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NON-LINEAR BALAYAGE AND APPLICATIONS

MURALI RAO AND JAN SOKOLOWSKI

ABSTRACT. A theory of capacities has been extentively studied for Besov spaces 1]. However not much
seems to have been done regarding non-linear potentials. We develop some of this here as consequences
of the form of certain metric projections.
The non-linear potential theory is used to derive the form of tangent cones for a class of convex sets

in Besov spaces. Tangent cones for obstacle problem arise when studying differentiability of metric
projection. Characterising the tangent cones is the first step in these considerations. This has been done
in some of the Sobolev spaces using Hilbert space methods. In this article we describe tangent cones
for obstacle problems precisely, using non-linear potential theoretic ideas, for all Besov spaces BPa’q,
< p < oo, <q < oo, u > 0.

1. Introduction

Classical or linear potential theory has played afundamental role in boundary value
problems. A particular case of these potentials, the so called equilibrium potentials,
and the resulting capacity theory are crucial in the description of small sets. In the
non-linear setting, we find a very well developed theory of capacities and capacitary
potentials in the literature; our main reference is 1 ]. However not much is said about
non-linear potentials.

Our main objective in this paper is the development of a theory of non-linear
potentials. We will develop some properties of these potentials that are analogues of
their classical counterparts. The theory is non linear because the sum oftwo potentials
is not necessarily a potential. Our main method of attack is the determination of the
form of metric projections onto special convex sets.

In Section 2 we introduce kernels on IiN with values in q’ (Lp’ (1MI)) spaces. The
conditions on these kernels are general enough to include the Besov B’q spaces,
1 < p < oo, 1 < q < oo, c > 0. The action of any lq(LP(1M[))function on
this kernel then determines a potential on lN and the action of any measure on IRN
determines a potential on q’ (Lp’ (M)). The main result of this section, Theorem
1, characterizes the elements of q’ (Lp’ (M)) which are non-negative on elements of
q (Lp (M)) giving rise to non-negative potentials on IiN as potentials of non-negative
Radon measures on IN.
We will make crucial use of Theorem in Section 3 to introduce balayage and

capacitary potentials in this setup. These happen to be elements of smallest norm
in suitable closed closed convex sets. It is shown that these are given as nonlinear
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potentials. It might seem that Theorem 2 is a consequence of the results in [1].
However note that in 1 ], two versions of a p capacities are given. A first version
presented in pp. 19-23 is valid only for special kernels (such as Bessel Kernels). As
the proof on p. 22 shows one needs the (distributional) inverse of such kernels and
the fact that positive distributions are measures. This argument does not extend to the
context of Besov Spaces. In 1 ], another version of a p capacities is developed in
Sections 2.3-2.5 precisely for this purposemsee the remarks on p. 85 and p. 104 of
1]. These remarks show that the authors consider the theory of capacities developed

for Bessel kernels in pp. 22-23 inadequate to deal with Besov Spaces. A nice abstract
theory of nonlinear capacities is developed. To do this the authors need a version of
the min-max principle which, while very interesting, is not exactly easy. On the other
hand its applicability in the context of Besov Spaces has not gone beyond a theory
of capacities. In particular it is not clear how this can be used to extend balayage
theory for Besov Spaces. And this is precisely what is needed to get tangent cones.
Balayage has not, to our knowledge, been discussed in the nonlinear setting. We do
this in Section 3.

In Section 4 we develop this nonlinear balayage further. We prove that capacity
zero sets are subsets ofpoles of non-linear potentials, that the set of non-linear poten-
tials while not necessarily convex is necessarily complete etc. Those are counterparts
of results for classical potential theory. Finally, in Section 5, the results of Sections 2
and 3 and the characterization of Besov BP’q spaces given in Chapter 4 of 1] allows
us to precisely describe the form of the tangent cone a(z) for any z in the convex
set

J={fBPa’q(lRN) lf(x)>ap(x) q.e.}, 1 <p,q <o,a >0.

This result of the paper generalizes the previous results [3],[4],[5] obtained in the
framework of the Hilbert space theory of Sobolev spaces combined with the linear
potential theory to the general setting of non-linear potential theory in the Besov
spaces.

2. A general result

We derive a result for q (Lt’) spaces which will be useful for applications. The
same result can be proved for the LP spaces using the same arguments.

Let M[ be a measure space with a a-finite measure v. Let

where N is the set of non-negative integers.
Fix 1 < p, q < cx, and let

Ilf(’, n)l[ f_ If(Y, n)lPv(dy) f If(y, n)[Pv(dy).
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The space lq(LP(1V)) is defined as the set of f f(y, n), y e 1MI, n e N such that

Ilfllp,q (nrllf(’, n)ll,) w <

i.e., the sequence IIf(’, n)llp q. The space q (LP(I)) is a reflexive Banach space
with the dual space (lq (Lp (/]I)))’ q’ (Lp’ ()).

For any f f(y, n) we write

ff(y,n)v(dy)=ff(y,n)v(dydn).
Definition 1. By a kernel T on X we mean a non-negative function T (x, y, n),

x e ]RN, y e 1VII, n N, such that:

1. 0 < T; for each fixed (y, n), T(., y, n) is continuous on ]RN with compact
support. For each x ]R, T(x, y, n) is measurable in (y, n).

2. For each compact set K C ]RN,

T(x, n)dx lq’(Lp’(I)).Y,

3. There exists a non-negative A q (LP (1VII)) such that

EnN f T(x, y, n)A(y, n)v(dy) f T(x, y, n)A(y, n)v(dy dn)(x)

is stricly positive on ]RN.

Remark 1. For all non-negative f q (Lp (1)), the integral

Tf f T(x, y, n)f(y, n)v(dy dn)

is well-defined on ]RN. Tf is a lower semicontinuous function on ]RN, from condition 1
above.

For each non-negative measure/z on ]R the integral

f T(x, y, n)lz(dx)

is a well-defined non-negative function on 1VII x N.

Remark 2. Condition 2 above implies that for each f lq (LP (1VII)),

Tf e Loe(R’). (1)

Moreover, the H61der inequality implies that T maps q (LP(1VII)) continuously into
L () for each where

{/ I/ non-negative Radon measure, / q’ (Lp’ (1VII))}.
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Assumption 1. We assume in the rest of the paper that the kernel T is such that
Tf 0 implies f=0. We do not give conditions on T validating this. In situations of
interest, namely Besov spaces, this is true: See Theorem 4.17 in 1 ].

2.1. Quasi-null sets.
Now, we need the notion of a quasi-null set or a set of capacity zero.

Definition 2.
that

A set is called a quasi-null set if S C/3 for a Borel set/3 such

/3) 0 for all

A countable union of quasi-null sets is quasi-null.
A property holds quasi everywhere, written q.e., if it holds except perhaps for a

quasi-null set.
If f . q (Lp (1VII)), it is easily seen from the H61der inequality that the set

{x TIfl(x) }

is quasi-null. In particular, for each f . q (Lp (]’[)), Tf is q.e. well defined.
Condition 2 above implies, of course, that quasi-null sets are of Lebesgue measure

zero.
We record another simple consequence:

Consequence. If a sequence {fn} C lq(LP(l)) tends to f a.. lq(LP(l)) then
for a subsequence Tfn tends to Tf pointwise quasi-everywhere.

Indeed, choose a subsequence {fn, so that

"]i A, A,-, IIp,q <

Then, by Fubini’s theorem and the HOlder inequality, for any/z 9Jr,

f ITf,-Tfn,_,ldlz <_ i f TIfn,

_< illfn, fn,_, Ilp,qll/zllp,,q, < oz.

Thus the/z-measure of the set

{x 2ilTf,- Tf,,_,l(x)-

is zero for every
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2.2. Main result.
With this setup we have the following theorem.

THEOREM 1. For g q’ (Lp’ (1)) thefollowing are equivalent:

1. f g(y,n)f(y,n)v(dydn) > Oforall f lq(LP(M)) such that Tf > 0 q.e.
on IRiv.

2. g lzfor some non-negative Radon measure lz on 1N.

Proof. We give the proof in simple steps.

Step 1. Let

{h lq’(Lp’ (1)) h ’/z for some non-negative Radon measure

We claim E is a closed convex cone in q’ (Lp’ (1)).
The only item not at once clear is the closedness of E. Let {hk} C E converge to

h q’ (Lp’ (M)). By choosing a subsequence if necessary we may assume hk(y, n)
converges to h(y, n)/z-a.e.y for all n. If hk ’lZk we have

f hk(y, n)a(y, n)v(dy < [[hkllp,,q, llallp,qdn) (2)

The fight side is bounded in k because {hk} converges in q’ (Lp’ (/)).
Now, , being a strictly positive lower semicontinuous function, is bounded below

on compacts. From (2) one concludes that {/Zk(K)} is bounded for each compact K.
By choosing a subsequence ifnecessary we may assume that there is a Radon measure
/x such that

lim f o(X)k(dX)= f
for each continuous function tp with compact support in v. Since by assumption,
for each (y, n) M x N, T (x, y, n) is continuous in x and has compact support, and
since hk(y, n) converges for v-a.e.y and all n to h(y, n), we have for v-a.e.y and all n

h(y, n) likmhk(y, n) likm Izk(y, n) f/z(y, n).

This shows that h 6 and thus is closed.

Step 2. We will show that

{f lq(LP(1V)) f F(y,n)f(y,n)v(dydn) > Oforall F }
{g lq(LP(1VII)) Tg > 0q.e. on]v}. (3)
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The set on the left in (3) clearly contains that on the fight. On the other hand let
f E q (Lp (1)) be such that

F(y, n)f(y, n)v(dy dn) > 0 for all F E E.

Since, Ifl lq (LP(/)) and F q’ (Lp’ (1)),

oo > f If(Y, n>lF(y, n>v(dy dn) f If(Y, n>lT(x, y, n>/z(dx)v(dy dn>

Fubini’s theorem permits interchange of the order of integration. Therefore, for all
non-negative measures/z on N such that :/z q’ (Lp’ (1)),

o <_ f f(y,n)f(y,n)v(dydn) f(Tf)(x)tz(dx). (4)

If/Z 6 ffYt, for any Borel set/3,/zB also belongs to 9Jr, where/zt is the restriction of
/z to/3. From (4) we see that the set {Tf < 0} has/z-measure zero for every/z
i.e., Tf > 0 q.e. Thus the sets are identical.

Step 3.
suppose

This is the last step in the proof. To this end let g q’ (Lp’ (1)) and

g(y, n)f(y, n)v(dy dn) > 0 for each f such that Tf > 0 q.e. (5)

We want to show that g E. If not, by the Hahn-Banach theorem, there is a function

0 q (Lp (1)) and a e ]R such that

F(y, n)o(y, n)v(dy dn) > a for all F E (6)

but

g(y, n)o(y, n)v(dy < .dn)

Now is a cone so XF for all X > 0. From the first inequality in (6) with F
replaced by kF, we get

f
) J F(y, n)o(y, n)v(dy dn) > a for all . > 0.

Dividing by k and letting . -- oo we infer that

(7)

F(y, n)o(y, n)v(dy dn) >_ 0 for all F E
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which, by step 2, implies

To(x)>O q.e. onR

This last inequality in turn implies, by (5), that

g(y, n)tp(y, n)v(dy >dn) O.

But then, by the second inequality in (6), we must have c > 0. However, by (7), this
cannot be valid since . can be chosen arbitrarily small.

This contradiction completes the proof.

3. Non.linear balayage

To motivate and explain the term non-linear balayage let us recall some classical
potential theory.

Let f2 be a bounded domain in ]R: and A the Dirichlet-Laplacian. A lower semi-
continuous function u on f2 is called superharmonic if, in the sense of distributions,
Au __< 0 in f2. Let G be the integral kernel of the operator (-A)-; a famous result
of E Riesz states"

Let u > 0 be superharmonic in ft. Then there is a unique Radon measure/z and a
harmonic function h such that

u(x) f G(x, y)lx(dy) + h(x).

When h 0, u is called a potential and/z its Riesz-measure. This result is basic in
classical potential theory.

The balayage or sweeping process of H. Poincar6 is the following.
Let/z be a measure, p G/z its potential and K a compact subset of f. Let q be

the lower semicontinuous regularisation of

inf {u: 0 < u superharmonic, u > p on K}.

Then q is a potential with its Riesz-measure v concentrated on K. The measure v is
called the balayage of/z on K. We shall also say that q is the balayage of p on K.
Now suppose that/z has finite energy:

Then G/x /-/d (fl). H. Cartan proved that q is nothing but the "projection" of p on
the closed convex set

{u" uHd(f2),u>p q.e. onK}.
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In other words "balayages" are special cases of projections ,onto convex sets.
We hope this explanation will be usefull in motivating our nomenclature.
Keeping the notation of previous section, let denote the following space of

functions on

{Tflf lq(LP(1VI[))}. (8)

If u , u Tf, we define

Ilull Ilull Ilfllp,q,

Then is a Banach space. By suitable choices of the kernel T and the space M we
get the Besov space BPa’q, c > 0. We return to this later.

Remark 3. Condition 2 on the kernel T guarantees that

C Lo(RN)
We have seen that if a sequence {uk in 1 converges to u e ] then a subsequence of
Uk (x) converges to u (x) for quasi every x.

Remark 4. Using the strict convexity of LP-spaces it is not difficult to see that
every closed convex set in has a unique element of smallest norm.

Theorem 1 permits the introduction of balayage into/:
Let h be any measurable function on IRN and let

h {U IU > hq.e. }. (9)

Assume Eh is not empty. From the above remarks we infer that Eh is a closed convex
subset of ] and there is a unique element of smallest norm in Eh.

This element of smallest norm we call balayage of h and denote it by 7h.
Let us look at this a bit more closely. Let

Rh To, o q (LP (I))

Then Ttp > h q.e. and for any > 0 and any f q (Lp (/)) such that Tf > 0 q.e.,

T(o+tf) > h q.e.

In the other words tp + tf Eh. By the definition of 09,

I1o IIp,q o + tf lip,q, >" 0, Tf > 0 q.e. (10)

Written in full (10) is the same as

11o(., n)ll < 11o(’, n) + tf(. n)ll q (11)
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for all > 0 and all f such that Tf > 0 q.e. The derivative relative to of the n-th
term on the right side is

q lifo(., n)+tf(., n)ll-p f Io(y, n)+tf(y, n)lp-2(o(y, n)+tf(y, n))f(y, n)v(dy),

(12)
whose absolute value, by the H61der inequality, is dominated by

p!q I1o(’, n) + tf(., n)llqp-Pllf(., n)llpllo(’, n) / tf(., n)llp

q I1o(’, n) + tf(., n)ll- IIf(’, n)llp

Using this estimate and the H61der inequality we see that the series of derivatives
of the terms on fight side of (11) is uniformly convergent on compacts. Therefore,
term by term differentiation of the right side in (11) is permissible and (11) says the
derivative at 0 is non-negative. From (12),

qI3nllo(’, n)ll-p f Io(y, n)[p-2tp(y, n)f(y, n)v(dy) > 0 if Tf > 0 q.e. (13)

The function

a a(y, n) I1o(., n)llqp-Plo(y, n)lP-2o(y, n) (14)

belongs to q’ (Lp’ (1)) as can be verified using the H61der inequality.
(13) and Theorem imply

for some non-negative Radon measure/x on ]iN. Using (14) and (15) we get

q’-p’o(y, n) II/z(., n)llp, (]’lz(y, n))p’-.

This we state as:

(15)

(16)

THEOREM 2. Let h be any measurable function and suppose the closed convex
set h is not empty. There is a unique element To ofsmallest norm in h where tp is
given by (16)for some non-negative Radon measure tz on IiN.

Remark 5. We have not used any special properties of IRN or the Lebesgue mea-
sure. Therefore, in Theorems 1 and 2, IiN can be replaced by a locally compact
second countable space provided with a a-finite measure satisfying condition 2 of
Definition 1.

In particular, if K is a compact subset of ]RN which is not quasi-null, there is a
measure 0 93l such that r/(K) > 0. Replace ItN and the Lebesgue measure by K
and the restriction of to K to get the following, stronger version of Theorem 2:
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THEOREM 3. Let K be a non-quasi-null compact subset of ]Riv, and let h be
measurable and suppose the set

Ch={UE]lu>h q.e. onK}

is not empty. Then, there is a measure tz on K such that the unique element of the
smallest norm in Ch is given by Tq9 where

o(y, n) IItx(., n)ll;-t"(7z(y, n))p’- (17)

Specialising to h lr in Theorem 3, we conclude (by condition 3 of Definition 1)
that the set Ch is not empty.

COROLLARY 4. To each compact set K there corresponds a measure Iz on K such
that To, where o given by (17) satisfies

Ttp> 1, q.e. onK

and go IIp,q is minimum

This unique element of is called the capacitary potential of K and the capacity
of K is defined to be

c(g) IIoll,q (18)

Using (17) we get

q’ fC(K) IIoll,q II/Zllp,,q, To(x)dl(x). (19)

For more information on capacities we refer to 1].

4. Applications to non-linear potential theory

In this section we shall define and study some properties of "non-linear potentials"
in our setting. The results obtained will be analogues of those in classical potential
theory. We point this out as we proceed.

As a first application we give the following extension (Theorem 5 below) of the
classical equilibrium principle:

For each compact set K there is a non-negative measure/z on K such that G/x >
on K and G/x 1,/z a.e. This has been extended to very general kernel G’s not even
symmetric [2] By considering the kernel (x.:.e

u(xuy we easily see that for each compact
K and each continuous u > 0 there is a measure/x such that

G(x, y)tz(dy) > u(x) q.e. on K and equals u,/z a.e.
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Alas this trick does not seem to work in the non-linear case.
Consider Rh T99 and let u Tf Ch SO that u > h q.e. Then for all 0 < < 1,

Ttp+ t(u Tgo) tu + (1 t)Tgo > h.

i.e., Tgo + tT(f tp) > h. Then

IITgoll _< liT(go + t(f go))ll,

Ilgoll,q Ilgo + t(f 99)II,q, 0 < < 1.

Proceeding as in the proof of Theorem 2 but replacing f by f tp we get

q I1o(., n)I1-p f (y, n)[f ](y, n)v(dy) 0 if Tf Ch

Recalling the definition of given in (16) and simplifying we get

fud.fV.d. VuCh.

We have e following corolla.
Use the notation V for T, let u d K compact. Weowfrom Theorem 3

that there exists a measure on K such at V is the element of smallest no in

gu={V: vuq.e, onK}.

From above we have

In particular,

vdlz > f v.

udl > f Vlzdlz.

But since V/z is in gu, it is > u q.e. on K. This implies

u= Vlz lz a.e.

We .thus have:

THEOREM 5. For u and K compact there exists tz on K such that Vlz > u
q.e. on K and Vlz u Iz a.e.

For the next application we need the following simple result.
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PROPOSITION 6.
in Lp.

Let fn "+ f a.e. and lift, lip bounded. Then fn " f weakly

Proof By choosing a subsequence, assume fn -’ v weakly. The indicator
function of every set O of finite measure is in LP’ and on such sets fn is uniformly
integrable because f lip is bounded. So

by weak convergence in Lp,

by uniform integrability.

Therefore v f. I"i

A classical result states that on bounded subsets of Hd (fl), vague convergence of
/Zk to/z is equivalent to weak convergence in Hd (fl) of Glzk to G/z. An analogue of
this result is given below.

THEOREM 7. Let lzk "+ tx vaguely. Suppose

tXk is bounded in lq’(LP’).

Then (the potentials) Wtxk T[(’lZk)p’-I tend to (the potential) Wlz T[(’/z)p’-I

q.e.

Proof.
vaguely,

Since T(., y, n) is continuous and has compact support and/zk -- /z

lim lzk(y, n) tx(y, n) Yy, n.

]’/Xk is bounded in q’ (Lp’) which in particular implies that for each n, /Xk(’, n) is
bounded in Lp’. Hence (7/Xk ., n))p’-I is bounded in Lp. And (’/Zk (y, n))p’-I tends
to (/x(y, n))p’-.

Letnow . be ameasure 6 9X (i.e., . 6 q’ (LP’)). Then foreachn, ;(., n) Lp’.
From Proposition 6 we see that

(lzk(Y, n))p’- ’)(Y, n)dv(y) --, f (]’lz(y, n))p’-I )(y, n)dv(y),

Since lim inf W/zk > W/x the above immediately implies that

WtZk -- Wlz q.e.
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and for each

W/xk d. --> f W/Xd..

Let us define the potential (non-linear) of a measure/X 6 93/by

V/x T%z, %z(y, n) 117(,, n)llqp’,-P’(/x(y, n))p’-I (20)

With this definition we see that

q!I1o(., n)ll, 112/z(., n)llp,

Thus/X 99/= V/X l and

q!IIVll IIoll,q IIllp,,q,.
And

f q’V/Xd/X IIi/xllp,,q,.
In classical potential theory a well-known result of H. Cartan states that the set

{G/x: f G/xd/x < o}

is complete in Hd (f2). We extend this result below to the non-linear setting.

THEOREM 8. The space I (ofnon-linearpotentials)

P (v/z:/z }

is complete in ].

Proof. Let V/xk be a Cauchy sequence in . From the above, IlV/zkll
q,II/xkllp,,q,. Thus i"/xk is bounded in q’ (LP’). Then as observed in the proof of

Theorem 1,/xk (F) is bounded for each compact F. So (by choosing a subsequence
if necessary) we may assume that/xk tends to some/x (necessarily in 99/). Since
T (., y, n) is continuous with compact support,

/xk(Y, n) --> /x(y, n) for each y, n. (21)

Also, V/xk is a Cauchy sequence in l if and only if tpm (., .) is a Cauchy sequence
in lq(LP). Recall the definition of tpt,(., .) from (20). in particular this implies that
rpg (., n) is a Cauchy sequence in LP for each n.
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Let V/zk -- u in . In particular this implies that tp, (., n) -- g (., n) in Lp for
each n. Now

o (., n)llp A
with fk (2/zk(., n))p’-I.

Further, since VZk II II% II,q 7z IIq,’,,q, we see that /Zk is bounded in

q’(Lp’). From (21),

In other words,

]’Izk(y, n) -- /z(y,n) Vy, n

fk(Y, n) f(y, n) (Ix(y, n))p’-I

Now %z, (’, n) Ck,nfk(’, rt) where

Ck,. IIA(’, n)llq’-p’ "’
We have two cases"

Ifo (., n) --+ 0 then o (., n) p 0 but then fk lip 0, i.e., /x(., n) 0.
So g(., n) 2/z(., n).

Suppose lim IltPu (’, n) lip > O. Then lim Ck,n C, > 0 since IltPu (’, n) lip
k

fk (’, n)II "’q. Hence since pu (., n) Ck,, fk (’, n), fk (’, n) converges in LP to

(/z(., n))P’-1

This completes the proof. El

The classical secondmaximumprinciple states that G/z > Gv on support v implies
inequality everywhere. We give an analogue of this in the non-linear setting.

PROPOSITION 9. Let Vlz Tou be defined as in (20). Then we have

Vlz >_ Vv on support of v IIVll >_ IIVll

for any measures lz, u.

Proof Indeed,

IlVvll f Vvdv < f Vlzdv

_< o. p,q fv p’q’

II]’llp",,q, llfvllp’,q’ IIVllllVvll
which implies IIVvll _< IIVtzll as required.
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This leads to a characterization of non-linear potentials:

THEOREM 10. Let u I. Then u is a non-linearpotential ifand only if

Proof. Let u 6 and

C. {v I, v > u q.e.}.

The unique element of smallest norm in Cu is a non-linear potential V/z. If u has the
smallest norm in Cu, u must equal V

Conversely let u V/x and let Vv have smallest norm in Cu. Then vv _<
Vtzll. But Vv > V/x so from Proposition 9, Vv >- V/zll. By uniqueness,
Vv Vlz. I"!

Now more generally, let V/x be a non-linear potential. Then

u > V/z on support/z = u vII.

Indeed, let C {v : v > V/z on support/x} and Vv be the element ofsmallest
norm in C. Then, By Proposition 9,

Vv > V/x on support/z = vv vII.
But Vtx C = Vv Vlz.

Before the capacity theory came about, sets of capacity zero were also known as
Polar sets’
A set A is polar (classical potential theory) if A is a subset of the "Poles" of a

superharmonic function

A C s- (x), s superharmonic.

We generalize this below.

THEOREM 11. A compact set K has capacity zero or quasi-null ifand only if it
is polar, i.e., there is a measure v such that Vv oo on K.

Further, for all Iz on K, Vlz oo I.t a.e.

Proof Only one direction needs to be proved because the set (u oo) has
capacity zero for each u 1. Let K have capacity zero. Let un - 1, Un > 1 on K
and Ilu, ll _< 2-n. Then Y. Un U . ] and u oo on K and Ilull _< 1.

Let/z be any measure on K. Then oo f u d/z < Ilull II:/zllp,,q, implies that
for all measures
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Let Ay {x e K, V/z < ,}. Then f vlzr, dlzr, oo (as above). But
f vlzr, d/zr, <_ f v/z dlzr, < y/zr(1) < oo where/xr /Xlar. This implies
/x(A,) =0.

To show that K is indeed polar let Vu be the element of smallest norm in

C. {v’ v I,v >_ u}.

Then Vv >_ u q.e. and IIVvll
_

Ilull.

5. Tangent cones in Besov spaces

Much ofthe considerations below are valid in the more general setup ofthe previous
sections.

In this section we will denote by the Besov space B’q (]Rv), where a > 0, <
p < oo, < q < oo. Our reference for Besov spaces is [1], Chapter 4. 1 is a
Banach space. The following characterisation of ] will be used (see Theorem 4.4.1,
page 105 of 1 ]).

Fix a non-negative Co function 7 on ]Rv with support in the unit ball B(0, 1). We
will assume

7(x)dx 1.

Let

On(x) 2nvo(2nx)
for n > 0 so that r/0

Then a function u iff there is a function sequence

f {fn q Lp(N))

such that

u E2-n’rln * fn. (22)

We may take the ]-norm of u to be f IIp,q. All choices of r/give equivalent norms.

Remark 6. u defined by (22) is in Lp. To see this let g Lp’. Denoting the
(Lp, LP’) pairing by (., .), we have

(lul, Igl) -< EE-n(Tn * Ifl, Igl) <-- 2-llfllpll * Iglllp,

(.ollfnllqp) (2_notq,llgl]qp,,) r <

We have used the fact that

I1. * Iglll <_ Ilgllp’
because f Tn(x)dx 1, here n(x) On(-X).
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For (x, y, n) llv x v x ll, let

T(x, y, n) 2-n’o,,(x y), n >_ O,
v(dy) dy Lebesgue measure.

We can verify that conditions 1, 2, 3 of Definition 1 are satisfied.
Condition 1 is immediately seen to be satisfied.
If f e Lp (]N),

I)T (x, y, n)f(x)dx

so that

<_ f y)lf(x)lPdx

f f T(x, y, n)f(x)dx < 2-nat’llfllpP

because f o (x y)dy 1 for every n. Condition 2 follows.
Similarly, condition 3 is easy to verify.
Thus the Besov space BPa’q fall under our setup. The notation such as q.e. will be

as before. For ease of reference let us emphasize that elements of 1 are of the form
Tf for f in q (LP(N)) with norm [Ifllt,,q.

5.1. Tangent cone.
Let and J denote the closed convex set

J {f e I f(x) >_ (x) q.e.}. (23)

Given z R, the tangent cone a(z) is the closure of the set

a(z) {o t > 0 such that z + tp }. (24)

Both Ea(z) and a(z) are convex cones and contain all non-negative elements of I.
Put

{xlz(x) (x)}. (25)

Clearly every v Ea(z) is non-negative q.e. on E.
Since a(z) is a closed convex cone, for each V , V a(z) is a closed

convex set and contains a unique element of smallest norm. This element u0 is the
"projection" of V on the tangent cone:

liE- u011 _< liE- nil, u Ea(z). (26)

As observed before, each non-negative element of ] belongs to a(z). Suppose that

Tf > 0 q.e. Since a(z) is a cone, uo + Tf a(z) for all > 0: From (26),

V u0 _< V uo tTf II, > 0, Tf > 0 q.e.

Arguing as in the last section we have:



NON-LINEAR BALAYAGE AND APPLICATIONS 327

THEOREM 12. There is a Radon measure such that

V uo -Too, (27)

where

)p’-Ioo tpo(y, n) 117zo(., n)ll’,-p’ /go(Y, n) (28)

More can be said about the measure/go:

THEOREM 13. Let be as in Theorem 12. Then:

(1) f ud/go >_ O, Yu a(z).
(2) /,to is concentrated on .
(3) f uo do O, i.e., is concentrated on {uo 0}.
(4) If O,

V d/go Too(x)/go(dx) -117’/gOllp,,q, < 0. (29)

Proof. (1)Note that a(z) is a cone, so uo + tu a(z) for each > 0 and
u e a(z). Hence

liE uoll V uo tull
Write V uo -Tip and follow the proof leading to inequality (13) of the last
section to get (1).

(2) It is known that 79 D(]N) is a multiplier for " u e ], 99 D implies
99u . See [7], page 140.

Let 99 7)" then cp(z p) . Hence if I1ol1-1
z ap + to(z p) (1 + to)(z ) >_ O.

It follows that

o(z p) (z), o 79.

From property 1, already established,

o(z )d/go O, 7).

This can only happen if f o(z )dzo o i.e.,/go is concentrated on .
(3) uo e j(z), hence tuo $a(z)for all > 0. Therefore,

V uoll V uo + uoll if < 1.
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Writing V uo -Ttpo and following the proof leading to the inequality (13) of
the last section (as in (1) above) we get

uodlzo < O.

But since uo is in a(z), (1) and the last inequality give (3). Since uo >_ 0 q.e. on U,
(all elements of SEa(z) satisfy this) we see that/zo is concentrated on the set {uo 0}.

(4) Integrate both sides of (27) relative to/.to and use (3) to get (29). El

The following corollary characterizes the tangent cone a(z)"

COROLLARY 14. V e T,a(Z) ifand only if

V>0 q.e. on E.

Proof. Immediate from (29). El
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