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COMPACT LIE GROUPS ACTING ON PSEUDOMANIFOLDS

RAIMUND POPPER

ABSTRACT. In this paper we introduce the concept ofa G-pseudomanifold, which is an equivariant version
of the stratified spaces defined by Goresky and Mac Pherson for compact Lie group actions.

Let G be a compact Lie group acting on a topological manifold M. Then the orbit
space M/G is a topological pseudomanifold, if the action is locally linear. Recall
that a topological pseudomanifold is a space that admits a filtration

X Xn D Xn-1 D"" D Xo D X-1

such that X,, Xn-1 is a dense n-manifold, Xi Xi_l for _< n 1 is an/-manifold
(or empty), and along which the normal structure of X is locally trivial. Moreover if
G acts smoothly on M, the above is valid in the context of Thom-Mather stratified
spaces [2], [10]. For topological actions on manifolds no such structure exists in
general, however progress has recently been made using homotopically stratified
sets, developed by Quinn [8].

The objective of this work is to give an answer to the following problem: find a
class of compact Lie group actions on topological pseudomanifolds X such that the
corresponding orbit space XG is also a pseudomanifold. A solution is obtained by
considering stratified G-spaces having a conical slice at a point in each orbit, which
we call G-pseudomanifolds. These spaces extend the notion of locally linear actions
to topological pseudomanifolds, and were first introduced by the author in [7], using
links without fixed points. In the present work we remove this restriction, obtaining
a significant generalization. An example is given by compact Lie group actions on
orbit spaces.

The content of this paper is the following.
In Section 1 we define conical slices and G-pseudomanifolds. In particular, given

a locally linear G-manifold M, and a closed normal subgroup K of G, we show that
M/K is a G/Kopseudomanifold.

Section 2 deals with the orbit type refinement of a G-pseudomanifold. We also
prove the existence of principal orbits, observing that their union need not necessarily
coincide with the highest dimensional stratum in the orbit type refinement.

In Section 3 we study the corresponding orbit space, showing that it is a topological
pseudomanifold.

Smooth G-pseudomanifolds are defined in Section 4, where we prove a gene-
ralization of Mostow’s equivariant embedding theorem [6].
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1. Conical slices and G-pseudomanifolds

In this section we define G-pseudomanifolds and give some examples.
Let G be a compact Lie group.
By a G-space we mean a Hausdorff topological space X, with a continuous action

(R): G x X --+ X, such that the orbit space X/G is connected. Let (R)(g, x) g x.
We denote by G. x the orbit containing the point x, and by Gx {g G: g. x x
the stabilizer or isotropy subgroup at x. Also we denote by X/) the union of all
orbits of type(G/H) in X, see [3, p. 42], and by X X) the fixed point set of the
action.

Recall the definition of a slice; see [3, 11.4.1].
Given a G-space X, we say that a subspace Sx is a slice at a point x, if x Sx,

Sx is invariant by H Gx, and the canonical map : G x H Sx ---> X, given by
[g, x] - g x, is a G-equivalence onto an open neighborhood 1" of G x, called a
tubular neighborhood.
Now let Y be a non empty topological space; then its open cone, denoted cY,

is defined as follows: cY Y x [0, 1)/(y, 0) (y’, 0). Let [y, r] denote the
corresponding equivalence class and the vertex [y, 0]. For Y 13 we let cY {.}.

Given a G-space X there is a canonical G-action on cX, which is the following
g Ix, r] [g .x, r] where g G, x X, r [0, 1). Notice that the vertex is
a fixed point. Furthermore any invariant open neighborhood of the vertex is a slice
in cX.
A slice Sx at x is said to be linear if it is Gx-equivalent to a Euclidean space with

an orthogonal action. We say that X is locally linear if it admits a linear slice at a
point in each orbit. Since each tubular neighborhood of an orbit P in X is a vector
bundle over P, see [3], it follows that X is a topological manifold. We also call such a
space a locally linear G-manifold. For example a smooth (C) G-manifold is locally
linear [3, VI.2.4].

Definition 1.1. A G-space X is said to be stratified, if it admits a filtration

X Xm D Xm-1 D D X0 D X-1 --0

by closed invariant subsets, such that the subspace Xk Xk-1 is a topological k-
manifold (if non empty), for k 0, m. (Assume that Xm xm-).

We now define the concept of a conical slice.

Definition 1.2. Let X be a stratified G-space. Given an orbit P in Xk Xt-l,
for some k 0, m, we say that a slice Sx at a point x in P, is a conical slice of P
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at x, if the following holds: There is a compact H-space L, where H Gx, called a
link of P, together with an H-equivalence b: Sx --+ 9i x cL, for an integer i0 > 0,
and the trivial H-action on Euclidean space ti, such that

(Xk xk-1)(H) I’ Sx Sx -1 (tio x

We also allow L to be empty. (Notice in particular that x S).

Let 1-’ be the tubular neighborhood corresponding to a conical slice Sx -- )’io >( eL
of P. Then since (Xk Xk-1)<n) fq I" _- G x n Sx G/H x 9i, the integer
i0 is independent of the choice of a conical slice for P. We shall write sd(P)
io + dim(G/H).

Moreover ifeach orbit in X admits a conical slice, we have shown that the connected
components ofthe subspaces (X X-1)/) are topological manifolds, since on such
a subspace the function y sd(G y) is continuous.

Notice that for each conical slice Sxn __. fiti x c(Ln). Therefore the fixed points
of Sx can be divided into two classes, one Euclidean and the other conical. The
separation of these classes is accomplished by the condition (Xk X- fq Sxn Sx,
which is equivalent to the one given in 1.2. In other words, the fixed points of conical
slices behave nicely relative to the stratification of X.
Now we define the concept of a G-pseudomanifold.

Definition 1.3. The definition is by induction.
A (-1)-dimensional G-pseudomanifold is the empty set.
An n-dimensional G-pseudomanifold (n > 0)is a stratified G-space X, which

satisfies the following conditions:
(C1) Each orbit P in X has a conical slice Sx - fiti x cL at x, such that L is an
(n 1)-dimensional H-pseudomanifold, where H Gx and sd(P).
(C2) For each point y Sx S with b(y) (t, [l, r]), we have the relation

sd(G y) sd(G x) + sd(H l) + 1.

We shall prove in 2 that n is the topological dimension of X. Condition (C2) is
necessary in order to obtain local normal triviality.

Here are some examples.

Examples 1.4.
1. Locally linear actions. Let M be an n-dimensional locally linear G-manifold.

For n ---1 we define M to be the empty set. Claim that M with the trivial stratifi-
cation, is an n-dimensional G-pseudomanifold.

The proof is by induction on the dimension of M. Assume that n > 0. Given an
orbit P in M, let Sx be a linear slice at x, with x P and Gx H. Then Sx is
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H-equivalent to a Euclidean space E with an orthogonal H-action. Thus there is an
H-equivalence p, given by

Sx EH @ (EH)x 9t x (sq),

where .L denotes the orthogonal complement with respect to an H-invariant Rieman-
nian metric on E, i0 dim(Et/), q + 1 dim(En)+/-, and Sq is the standard q-sphere
in Euclidean space. (For q -1 we put Sq 0.)
Now if q > 0, then H acts locally linearly on Sq, since H acts orthogonally on

)’qq-1 and Sq is a smoothly embedded (C) submanifold. Then we have Mt-l) 3 Sx
Sxn Sx, since (Sq) t4 0. Therefore Sx is a conical slice of P at x. By the inductive
hypothesis, since q < n, Sq with the trivial stratification is an (n 1)-dimensional
H-pseudomanifold, where io + dim(G/H). The case q -1 is trivial.
Now given y Sx Sx with b(y) (t, [l, r]), let St .-. ko X c(Sp) be a linear

(conical) K-slice of H in Sq, where K Gy By Hi. Using an equivariant
retraction, see [3, 11.4.2], it follows that

Sy " fio x (0, 1) x St "’ fio+ko+l )< c(Sp)

is a linear (conical) K-slice of H. y in the H-manifold Sx. Thus by [3, II.4.6], Sy is a
linear (conical) K-slice of G. y in M. It follows that sd(G. y) sd(G. x) + sd(H.
l) + 1, and M with the trivial stratification is an n-dimensional G-pseudomanifold.

2. Actions on orbit spaces. Let M be an n-dimensional locally linear G-manifold
(n > 0), and K a closed normal subgroup of G such that M/K is connected. Then,
with the restricted K-action, M is also a locally linear K-manifold (see argument
below). Now G x M ---> M induces an action G/K x M/K --+ M/K, such that
the canonical projection r" M --+ M/K is (G, G/K)-equivariant. Claim that M/K,
with the K-orbit type stratification, (see [7])

M/K (M/K)m D (M/K)m-1 D D (M/K) D (M/K)- 0,

is an m-dimensional G/K-pseudomanifold, where m n k and k is the dimension
of the principal K-orbits in M.

The proof is by induction on the length of the G-orbit type filtration of M, i.e., the
difference between the highest and lowest dimension of the non empty strata in M.
For len(M) 0 it is trivial (see below). Assume that len(M) > 0.

Given an orbit P in M we shall prove as in [3], that each linear H-slice Sx at a
point x in P, for H Gx, is contained in a linear J-slice Ux at x, for J K N H.
In particular, since Ug.x g. Ux is a linear gJg--slice at g. x,this shows that M is
also a locally linear K-manifold.

Consider the smooth (Coo) action (K x H) x G ---> G, where we have (k, h)
(k’, h’) (kk’, h’h) and (k, h) g kgh. Then clearly

(K x H)e {(j,j-) K H: jKfqH}--KH--J.
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Let W be a linear J-slice at e in G; i.e., the canonical map (K x H) x j W ---> G is
a (K x H)-equivalence onto an open neighborhood of KH in G. Since

K xj(WxH)_(KxH)xW

is a canonical K-equivalence (with j. w jwj-), we obtain a K-equivalence
0" K x (W x H) ---> G onto an open neighborhood of KH in G.
Now let Sx be a linear H-slice at x in M. Then the following map 0 is a K-

equivalence onto an open neighborhood of K x in M:

K xs(WxSx) -- K x(Wx (H X HSx))--K xj((WxH) X HSx)

(K x (W x H)) xn Sx ---[g] G Xn Sx ---> M.

Since O[k, (w, s)] kw. s, it follows that Ux O(J x (W x Sx)) W Sx is a
linear J-slice at x in M, which contains the linear H-slice Sx.
We now determine conical slices in M/K.
First we notice that the K-orbit type stratification of M/K is G/K-invariant, since

Ug.x g. Ux is a linear gJg-1-slice at g.x in M, and ,g" Ux --+ Us.x is a (J, gJg-1).
equivalence. In particular, any principal G-orbit in M decomposes into a union of
principal K-orbits.

Clearly (G/K),r(x) HK/K
_

H/J, which is a Lie group isomorphism. Also

U zr(K Ux) -- Ux/J by [3, II.4.7], hence we have a (HK/K, H/J)-equivalence
S*x r(K Sx) - Sx/J. Then the following diagram commutes:

G x Sx ----+ G x n Sx G.Sx

prl [prrl] ,rr
G/K x S*x G/K X nt,:/K S*x G/K. S.

Since [p x zrl] and rr are open maps, a G-equivalence, and a bijection, it
follows that is a G/K-equivalence. Also G/K. Sx* is open in M/K. Therefore by
[3, II.4.1], Sx* is a HK/K-slice at zr(x) in M/K.

For j0 dim(U), we also have,

{(M/K)1 (M/K)J-}(HK/K) fq S (UJx * f3 (S)"K/K (sxH) *,

since Gx Gy Gx Gy, Gx f’l K Gy 1"3 K, GxK GyK, and
(k Ux) N Ux # == k a.. J; see [3, 11.4.4].

Let Sx - 9ti x c(Sq) be an H-equivalence, as in 1.4.1, with i0 dim(SH) and
q > 0. Then there is an H/J-equivalence Sx/J _[4,] tio x c(Sq/J), and hence
an HK/K-equivalence S _* 9i x c(Sq / J), for the induced HK/K-action on
sq/J. Therefore S* is a conical HK/K-slice (in M/K) of zr(P) at zr(x), because
(s*) (s")*.

Then since len(S) < len(M), (see [7]), it follows from the inductive hypothesis,
that Sq/J with the J-orbit type stratification is a compact H/J-pseudomanifold.
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Hence Sq /J is an HK/K-pseudomanifold with the required dimension, as can easily
be checked. The case q -1 is trivial.

Using the reiterated slice argument of example 1, and the determination of conical
slices in M/K given above, we can easily verify condition (C2) in 1.3. Therefore
M/K with the K-orbit type stratification, is an m-dimensional G/K-pseudomanifold.

2. The orbit type refinement

In this section we prove that a G-pseudomanifold is a topological pseudomanifold.
Moreover we also show the existence of principal orbits.

Recall the definition of a topological pseudomanifold; see 1 ], [5].

Definition 2.1. The definition is by induction.
A (-1)-dimensional topological pseudomanifold is the empty set.
An n-dimensional topological pseudomanifold (n > 0) is a (non empty) topolog-

ical space Y, which admits a filtration by closed subsets

Y Yn :3 Yn_l D’" E) Yo Y_I =,

satisfying the following conditions.
(C1) The subspace Yn Yn- is dense in Y.
(C2) Local normal triviality. For each point y Yi Yi- there exists a distin-
guished neighborhood N of y in Y, a compact (n 1)-dimensional topological
pseudomanifold

L Ln-i-1 D Ln-i-2 D D LO L_ 0,

and a homeomorphism h" N fi X cL which takes N N Yi+j+ homeomorphically
toflt xcLjforj=-I ,n-i-1.

Thus, the subspace Yi Yi- is a topological /-manifold (if non empty), for
-0 n.
If Y is a topological pseudomanifold then it is locally compact, and a CS space in

the sense of Siebenmann [9]. It can be shown that n is the topological dimension of Y,
and that every compact topological pseudomanifold can be embedded in Euclidean
space [5]. Notice that we allow n 1 in the definition of Y, as in [1, p. 61].

The following types of spaces are topological pseudomanifolds: Whitney stratified
sets [4], [5], abstract (or Thom-Mather) stratified sets [2], [10], and piecewise linear
spaces 1], [4].

For the rest of this section let X be an n-dimensional G-pseudomanifold,

X Xm [) Xm-1 D D X0 D X-1 .
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We shall prove that X is an n-dimensional topological pseudomanifold. Hence n
is the topological dimension of X and rn n. Assume n > 0.

Recall that in 1 we proved the following: given a class (H) corresponding to orbits
in any Xk Xk-l, then the connected components of the subspaces (Xk xk-1)(n)
are topological manifolds of dimension sd(P) for any orbit P intersecting such
a component. Therefore 0 < < n, since P has a link L which is an (n 1)-
dimensional H-pseudomanifold. We shall call these manifolds the strata of X.

Then there is a canonical refinement of the filtration of X, called the orbit type
refinement of X,

X Xn ) Xn_ ) X0 ) X-1 ,
where each Xi is the union of the strata of X with dimension less than, or equal to i.
We shall prove that the connected components ofeach non empty subspace Xi Xi-
coincide with the/-dimensional strata of X for 0 n.

PROPOSITION 2.2. Each orbit P G x in X has a tubular neighborhood which
is a bundle (I’, 3, l-’o, cL), where I" G x H Sx is the tubular neighborhood of P
in X corresponding to a conical slice at x, and I’o G x I Sx. Furthermore is
equivariant, z lI’o 1 and 3- Sx Sx

Proof. Let Sx be a conical slice of P at x. Consider the homeomorphism q given
by the composition - Sx x cL,Sx --+ 9i x cL --+ (li X {*}) X cL 1-’

where we assume L - 0. Then there is an equivariant map 3" F F0 given by

F --+ G xnSx [-1 Gxn(SxXCL) [lp]__ GxnS,xO Fo,

which is well defined since p and q are H-equivariant. Clearly 3-1 (Sx0) Sx.
There is a distinguished neighborhood N ofx obtained as follows. Let a" E --+ G

bealocalsectionofzr0: G ---> G/H, with E achartofG/H, eH . W anda(eH) e,
i.e., zr (E) a(z,)n.

Let U zr-1 (E). Sx and N :- (U) zr-1 (E). Sx.
Consider the associated bundle G x tt Sx with projection map zrl. Then a trivial-

ization Ol of this bundle is given by the composition [3, 11.2.4]

1() -1() XH Sx (’ X H) x H Sx E x (H x Sx) - Z, x Sx,

where tpl[g, s] (gH, a(gH)-lg.s) forg E 7t’-l(]), S E Sx.
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Hence a trivialization o of the bundle r over U is given by the following commu-
tative diagram:

r-(U) -% r;-l(:) Sx rr (r) x S x S

lxq
X cg V x cL (gl() XH S) X cg x S x cg

It can easily be shown that lSx q. Moreover we have

-((s), [l, r]) (g r(s), [a(gH)-g l, r])

for g (), s Sx, [l, r] cL.
Notice in particular, that if T is the stratum of X containing x, then U is a cha of

T at x. For L we have and the above proof is trivial.
A distinguished neighborhood of g. x for g G is given by g. N -1 (g. U),

with a tfivialization ( x 1)p-.

It can easily be shown that a basis for the neighborhood system of x is given
by the family {Nr zr-l(I3r) Sx(r)" 0 < r < 1} for Sx(r) .,.1 Dr(fftio) x crL
and Er Dr(i-i), where Dr denotes the standard r-disk in Euclidean space,

sd(G x) and crL L x [0, r)/(l, 0) (/’, 0) for L 0. Clearly, using an
equivariant retraction [3, II.4.2], Sx (r) is also a conical slice of P at x.
We shall now examine the orbit type refinement locally, using the same notation

as in 2.2.

PROPOSITION 2.3. Let N be a distinguished neighborhood (in X) ofthe point x.
Then the map tp: N r-I(U) U x cL,for L 7 0, satisfies

0
r- (U) c (xj xj_) __Y u x 1,}

U x (Lj-i-1- Lj-i-2) x (0, 1)

if O<_j <i,

if j=i,
if i<j<n,

where L Ln-i-1 D Ln-i-2 D D Lo D L-1 is the orbit type refinement of
the H-pseudomanifold L, and sd(G x).

Proof. Put on l"-1 (U) the relative filtration induced by the orbit type refinement
of X, and on U x cL the canonical filtration induced by the orbit type refinement
of L.

Then for each y Sx Sx with 0(y) (r (y), [/, r]), by 2.2 we have

(G. y) f’l .[--1 (U) 7t’-1 (). y _o or(E) z(y) x (H. l) x {r}.
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However, sd(G y) sd(G x) + sd(H l) + 1 using 1.3 (C2), and the proof is
complete.

A similar result also holds for the map if: r -1 (g. U) (g. U) x cL. For L 0
we have n with r 1, and the result is trivial.

COROLLARY 2.4. The subspace Xi Xi-1 is a topological i-manifold (if non
empty), whose connectedcomponents coincide with the i-strata ofX,for 0 n.
Furthermore Xn Xn-1 is non empty.

Proof Let T be an/-stratum in X. Then T is open in Xi Xi-1 and thus
a component, since for a distinguished neighborhood N of any point x in T, we
have x U N N (Xi Xi-l) C T, using 2.3. Hence, since U is a chart of T
(see 2.2), Xi Xi- is an/-manifold. Furthermore, if Xj Xj_i is non empty for
0 < j < n, and empty for < j < n, then given x Xi Xi-, G. x has a non
empty link L, since the dimension of L is n 1 > 0. Hence, using 2.3 again, we
obtain a contradiction. Therefore Xn Xn-1 is non empty.

Using 2.2, 2.3 and 2.4, we have the following.

COROLLARY 2.5. The map t#: N "c -1 (U) U cL is a stratum-preserving
homeomorphism, and hence len(L) < len(X).

COROLLARY 2.6. IfX is compact, then it has afinite number oforbit types.

COROLLARY 2.7. The subsets Xi in the orbit type refinement ofX are closed.

Proof. Assume X is an n-dimensional G-pseudomanifold. Given a stratum T
of X with y 6 T C Xi Xi-1, let N be a distinguished neighborhood of y in X.
Then by 2.3, N does not intersect strata of dimension strictly smaller than i. Hence
y N Xi C Xi Xi- and Xi-I is closed in Xi for 0 n. Therefore each
Xi is closed in X.

By 2.3 and 2.7, X is an n-dimensional G-pseudomanifold, with the orbit type
refinement.

COROLLARY 2.8. Let X be an n-dimensional G-pseudomanifold with the orbit
type refinement, and Y an open invariant subspace such that Y/G is connected. Then
Y is also an n-dimensional G-pseudomanifold, with the relative stratification.

Proof Let rr: X --+ X* be the canonical projection onto the orbit space of X.
Given an orbit P in X, let Sx 91i x cL be a conical slice of P at x, where H Gx
and L # 0. Then (see [3, 11.4.7]) we have

r* 7(rr) (a x H Sx(r))* S(r) Dr(Ri) x cr(L*)
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for the tube l"r corresponding to the conical slice Sx(r) of P. Hence the family
{l"r*" 0 < r < 1 is a neighborhood basis for x* in X*, since zr is open. Therefore, for
any orbit P in Y, it is possible to find a tubular neighborhood l"r of P, corresponding
to some conical slice Sx (r) of P, such that Ir is contained in the open subspace Y.
Thus Sx (r) is a conical slice of P in Y. For L 0 we have a similar result.

We now prove the existence of principal orbits in a G-pseudomanifold.

THEOREM 2.9. There exists a conjugacy class (Ho) corresponding to certain
orbits in X, called principal orbits, with type(G/Ho) > type(P) for all orbits P in
X. Furthermore Xlo) is open, has a connected orbit space, and contains X Xn-1,
the latter being dense in X.

Proof. We use induction on the length of the orbit type refinement of X. For
len(X) 0 it trivially holds locally, since by 2.4 all orbits have an empty link.
Therefore it holds globally, using the argument given below.
Now let X be an n-dimensional G-pseudomanifold, with len(X) > 0. Given an

orbit P in X, let Sx - Sx x cL be a conical slice of P at x, where L is a link
of P. Assume sd(G x) 5 n. Then L is a compact (n 1)-dimensional
H-pseudomanifold for H Gx, with len(L) < len(X) by 2.5.

By the inductive hypothesis, L has principal orbits of type(H/Ko) such that Lr0)
is open, has a connected orbit space, and contains L Ln-i-2, the latter being dense
in L.

Let 1-" _’ G x H Sx be the tubular neighborhood of P corresponding to the conical
slice Sx. Then for any non principal orbit type H/K ocurring in L, we may suppose
by conjugating that Ko C K C H with Ko K. Then K0 and K differ either
in dimension or number of components and thus cannot be conjugate in G. Since
subgroups of H which are conjugate in H are, afortiori, conjugate in G, it follows
that

I"(Ko) "* (G x t-I Sx)(Ko) G 1-I (Sx)(Ko)
which is open in 1-’, because

,o J Sx L(Ko) x (O, 1) if Ko:H,
(Sx)(Ko) ISxXCL if K0=H,

since for K0 H we have L(ro) LH L. Therefore, we obtain

i-, -- )fto),(Ko) zr(F(Ko)) (G t,1 Sx)(to) (Sx *

and this is connected, and open in F* since r X --> X* is open.
Now Sx has a canonical filtration induced by the H-orbit type refinement of L.

Hence by 2.3, for io dim(Sx) and j -1 n 1, we have Sx f3 Xi+j+I
(Sx)io+j+l _o SOx x cLj, and therefore

Fi+j+I F I")Xi+j+ G x n (Sx)io+j+l.
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Clearly F(ro) D F Fn-1, since (Sx)(r0) D Sx (Sx)n-i+io-1, hence F l"n-1 is
dense in , and the theorem is valid locally in X In particular, it follows that *(K0)
is dense in 1-’*.

If sd(G x) n we have Sx SxH Sx, and the above statements are trivial.
We now extend the theorem globally, using the following argument given in [3].
By above, for all x* X* X/G we have a neighborhood Ux* of x* which

contains an open, connected, dense set Wx*, such that all orbits in Wx* have the same
type, and all other orbits in Uff have type strictly smaller.

Let H be any closed subgroup of G and CH) int(X*H)). Then x*
Wx* consists of orbits of type(G/H) and, in this case, C(H) D Ux*. Thus C(H) is both
open and closed in X*. Hence C(n0) X for some (H0) (now fixed), since X* is
connected. Also C(K) 0 if K is not conjugate to H0.

Then X* is open, since X* f Ux* Wx* and is also dense. All other orbits(no) (n0)
have type strictly smaller than that of G/Ho. If D is a component of X* then,(no)’
since Wx* is connected for each x*, we see that D- is open (and closed) in X*. Hence
X* D is connected.(Ho)

Therefore X(Ho) is open, and has a connected orbit space. Also since X(Ho) is dense
in X, it follows that X(Ho) contains X Xn-, the latter being dense in X.

We now prove the result stated at the beginning of this section.

THEOREM 2.10. Let X be an n-dimensional G-pseudomanifold. Then X is an
n-dimensional topological pseudomanifold.

Proof Use induction on the dimension of X. For n -1, X is empty and both
concepts coincide.

Let X be an n-dimensional G-pseudomanifold (n > 0) and P a given orbit in
Xi Xi- for some 0 n. If N is a distinguished neighborhood of a point
x in P (see 2.2), then for a given trivialization N r-1 (U) _0 U x cL, by 2.3 we
have

N q Xi+j+ tp U x cLj i x cLj for -1 n 1,

since U is a chart of the/-manifold Xi Xi-1 (see 2.4).
However n 1 < n, hence by the inductive hypothesis L is an (n 1)-

dimensional, compact topological pseudomanifold. Then using 2.7 and 2.9, X is an
n-dimensional topological pseudomanifold.

COROLLARY 2.11. The union of all principal orbits X(Ho) is an n-dimensional
topological pseudomanifold embedded in X.

COROLLARY 2.12. Let T be a stratum ofX with dim(T) n, intersecting orbits

of dimension t. Then dim(T) _< n h + 1, where h is the dimension of the
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principal orbits in X. Equality holds, if and only if there is an orbit P intersecting
T, and a conical slice Sx - fiti x cL of P at x, such that H Gx acts transitively
on L.

Proofl Let P be an orbit in X intersecting T and Sx a conical slice of P at x.
There is no loss in generality in assuming x e T.

Then F " G xH Sx is a tubular neighborhood of P and by 2.9, there is a point
y Sx with sd(G y) n. Let T’ be the stratum of X which contains y. Then for
no Gy, using 1.3 (C2) we have

n=dim(T’)=dim(T)+(ko+dim(H/Ho))+ 1 >dim(T)

3. Stratification of the orbit space

In this section we study the orbit space of a G-pseudomanifold.
Let B X/G be the orbit space of an n-dimensional G-pseudomanifold X, with

the orbit type refinement, for n > 0. Denote by zr: X ---> B the canonical projection,
and let zr(A) A* for A C X.

Given an orbit P in Xi Xi-l, for 0 n, then if F G x H Sx is the
tubular neighborhood corresponding to a conical slice Sx - 9i x cL of P atx, where
H Gx, we have

(X Xi_l)H A r* (G x tt Sx)* -- )i0.

Therefore the connected components of the subspaces (Xi Xi-)H) are topological
manifolds, called the strata of B. Clearly each stratum T in X projects onto a stratum
T* of B with dim(T*) dim(T) t, where is the dimension of the orbits in X
intersecting T.

This leads to the canonical filtration of B, induced by the orbit type refinement
of X,

B ... B Bk-! 2)... :) B-1 ,
where each B is the union of the strata of B with dimension less than, or equal to k.
We shall prove that the connected components ofeach non empty subspace Bk Bk-1,

coincide with the k-dimensional strata of B, for all k.

LEMMA 3.1. The abovefiltration has thefollowing properties.
(a) B Bm for m n h, where h is the dimension ofthe principal orbits

in the n-dimensional G-pseudomanifold X.
(b) B Bm-1 is a dense in B.

Proof For an n-dimensional stratum T of X, it follows from 2.9 that T* is an
m-dimensional stratum of B. If T is a stratum of X with dim(T) - n, then by 2.12,
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dim(T*) dim(T) < n h 1 m 1, where is the dimension of the orbits
in X intersecting T. This proves (a).

For (b) note that

B=rr(X)=zr(X Xn-1) C Tg(X Xn-1)-’B Bm-1. I’-!

Now given an an orbit P in X, let (1", r, F0, cL) be a tubular neighborhood of P
corresponding to a conical slice Sx Sx x cL of P at x, as in 2.2. Then there is a
map/9" 1"* ---> 1", given by p(z*) r(z)* for z 1", which is well defined since r
is equivariant.

Let N r- (U) be a distinguished neighborhood of a point y in P, with V
zr(U). Clearly [3, II.4.7], zr(N) 1"*

_
Sx/H and zr(U) 1" Sx, for H Gx.

Then zr(N) p-1 (V) is a distinguished neighborhood of y* in B.
Now assume L 0. Put on p-1 (V) the relative filtration in B, and on V x c(L/H)

the canonical filtration induced by the projection zr’: L -, L/H.

PROPOSITION 3.2. There is a map ap" p-l(v) V X c(L/H), which is a
stratum-preserving homeomorphism, commuting with the projection to V.

Proof. Given a trivialization tp over U, let p ct o [tpl] o fl- in the following
diagram, which commutes by 2.2"

v-(U) ----+ p (V) -----+ Sx/H

U x cL
rxcr’ 1- o----, V x e(L/H) ----> S’x x c(L/H).

Clearly is a stratum-preserving homeomorphism; see proof of 2.3.

For L 0 we have p- (V) V C B Bin-1.

COROLLARY 3.3. The subset Bk in thefiltration ofB is closed, and the subspace
Bk Bk-1 is a topological k-manifold (ifnon empty), whose connected components
coincide with the k-strata ofB for k 0 m.

We now state our main result, which shows that both X and X/G belong to the
same class of spaces, namely topological pseudomanifolds.

THEOREM 3.4. Let X be an n-dimensional G-pseudomanifold. Then the orbit
space X/G is an m-dimensional topological pseudomanifold.

Proofi By induction on length of the orbit type refinement of X. For len(X) 0
we have B B Bm-1 using 2.9 and 3.1, and the proof is trivial.
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Now let X be an n-dimensional G-pseudomanifold with len(X) > 0. If y*
Bk Bk_ for some k m, we consider the neighborhood p-1 (V) of y*, as given
in’3.2.

Then we have

p-1 (V) f’) Bk+j+l -- V c(L/H)j
_
k c(L/H)j,

for j -1, m k 1, since V is a chart of Bk Bk-1.
However since len(L) < len(X), it follows by the inductive hypothesis that L/H

is an (m k 1)-dimensional, compact topological pseudomanifold. For k m,
the proof is trivial.

Therefore, by 3.1 and 3.3, B is an m-dimensional topological pseudomanifold.

4. The embedding theorem

In this section we define smooth G-pseudomanifolds. Moreover we prove a gen-
eralization ofMostow’s smooth equivariant embedding theorem, see [6], for compact
smooth G-pseudomanifolds.

Definition 4.1. A Hausdorff topological space is said to be smoothly stratified if
it admits a filtration

X Xn Xn-1 "" Xo X-1 J

by closed subsets such that Xi Xi-1 is a smooth (C)/-manifold (if non empty) for
0 n. In this case we say that X is a smooth stratifiedspace. In addition, ifX is

also a G-space, and each non empty Xi Xi-1 is invariant, with a smooth restricted
G-action, we say that X is a smooth stratified G-space. We call the connected
components of each Xi Xi- the strata of X. (Assume that Xn Xn-1.)

Definition 4.2. Let X, Y be smooth stratified spaces and f: X Y a continuous
map.

(i) f is smooth if it is stratum-preserving (i.e., maps each stratum of X in a stratum
of Y), and smooth when restricted to the strata of X.

(ii) f is a smooth embedding if it is a topological embedding which is also stratum-
preserving, and a smooth embedding when restricted to the strata of X.

(iii) f is a submersion if it is open and surjective, a stratum-preserving projection
(i.e., maps each stratum of X onto a stratum of Y), and a smooth submersion when
restricted to the strata of X.

(iv) f is a: diffeomorphism if it is a homeomorphism and f, f-1 are smooth.

Now let H be a closed subgroup of G, and S a smooth stratified H-space. Then
we show that G x H S is canonically a smooth stratified G-space.
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Notice that the twisted product is the orbit space of a free action on the Cartesian
product. Then the projection p: G x S ---> G x n S induces a smooth structure on the
strata of G x n S such that p is an open submersion, since G x n (Sk Sk-1) is the
orbit space of the smooth H-manifold G x (S S_1) for any non empty S
in S. In particular, the left action of G on each manifold G x n (Sk Sk-1) is also
smooth, hence G x n S is a smooth stratified G-space.
Now let or: E ---> G be a local section at eH of zr0: G --+ G/H with or(ell) e.

Then the following diagram commutes:

zrO-l(E;) xS & (E x H) xS -- E x (H xS) - E x (H xS)

,P p’ .,1 xp" .,I,1 xOn
7/"0 l(E) X H S (N X H) xn S -- E x (H xn S) ---> 2 x S.

Therefore, since the action map OH is also a submersion, it follows that the
trivialization zr-1 (E) x H S

_
E x S is a diffeomorphism. In particular, the canonical

map S G x H S given by s -> [e, s] is a smooth embedding.
We now define the concept of a smooth G-pseudomanifold.

Definition 4.3. We use induction.
A (-1)-dimensional smooth G-pseudomanifold is the empty set.
An n-dimensional G-pseudomanifold X, n > 0, is said to be smooth if it satisfies

the following conditions.
(C1) With the orbit type refinement, X is a smooth stratified G-space.
(C2) Each orbit P in X has a conical slice Sx -’ 9ti x cL at x, with L an (n 1)-
dimensional smooth H-pseudomanifold, where H Gx and sd(P).
(C3) The canonical map : G x H Sx ---> G. Sx is a diffeomorphism.

Examples 4.4.
1. Smooth actions. Let M be an n-dimensional smooth G-manifold. For n 1

we define M to be the empty set. Claim that M is an n-dimensional smooth G-
pseudomanifold.

The proof is by induction on the dimension of M.
Assume that n > 0 and choose a G-invariant Riemannian metric on M. Given

an orbit P in M, choose a point x e P with H Gx. Then there is a Riemannian
normal coordinate system Sx at x of radius r > 0, which is the union of all geodesic
segments of length less than r, starting from x in a direction orthogonal to P. Then
Sx is H-equivalent to Nx Tx (G. x) -L, the orthogonal complement in Tx (M), called
the normal space to P at x, which has an orthogonal H-action given by the slice
representation; see [3, p. 174]. It follows, see [3], that Sx Sx(t) is a linear slice at
x for some.t < r, and M is a locally linear G-manifold.

Therefore it follows from example 1.4 (1) that M is also an n-dimensional G-
pseudomanifold. Moreover since the canonical map do: G x H Sx ---> G. Sx is a
diffeomorphism of smooth G-manifolds, see [3, p. 308], there is a natural smooth
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structure on each non empty manifold Mi Mi-1 such that the inclusion in M is a
smooth embedding. In particular, G acts smoothly on each Mi Mi-l.

Using the same notation as in 1.4 (1), we have a conical slice of P at x,

&
_

N,
_

Nx (N)- io x (sq),

where i0 dim(Nff) and q + 1 dim(Nff) +/- n sd(P). If q > 0, then since Sq

is a smooth H-manifold and q < n, it follows from the inductive hypothesis that sq
is an (n 1)-dimensional smooth H-pseudomanifold for sd(P). Moreover
the map : G x n Sx --+ G Sx is a stratum-preserving homeomorphism; see proof
of 2.9. Then it follows that is a diffeomorphism of smoothly stratified G-spaces,
since the strata of Sq are (C) embedded submanifolds. The case q -1 is trivial.

Therefore M is an n-dimensional smooth G-pseudomanifold.
2. Actions on orbit spaces (smooth case). Let M be an n-dimensional smooth G-

manifold, n > 0, and K a closed normal subgroup of G such that M/K is connected.
Since M is locally linear it follows from 1.4 (2) that M/K is a G/K pseudomanifold,
which we claim is also smooth.

The proof is by induction on the length of the G-orbit type refinement of M. For
len(M) 0, it is trivial. Assume that len(M) > 0.

Since the invariant G-strata in M (i.e., G. S, for a stratum S in M) have a local
product structure, we can put a smooth structure on the invariant G/K-strata in M/K
such that zr" M --+ M/K is a submersion; see 2.4. For simplicity we call the map
zr a (G, G/K)-submersion. In particular, G/K acts smoothly on each non empty
(M/K)i (M/K)i_I.

Using the same notation as in 1.4 (2), let Sx - io x c(Sa) be a conical H-slice of
an orbit P (in M) at x, with q > 0, where H Gx. Then Sx* 9i x c(Sa/J) is a
conical HK/K-sliceofzr(P) atzr(x), where J KH. Since len(Sa) < len(M), it
follows from the inductive hypothesis that Sa /J is a smooth HK/K-pseudomanifold.

Consider again the diagram given in 1.4 (2). Then clearly zrl: Sx --+ S is
an (H, HK/K)-submersion, because rr’: Sa --> Sa/J is a (H, H/J)-submersion.
Hence the map p zrl is also a submersion. In addition, zrl and zr are submersions;
therefore the map [p x zr [] is also a submersion and since is a diffeomorphism, see
4.4 (1), we conclude that is a diffeomorphism. The case q -1 is trivial.

Therefore M/K is a smooth G/K-pseudomanifold.
Moreover we can also define smooth pseudomanifolds similarly to 4.3, and prove

that the orbit space of a smooth G-pseudomanifold is a smooth pseudomanifold. In
particular, it can easily be shown that the canonical map (M/K)/(G/K)

_
M/G is

a diffeomorphism of smooth pseudomanifolds.

We shall now formulate the equivariant embedding theorem.
This theorem is a generalization of the classical smooth equivariant embedding

theorem of Mostow, see [6], which is valid for G-manifolds.
Our result is the following.
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THEOREM 4.5. Let X be a compact smooth G-pseudomanifold. Then there is
a Euclidean space 9m with an orthogonal G-action, together with an equivariant
smooth embedding O" X --> fitm.

Proof. By induction on the length ofthe orbit type refinement of X. For len(X)
0, the statement follows from the smooth equivariant embedding theorem of Mostow,
see [6], since by 2.4 all orbits in X have an empty link.

Let X be an n-dimensional smooth G-pseudomanifold with len(X) > 0. If P is
an orbit in X, let Sx be a conical slice of P at x, as given by 4.3 (C2). Then, there is
an H-equivalence : Sx ---> D(i, 1) x cL, with Gx H, where L is a compact
smooth H-pseudomanifold, and H acts trivially on D(ffti, 1) the open unit disk of
fiti. Assume that L - 13. Clearly Sx with the canonical stratification induced by L,
is a smoothly stratified H-space.
Now if 1" is the tubular neighborhood of P corresponding to the slice Sx, then

the map -1. I" G Sx ---> G x 14 Sx is a G-equivariant diffeomorphism, where
the domain has the relative stratification, and the range the canonical stratification
induced by Sx, using 4.3 (C3). In particular, it follows that Sx is smoothly embedded
in X.

Since len(L) < len(X), by the inductive hypothesis there is a Euclidean space
m0 with an orthogonal H-action, together with an equivariant smooth embedding
01" L --+ mo.

Therefore there is an H-equivariant smooth embedding 02" Sx ---> V, where 02
o (1 x cO1) and V 9ti 9t fitno, which has an orthogonal H-action given

by the sum of these representations, with H acting trivially on 9i and 91. Here
c01" cL ---> c)m C ) )mo.

Let D(V, r) {v V: Ilvll < r}, and c(L, r) L x [0, r)/(l, O) (l’, O)for
0 < r < 1. Using a suitable homothety, we may assume that.there is an H-equivariant
smooth embedding of Sx into D(V, ,/).

By symmetry there is an H-equivariant smooth embedding of Sx(r) -1
{D(i, r) c(L, r)} into D(V, r,/). It can easily be shown using an equivari-
ant retraction, see [3, II.4.2], that Sx (r) is also a conical slice of P at the point x.

Hence the following composition is a G-equivariant smooth embedding"
-1F -----> G X H Sx

[ix02]
---+ G X H D(V, Vc) [lxi] GXHV.

For L 0, the above is trivially satisfied.
To conclude the proof, we shall give an equivariant smooth embedding of G x 14 V

into Euclidean space.
Using [3, 0.5.2], it follows that there exists an orthogonal representation of G on

some Euclidean space V0 and a point v0 V0 with Gv0 H. Now by [3, 0.4.2],
the orthogonal representation of H on the Euclidean space V given above may be
extended to an orthogonal representation of G on some Euclidean space V’ V such
that this inclusion is H-equivariant. Then, G acts orthogonally on W V0 V’ via
the sum of these two representations (i.e., diagonally).
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Consider the subspace v0 + V in W, then by a similar argument to the one given in
the proof of [3, II.4.4], there is an equivariant map G. (vo + V) ---> G/H, whose fiber
over eH is v0 -t- V. Since H is closed, it follows from [3, 11.3.2] that the canonical
map ct given by G x n V G x n (v0 + V) ---> G (v0 + V), is a G-equivalence.

Clearly G x t4 V is a smooth G-manifold, see the remark after 4.2, and since the
canonical projection G x V --+ G x/4 V is a submersion, it follows that c is smooth
into W. Now let or: E --+ G be a local section of zr0: G ---> G/H at ell, with
cr (ell) e. Consider the following trivialization &, (see proof of 2.2):- -rollZ x V ----+ GxnV --=-> Gxn(v0+V) ----> W -----> W.

Then &(gH, 0) (g.vo- v0, 0) and 5(ell, v) (0, v) for gH P,, v V. Thus
&. is injective at (ell, 0), and hence a. is injective at [e, 0].

Moreover given v V with Ho K, let S be a linear K-slice at v in V, i.e.,
S v + V for some K-invariant linear subspace V1 inside V.

Then the map

G xx V ------> G xt4 (H x/ S) -----> G xt4 (H. S) -----> W,

coincides with the canonical map G x x V1 - G x x (vo + S1) G (v0 + S).
Therefore, using an argument similar to the one given previously, c, is injective at
[e, v]. Hence by equivariance, a, is everywhere injective, and consequently a is a
smooth equivariant embedding of G x n V into W.

Then the following map/3 is a G-equivariant smooth embedding:

-1 [lx02] ) [lxi] a
F GxS GxD(V, GxHV W.

Now given > s > > 0, let f: 91 --+ fit be a smooth function such that

f(r)=l for r<_t,

f(r) # O for r < s,
f(r)=O for r>s.

Let p: F ---> [0, 1) be the smooth invariant function obtained from the radius r
of cL, which is well defined by 2.2, since H acts trivially on r. Then we can define
a smooth equivariant map ap: 1-’ ---> W by y -> f(p(y)) (y), for y 1". Since
X/G is Hausdorff and (G xn Sx(s))/G Sx(s)/H is compact, where the closure
is taken in Sx, it follows that p- ([0, sl) is closed in X. Therefore ap extends to a
smooth equivariant map on X.

Also the smooth invariant function ),: 1" ---> 9t, given by y -> f(p(y) s/t) for
y 6 F, extends to a smooth invariant function on X.

Thus for each orbit P in X we have an orthogonal representation of G on an
Euclidean space Wx, and a smooth equivariant map aPx: X ---> Wx, which is a smooth
embedding on the tubular neighborhood Fx corresponding to the conical slice Sx(t)
of P at x.
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Additionally, we have a smooth invariant function ’x" X 9l, which is non zero
exactly on Fx.

Since X is compact, it can be covered by finitely many tubular neighborhoods
Fx, Fxk. Let O" X Wx Wxk 91k

_
91m be given as follows:

O(x) (x (x) aPx (x), ?’xt (x), ’x (x)) for x e X.

This map is clearly smooth and equivariant.
If x, y Fxp and O(x) 0(y), then for some p 1 k we have ’x (x)

’x(Y) O, which implies that x, y l"x and hence that x y, since aPx is
injective on Fx. Therefore 0 is injective and a topological embedding. Because
is a smooth embedding on Fx for all p, it follows that 0 is a smooth equivariant
embedding.
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