of Type I and embedded.

Using the same argument as in the proof ofTheorem 2.4, we can classify the set of
irreducible CMC-1 surfaces in the hyperbolic 3-space of genus zero, with three ends
asymptotic to the catenoid cousins.

THEOREM 2.6. Take a triple of real numbers (/, 12, 13) satisfying (2.19) for
Bj re(j + 1) (j 1, 2, 3)and

( 1 )(2.28) Cl
2 + c22 + c 2(cc2 + c2c3 + c3c) 5 0 cj --j(j + 2)

Then there exists a unique irreducible conformal CMC-1 immersion x: S2pl,p2,p3
H3 such that all ends pl, P2, P3 are embedded and of Type L and the order of
the pseudometric dcr2x at pj is j. Conversely, any conformal irreducible immersed
CMC-1 surface ofgenus zero with three embedded Type I ends are obtained in such
a manner.

Proof.
X" S2

pl p2, p3

In fact, such a surface is realized by a conformal CMC-1 immersion
H3 with the following properties:

(1) Since three ends are of Type I, the Hopf differential Q of x has poles of order
2 at the ends Pl, P2 and P3. Then necessarily it has two zeros ql, q2 of order
1 on Sp21, p2, p3"

(2) Since all ends are regular and embedded, the hyperbolic Gauss map G ofx has
two branch points of order 1 at the zeros of Q, and no branch point elsewhere
(see [UY3]). (Hence, G is a meromorphic function of degree 2.) The case
q q2 never occurs since G has at least 2 branch points.
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(3) ,(dax2) S(G) 2Q holds (see [UY2, (2.3)]).
(4) Since the order of the pseudometric dax2 at the umbilic points ql, q2 are equal

to the order of zeros of Q (see [UY3]), dcrx has a divisor of the form

D’ := fllPl d- f12P2 -t- f13P3 q- ql + q2 (/3j >-1).

The metric dax2 is irreducible if and only if (2.19) holds (cf. Appendix A).

We may assume that p 0, P2 and P3 0, namely, S2pl,p2,p3 C \ {0, 1}.
By (1), (2) and (3), the top term of 2Q of Laurent expansion at z pj is the same as
that of (da2x). Thus we have

1( flj (/j + 2) 1 )a " 2 (z pj)2
q-’’’ dz2 (j 1, 2, 3).

Since the Hopf differential Q is holomorphic on S2pl,p2,p3 we have

(2.29)
1 (C3Z2"q--(C2--C,I--3)Z’-[’-I)a - z2(z- 1)2

dz2’

where cj -j(j + 2)/2 R (j 1, 2, 3). By (2), G*do has the divisor of the
form

(2.30)

where q and q2 are zeros of Q:

Da := q + q2,

(2.31) c3q -Jr" (2 1 c3)ql "]" Cl 0 (l 1, 2).

Since ql q2 never occurs by (2), (2.28) is a necessary condition. Since the hyper-
bolic Gauss map G has an ambiguity of Mrbius transformations, we may set

(q q2)2
(2.32) G z + 2{2z (q + q2)}’

where q q2. Then by [RUY1, Theorem 3.1], we can see the uniqueness of an
irreducible CMC-1 immersion x with the hyperbolic Gauss map G and the Hopf
differential Q. So it is sufficient to show the existence of such a surface. The
following proof is almost the same as that of Theorem 2.4: Let/z be the reflection
with respect to the real axis and take the reflections/2k (k 1, 2, 3) on the universal
cover p21,P2,p as in the proof of Theorem 2.4 (see Figure 1).

Let fi be a solution of the equation

(2.33) d.l- (G -G2) Q
-G ’
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for G in (2.32) and Q in (2.29). Then P o/2k (k 1, 2, 3) is also a solution of (2.12)
because

(2.34) Q o/z Q and G o/z G.

Hence, there exist matrices p(l) SL(2, C) such that

(2.35) F o fzj F. p#(fzj) (j 1, 2, 3).

Now by the_ completely same argument as in the proof of Theorem 2.4, there exists~
a solution F of (2.33) such that p(Tj) 6 SU(2) for j 1, 2, 3. For such an F, we
set g as in (2.13) and dtr2 as in (2.1). Then dtr2 6 Metl (S2) has the divisor D’. By
[UY2, Theorem 2.2], there exists a branched CMC-1 immersion x" S2pl,p2,p3 H3

whose hyperbolic Gauss map and Hopf differential are G and Q, respectively, such
that dcrx2 dtr2. One can easily check that the metric given by

ds2 "= (1 + I,a12)2 Q 2

is positive definite and complete. Thus by [RUY1, Lemma 2.3], so is the first funda-
mental form ds2. Hence x is the desired immersion, i-’1

PROPOSITION 2.7. Let x" S2pt,p2,p3 --+ H3 be a complete CMC-1 surface with
three ends of Type I. Then the total absolute curvature TA of x is greater than or
equal to 4rr.

Remark. In [UY1], the authors showed TA > 2rr for three ended CMC-1 sur-
faces. The estimate in Proposition 2.7 is sharper than this.

ProofofProposition 2.7. The associated pseudometric dtrx2 has the divisor D’ :=
/31Pl d-/32P2 d- ]3P3 + ql + q2 where ql, q2 are umbilic points of x. Then we have

1 1 fs. K)dAds2=
1 fsErr

TA - dAdr
,P2,P3 ’P2,P3

x(S2) + ID’I 4 + 31 -t"/2 "l- 33.
On the other hand, the metric dtrx2 induces a monodromy representation
log" 7[ l(S2pi,p2,p3) --> PSU(2). As seen in the proof of Theorem 2.4, it can be lifted

to a representation pps: rrl (S2p P2 P3
"-’> SU(2). Let 7 (j 1, 2, 3) be the deck

transformation corresponding t) the loop surrounding pj. Then the eigenvalues of

PL are -e+iB where Bj "= rr(/3j + 1), which can be proved by the same method as
in ]emma 2.2. By Lemma A in Appendix A, we have

COS2 B1 + COS2 BE + COS2 B3 + 2 cos B cos BE cos B3 _< 1.

By (A.2) in Appendix A, we have BI + B2 -t- B3 >_ rr, which yields/31 + f12 -- f13 >-- --2.
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3. Reducible metrics with three singularities

In this section, we give a necessary and sufficient condition for the existence
of reducible metrics with given divisors. As in the previous section, we identify
S2 C tA {00}, and set (pl, p2, P3) (0, 1, 00).

LEMMA 3.1. Let dr2 Metl (S2) be an 7-[3-reducible (resp. 7-[1-reducible) pseu-
dometric with divisor D as in (2.6). Then all ofthe 6j ’s are integers (resp. exactly one
ofthe j ’s is an integer). Namely, at least one j is an integerfor reducible metrics.

Proof. Let dr2 Meh (S2) be an 7-/3-reducible metric with divisor D as in (2.6).
Then, by definition, the representation pg as in (2.4) is trivial. Hence g satisfying
(2.1) is a single-valued meromorphic function on S2pl,p2,p3 Since pj (j 1, 2, 3)
are conical singularities of dcr2, g can be extended to a meromorphic function on S2.
Hence/j (j 1, 2, 3) are integers.

Next, assume dcr2 is 7-/1-reducible and all/Sj’s are non-integral numbers. Since
dry2 is reducible, we can choose g as in (2.1) such that pg(T) are diagonal for all
T 7l’l(S2pl,p2,p3 ). Then g o Tk e2zti(#k+l)g because of (2.8). Hence g := z-#l-lg

-2is single-valued on Sp2,p3, and g2 ’= (z 1)-2-1g is single-valued on ,p23. Since

Sp23 is simply-connected, g2 is single-valued on S2 and g can be written as

a(z)
(3.1) g z’(z 1) (/z, v R \ Z),

b(z)

where a(z) and b(z) are mutually prime polynomials whose roots are distinct from 0
and 1. Then we have

dg z/z- (z 1)v-1
p(z)

(3.2) p(z) "= {vz + lZ(Z 1)}a(z)b(z) + z(z 1){a’(z)b(z) -a(z)b’(z)},

q(z) {b(z)}2.
Since p(0) -/za(0)b(0), p(1) v a(O)b(O), q(0) {b(0)}2 and q(1) {b(1)}2

are not equal to 0, the roots of p and q are distinct from 0 and 1. Moreover, p and q are
mutually prime. In fact, assume there exists a common root of p and q. Then b()
0, and by assumption, 0, 1 and a() 0. Then 0 p() ( 1)a()b’()
implies b’ () 0. Hence is a multiple root of b. Let b(z) (z )m[(z), where
rn > 2 be an integer and ,(z) is a polynomial such that/() 0. Then we have

dg z’-1 (z 1)v-1
(z )r(z) z(z 1)(z)

(Z )m+l(z)2
dz,

where r(z) (vz +/z(z + 1))a + z(z 1)(a’/, a’) is a polynomial in z. Since
rn > 2, is a ramification point of g, and then dcr2 has a conical singularity at ,
which is a contradiction.



METRICS WITH CONICAL SINGULARITIES 87

Thus p and q are mutually prime with roots distinct from 0 and 1. If p has a root
then r/is a ramification point of g, and thus a conical singularity of dcr. Hence p(z)
must be a constant. By (3.2), p is formally a polynomial of degree deg a + deg b + 1.
Then the highest term must vanish: /z + v + deg a deg b 0. This shows that the
order of dg at z c must be an integer, and therefore f13 is an integer. This is a
contradiction, and hence at least one of/j’s must be integer.
On the other hand, let do"2 Met1 (S2) be 7-/1-reducible and suppose exactly one

of/j’s is not an integer. Without loss of generality, we assume/1 is a non-integer.
Take g as in (2.1). Since f12 and f13 are integers, g is well-defined on the universal
cover of S2 Here S2 is simply connected. Then g is single-valued on S2 itself,Pt" Pl
and hence g is a meromorphic function on S2. This shows that/31 is an integer, a
contradiction.

Hence, if dtr 2 Metl (S2) with divisor D in (2.6) is l-reducible, exactly one of
the/3j’s is an integer. [21

As an immediate consequence, we have the following corollary.

COROLLARY 3.2. Suppose do"2 Meh (S2) has exactly three singularities with
orders 1, 2 and 3. Then thefollowing three assertions are true.

(1) dcr 2 is 3-reducible ifand only ifall ofthe flj’s are integers.
(2) dcr 2 is 7-[1-reducible ifand only if exactly one ofthe j’s is an integer.
(3) dcr is irreducible ifand only ifall ofthe j’s are non-integers.

Remark. For a metric in Meh (S2) with more than three singularities, such a
simple criterion for reducibility is not expected: There exists a reducible metric
dcr 2 6 Metl (S2) with divisor

D’ =/31Pl + f12P2 q- f13P3 q- ql + q2

such that all flj’s are non-integers. In fact,

g cztz (z 1)V(z a) (cC\{O}, aC\{O, 1})

induces such a metric whenever/z / v is not an integer. On the other hand, we can
construct an irreducible metric with divisor D’ such that ill, f12, f13 ’ Z: The metric

da2x Meh (S2) obtained in Theorem 2.6 is the desired one.

7-[3-reducible case. First, we consider the case of 7-/3-reducible. In this case,/l,
f12 and f13 are integers and g in (2.1) is single-valued on S2, i.e., a rational function
on C t.J (o}.

Without loss of generality, we assume

(3.3) /1 --< 2 --< /3.
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Let g be a rational function such that da2 is as in (2.1) with the divisor D in (2.6)
satisfying (3.3). Then the ramification points of g are 0, 1 and o whose orders are
/31,/32 and/33 respectively. By the Riemann-Hurwicz formula,

1 1
degg x(ll + 12 + 13) + 1 < xll +/53 + 1 < (11 + 1) + (13 + 1)

z

holds. Then we have g(Pl) 56 g(P3), and similarly, g(P2) 7 g(p3). Thus, by a
suitable change as (2.2), we may assume g(pl) g(0) 7 00, g(P2) g(1) cxz,
and g(p3) g(oo) c. Under these assumptions, we can write

z (z 1):
(3.4) dg CHml’.I." (z aj)2

dz, f13 fll - t2 2N,

where c 7 0 is a constant, and al, aN C \ {0, 1 are mutually distinct numbers.
Conversely, if there exists a g which satisfies (3.4), then we have dtr2 Met1 (S2)
with the desired singularities. Computing residues at z al an, we have:

THEOREM 3.3. Suppose ill, f12 and3 arepositive integers satisfying (3.3). Then
there exists dcr2 Metl (S2) with divisor D as in (2.6) ifand only ifthere exists a non-
negative integer N and mutually distinct complex numbers al aN C \ {0, 1}
such that

(3.5)

and

(3.6) 1 f12 2
0 (j 1,..., N).

aj aj-1 .aj--ak

Remark. An 7-/3-reducible metric admits a three parameter space ofdeformations
Ido which preserves the divisor D and the Schwarzian derivative. For a given triple
(l,/2,/33) as in Theorem 3.3, such a deformation space is determined uniquely.

Observing the equation (3.6) for small N, one can easily see the following facts:
If N in (3.5) is 0, trivially the metric exists.

When N 1, (3.6) has a unique solution al =/1/(/1 -/2) 0, 1.
Assume N 2. Then/3 fll -I- /2 4. By (3.3), this implies 4 _< fl _< f12. In

this case, it is easy to show that the system of equations (3.6) has a unique solution
up to permutations of the aj’s.

Hence, we have:

COROLLARY 3.4.
that

Let, [J2 and3 are positive integers satisfying (3.3) and such

[Jl q- [2 [3 2N (N O, 1 or 2).
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Then, there exists an 7-[3-reducible metric dr2 Met1 (S2) with the divisor D as in
(2.6). Moreover, such a metric is unique up to a three parameterfamily ofdeforma-
tions as in (2.5).

7-[1-reducible case. For the 7-/1-reducible case, one of the/j’s must be an integer
because ofLemma 3.1. We assume that fl and/3 are non-integers and/2 is a positive
integer:

1, 3 Z, 2 ( Z.

Then we can choose g as in (2.1) such that

(3.7) g z’o(z), lz R \ Z,

where o(z) is a rational function. Here, such a normalization of g is unique up to the
change g tg or g - t/g for each non-zero constant t. Moreover,

(3.8) (tg)*dcr (t R+)

gives a non-trivial deformation of the metric preserving the divisor. This is the one
parameter deformation as in (2.5).

Let g be a function as in (3.7) such that dcr2 as in (2.1) has the divisor D in (2.6).
Replacing g with 1/g, we may assume o(1) :# oo without loss of generality. Under
this assumption, dg has a zero of order 2 at z 1:

(z 1)
(3.9) dg cz

I-l=l (z aj)2
dz (vl =/z 1),

where c # 0 is a constant, and a, ,an C \ {0, 1 are distinct numbers.
We denote the order of dg at z oo by v3:

(3.10) v3 -Vl 32 + 2N 2.

So the following four cases occur.

(a) v > -1 and 1)3 > --1. In this case, 3 v, 33 v3. Hence 31 + 32 + 33
2N-2.

(b) vi < -1 and v3 < -1. In this case, 31 -v 2, 33 -v3 2. Hence
fll f12 -I" f13 --2N 2.

(c) Vl > -1 and 1)3 < -1. In this case, /51 vl, /3 -v3-2. Hence
/1 +/2 --/3 2N.

(d) vl < -1 and v3 > -1. In this case, /51 -vl-2, /53 v3. Hence
/51 -/52 -/3 -2N.

For cases (a) and (c), there exists a meromorphic function g on the universal cover of
C \ {0} satisfying (3.9) if and only if

(3.11)
/1 /2 -, 2

0 (j 1 N)
a a-I -.a-at,
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holds, and for cases (b) and (d), there exists g satisfying (3.9) if and only if

(3.12) - 2 # S-" 2
=0 (j 1 N)

aj aj-1 .a--ak
holds.

Then we have the next result.

THEOREM 3.5. Let l 3 be non-integer real numbers greater than 1 and f12 a
positive integer. Then there exists da2 Meh(S2) with divisor D as in (2.6) ifand
only ifone ofthefollowing occurs"

(1) There exists a non-negative integer N and distinct complex numbers a

alv 6 C \ {0, 1 such that fl + 2 -Jr" 3 2N 2 and (3.11) holds.
(2) There exists a non-negative integer N and distinct complex numbers a

au 6 C \ {0, 1} such that 2 + 3 -2N 2 and (3.12) holds.
(3) There exists a non-negative integer N and distinct complex numbers a

aN C \ {0, 1} such that + z 3 2N and (3.11) holds.
(4) There exists a non-negative integer N and distinct complex numbers al

aN 6 C \ {0, 1} such that 2 f13 -2N and (3.12) holds.

Moreover, such a metric is unique up to the change in (3.8).

Just as in the 7-/3-reducible case, we classify the metrics for N < 2. It is easy to
show the following lemma.

LEMMA 3.6. Let m and N be positive integers, and v a non-integer real number
Consider thefollowing equations on al alv"

v m 2
(3.13) y 0 (j 1 N).

aj aj-- 1 aj--al

l<k<N

(1) If N 1, the equation has the unique solution a v/(v + m) which is

differentfrom 0 and 1.
(2) IfN 2, the equation has a solution ifand only ifm 5 1. Both solutions a,

a2 are distinctfrom 0 and 1 ifm 5k 1.

Using this lemma, we have the following non-existence and existence results.

COROLLARY 3.7. Let f12 1, and fl and f13 (> -1) be non-integerreal numbers
satisfying fl + f13 1. Then there exists no metric da2 Meh (S2) with divisor D
as in (2.6).
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Proof. This is case (1) in Theorem 3.5 for N 1. Since f12 1, the equation
(3.11) has no solution because of Lemma 3.6. ffl

COROLLARY 3.8. Let ill, f13 be non-integers (> 1) and f12 an integer satisfying
one ofthefollowing casesfor some non-negative integer n"

(1) 11 t. 13 2n 1,/2 2n + 2N + (N 0, 1, 2),
(2) /31 +/33 2n, f12 2n + 2N + 2 (N 0, 1, 2),
(3) /31-/33=2n+l,/32=2n+2N+l(N=0,1,2),
(4) /1 -/33 2n,/32 2n + 2N (N 0, 1, 2).

Then there exists an 7-[1-reducible metric dtr2 E Metl (S2) with divisor D in (2.6).

Proof. The first two cases follow from (2) of Theorem 3.5, and the others from
(4) of Theorem 3.5.

Finally, we remark on symmetry of reducible metrics. As shown in the proof of
Theorem 2.4, an irreducible metric dcr 2 is invariant under the reflection with respect
to the real axis"

(3.14) do"2
o/.z dry 2

We call a (reducible) metric symmetric if (3.14) holds.
Let dcr2 E Metl (S2) be an 7-/1- (resp. 7-/3-) reducible metric with divisor D. Then

the set of metrics with divisor D coincides with ld2, which is homeomorphic to R
(resp. R3). Hence the involution/x: Id: Id has a fixed point. In other words,
there exists a symmetric metric dcr2 Id. Moreover, one can easily determine the
set of symmetric metrics.

THEOREM 3.9. Ifdo"2 Metl (S2) is 7-[1-reducible with divisor D as in (2.6), all
metrics in Ido2 are symmetric.

If dcr2 Metl(S2) is 7-[3-reducible with divisor D as in (2.6), the subset of
symmetric metrics of Idr2 is a two dimensional totally geodesic subset of Idr2 7"[3.

Appendix A

The following lemma is easy to show.

LEMMA A. Let aj SU(2) (j 1, 2, 3) be matrices satisfying a .a2 .a3 id.
Then thefollowing inequality holds:

(A.1) COS2 C1 -l- cos2 C2 -- cos2 C3 -- 2 cos C cos C2 cos C3 _< 1,
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where -e4"iC (Cj >_ O) are the eigenvalues of the matrices aj (j 1, 2, 3). More-
over, equality holds if and only if al, a2 and a3 are simultaneously diagonalizable.
Furthermore, (A.1) yields the inequality

(A.2) C1 -t- C2 "+" C3 >"

where equality holds only when equality also holds in (A. 1).

Appendix B

This is the appendix in [RUY1]. We attach it here for the sake of convenience.
Let 1" be a subgroup of PSU(2) SU(2)/ +/- 1 }.
In this appendix, we prove a property ofa set ofgroups conjugate to I" in PSL(2, C)

defined by

Cr "= {tr PSL(2, C)Icr.I’.cr -1 C PSU(2)}.

The authors wish to thank Hiroyuki Tasaki for valuable comments on the first draft
of the appendix.

If cr 6 Cr, it is obvious that a.cr Cr for all a PSU(2). So if we consider the
quotient space

Ir := Cr/PSU(2),

the structure of the set Cr is completely determined. Define a map : Cr -- 7-/3 by

(r) := r*.r,

where 7-/3 is the hyperbolic 3-space defined by 7-/3 := {a. a* a PSL(2, C)}. Then
it induces an injective map q: Ir 7-/3 such that b o zr q, where zr" Cr Ir is
the canonical projection. So we can identify Ir with a subset rb(Ir) q(Cr) of the
hyperbolic 3-space 7-/3. The following assertion holds.

LEMMA B. The subset q(Ir) is a point, a geodesic line, or all of T-[3.

Proof.

Then we have

(B.1)

The condition o’.v

(B.2)

For each V e 1", we set

Cr, := {or e PSL(2, C) cr.v.cr -1 e PSU(2)}.

-1 e PSU(2) is rewritten as cr*.cr.v V .cr*.cr. So we have

(C,) .[3 f] Zy,
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where Zv is the center of 9/ F. In the following discussions, 1-’ can be considered
as a subgroup of SU(2) by ignoring the -t--ambiguity.

Assume 9/ :p- 4-id. If 9/is a diagonal matrix, it can easily be checked that Zr
consists of diagonal matrices in PSL(2, C). Since any 9/ F can be diagonalized by
a matrix in SU(2), we have Zr {exp(zT) lz C}, where T su(2) is chosen so
that 9/= exp(T). Hence we have

(B.3) (Cv) 7-/3 tq Z exp (iRT),

because exp (i su(2)) 7-/3.
Now suppose that F is not diagonalizable. Then there exist 9/, 9/P e F such that

9/. 9/’ y’. 9/. Set 9/ exp(T) and 9/’ exp(T’), where T, T’ su(2). Then we
have iRT t3 iRT {0}. It is well known that the restriction of the exponential map
exp li s,(2)" su(2) ---> 7-/3 is bijective. Hence we have

(C) f3 (C,) exp (iRT) f3 exp (iRT’) {id}.

By (B.1), (B.2) and (B.3), we have

(Ir) {id} (if F is not abelian).

Next we consider the case where F is diagonalizable. If F C {4- id}, then obviously

(lr) 7-/3.

Suppose F q {4- id}. Then there exists 9/ e F such that 9/ 4-id. We set 9/
exp T (T e su(2)). Since exp(RT) is a maximal abelian subgroup containing 9/, we
have F C exp(RT). Then by (B.3), we have

(Ir) exp(iRT). []

Added in Proof. After submitting the paper, the authors found a classical work of
E Klein, Vorlesungen iiberdie hypergeometrische Funktion, Springer-Verlag, 1933, in
which he investigated immersed spherical triangles with given angles 0 < ct, , 9/ <
c, allowing edges to be circular. Moreover, it was applied to the study of the
monodromy of the holomorphic function g satisfying

S(g) (c3z2 + (c2 cl c3)z + cl)/z2(z 1)2 dz2.

His motivation and formulation are closely related to our work.
Recently the authors received a preprint by M. Furuta and Y. Hattori, Two-

dimensional spherical space forms, containing an alternative proof of Theorem 2.4
based on the geometry of spherical polytopes. Moreover, they gave a considerably
simpler criterion for the reducible metrics which is euqivalent to ours as in Theo-
rem 3.3 and Theorem 3.5.



94 MASAAKI UMEHARA AND KOTARO YAMADA

REFERENCES

[B]

[CL]

[LT]

[RUY1]

[RUY2]

[Sm]

[T1]

[T2]

[UY1]

[UY2I

[UY3]

R. Bryant, Surfaces of mean curvature one in hyperbolic space, Ast6risque 154-155 (1987),
321-347.
W. Chen and C. Li, What kinds ofsingular surfaces can admit constant curvature?, Duke Math.
J. 78 (1995) 437-451.
F. Luo and G. Tian, Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc.
116 (1992), 1119-1129.
W. Rossman, M. Umehara and K. Yamada, Irreducible constant mean curvature surfaces in
hyperbolic space with positive genus, T6hoku Math. J. 49 (1997), 449-484.

A newfluxfor mean curvature surfaces in hyperbolic 3-space and applications,
Proc. Amer. Math. Soc. 127 (1999), 2147-2154.
A. J. Small, Surfaces of constant mean curvature in H and algebraic curves on a quadric,
Proc. Amer. Math. Soc. 122 (1994), 1211-1220.
M. Troyanov, "Metric of constant curvature on a sphere with two conical singularities" in Differ-
ential geometry, Lect. Notes in Math., vol. 1410, Springer-Verlag, 1989, pp. 296-306.
M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer.
Math. Soc. 324 (1991), 793-821.
M. Umehara and K. Yamada, Complete surfaces ofconstant mean curvature-1 in the hyperbolic
3-space, Ann. of Math. 137 (1993), 611-638.

Surfaces ofconstantmean curvature-c in H (--C2) withprescribed hyperbolic Gauss
map, Math. Ann. 304 (1996), 203-224.

A duality on CMC-1 surface in the hyperbolic 3-space and a hyperbolic analogue
ofthe Osserman inequality, Tsukuba J. Math. 21 (1997), 229-237.

Masaaki Umehara, Department of Mathematics, Hiroshima University, Hiroshima
739-8526, Japan
umehara@math, sci. hiroshima-u, ac. jp

Kotaro Yamada, Department ofMathematics, Kumamoto University, Kumamoto 860-
8555, Japan
kotaro@gpo, kumamoto-u, ac. jp


