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THE EXCEPTIONAL SET IN THE FOUR PRIME SQUARES
PROBLEM

JIANYA LIU AND MING-CHIT LIU

ABSTRACT. In this paper we prove that, with at most O(N13/15+) exceptions, all positive even integers
n < N with n -= 4(mod 24) can be written as sums of four squares of primes.

1. Introduction

In 1938, Hua [10] proved that each large integer congruent to 5(mod 24) can be
written as a sum of five squares of primes. In view of this result and Lagrange’s
theorem of four squares, it seems reasonable to conjecture that each large integer
n -= 4(mod 24) is a sum of four squares of primes,

n p2 + p22 + p + p. (1.1)

However, a result of this strength seems out of reach at present. The purpose of this
paper is to establish the following approximation to this conjecture.

THEOREM 1. Let N > 2, and let E(N) be the number ofpositive integers =-
4(mod 24), not exceeding N, which cannot be written in theform in (1.1). Thenfor
any 0 > 13/15 we have

E(N) << No (1.2)

The first result in this direction is due to Hua [10], who proved that E(N) <<
N log-a N for some absolute constant A > 0. Later Schwarz [21] showed that A
can be taken arbitrarily.

There are other approximations to the above mentioned conjecture, and our The-
orem 1 can be compared with them. Greaves [8] gave a lower bound for the number
of representations of an integer as a sum of two squares of integers and two squares
of primes. Later Shields [22], Plaksin [18], and Kovalchik [13] obtained, among
other things, an asymptotic formula in this problem. Recently Brtidern and Fouvry
[2] proved that every large n =- 4(mod 24) is the sum of four squares of integers with
each of their prime factors greater than n 1/68.86.
We prove our Theorem by the circle method. Here the main difficulty arises in

treating the enlarged major arcs. The idea of the proof will be explained in 2.
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Notation. Asusual, tp(n),/x(n),andA(n) stand for the function ofEuler, M6bius,
and von Mangoldt respectively, d(n) is the divisor function, and dv (n) is the general-
ized divisor function which is defined as the numberofrepresentations ofn as products
of v positive integers. We use X mod q and X mod q to denote a Dirichlet character
and the principal character modulo q, and L (s, X) is the Dirichlet L-function. For
integers a, b we denote by [a, b their least common multiple. N is a large
integer, and L log N. And r R means R < r < 2R. If there is no ambiguity,

awe express + 0 as a/b + 0 or 0 + alb. The same convention will be applied for
quotients. The letter e denotes a positive constant which is arbitrarily small.

2. Outline of the method

In order to apply the circle method, we set

P N2/15-, Q N/(pLI4). (2.1)

By Dirichlet’s lemma on rational approximation, each c E / Q, + 1/Q] may be
written in the form

t a/q + ., I1 -< 1/(qQ) (2.2)

for some integers a, q with 1 < a < q < Q and (a, q) 1. We denote by .A/[ (a, q)
the set of a satisfying (2.2), and define the major arcs A4 and the minor arcs C(34)
as follows:

q

A4= u U .A/l(a,q),
q<p a!

(a,q)=

C(A/[) ,1 + \A4. (2.3)

It follows from 2P < Q that the major arcs A4 (a, q) are mutually disjoint. Our
Theorem is a consequence of the following:

THEOREM 2. Let .M be as in (2.3) with P determined by (2.1). And let

T(c)

_
(log p)e(p2ot).

p2<N

Thenfor 2 < n < N, we have

T4(()e(-n()d( --(R)(n)n + 0

Here (R)(n) is defined in (3.3), and satisfies (n) >> for n 4(mod 24).

(2.4)

(2.5)

In the following proof for our Theorem 1, we only need this theorem for N/2 <
n < N, but here we consider a much wider range 2 < n < N for general interest.
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Note that the theorem only gives an O-result if n is much smaller than N. However
it is useful in a later paper [24] even in its weak form.
We can readily derive Theorem 1 from Theorem 2.

ProofofTheorem 1.
with n 4(mod 24). Let

Then we have

Let N be a sufficiently large integer, and N/2 < n < N

r(n) E (log Pl)""" (log P4).
=p+...+p,

f0r(n) T4(ot)e(-not)dot + (2.6)
(A)

where .AA, C(A4), and T (a) are as in (2.3) and (2.4).
To estimate the contribution from the minor arcs, one notes that each ct C()

can be written as (2.2) for some P < q < Q and < a < q with (q, a) 1. We
now apply Theorem 2 of Ghosh [7], which states that, for ct C(A4),

T(ct) << N1/2+(P-1 + N-1/4 -[- QN-1) 1/4 << N1/2-1/30+2. (2.7)

Also, we easily derive the following mean-value estimate for T (ct)"

<< << (2.8)IT(c014dc L4 NI+.
m2.4.m _2+/-_2

I-- 2"m3"r"4
m2. <N

It therefore follows from Bessel’s inequality, (2.7), and (2.8) that

r <<
N/2<n<N

<< max IT()I4 IT()14d (( N3-2/15+9e.
aC()

Therefore, for all N/2 < n N with n 4(mod 24), except for a subset (N) of
cdinality 0(N13/15+11), we have

[fc<<N (2.9)
()

The contribution from the major arcs can be handled by Theorem 2. We conclude
from Theorem 2, (2.6), and (2.9) that for all N/2 < n N with n 4(mod 24) and
n e(N),

r(n)=(n)n+O log n
From this and the fact that (n) >> 1, Theorem 1 clearly follows.
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Now it only remains to prove Theorem 2, which takes up the rest of the paper. One
easily sees from (2.1) that our major arcs is quite large. In contrast to the previous
works [14], 16], [6] which treat the enlarged major arcs by the Deuring-Heilbronn
phenomenon, we prove Theorem 2 by a different approach, which has recently been
used by Bauer, Liu and Zhan [3]. This approach reveals that in the context of this
paper, the possible existence of Siegel zero does not have special influence, hence the
Deuring-Heilbronn phenomenon can be avoided. The key point of this approach is
that there are four prime variables in our problem (while there are only two in Linnik
14] and Gallagher [6]), and we can take advantage of this by saving the factor r-+

in Lemma 3.1 below. With this saving, our enlarged major arcs can be treated by. the
large sieve inequality, Gallagher’s lemma, and classical results on the distribution of
zeros of L-functions (see Lemmas 3.3-3.6). Our novelties in this paper described
above not only give better results (note that Theorem 2 holds with P N2/15-), but
also lead us to a technically simpler proof.

3. Preliminaries

For X mod q, define

C(x,a)=(h)e
h=l

C(q, a) C(X, a). (3.1)

If X l, X4 are characters mod q, then we write

B(n,q, X X4) e C(Xl,a)’"C(x4, a),

(a,q),-

B(n, q) B(n, q, X X) (3.2)

and

B(n, q)
(n) A(n, q).A(n, q)

tp4(q) q=l

(3.3)

This (R)(n) is the singular series in Theorem 2.
In the following sections, we will need the following results.

LEMMA 3.1. Let Xj mod r1 with j 1,..., 4 be primitive characters, ro
[r, r4], and X the principal character mod q. Then

q94 (q)q<_x
roIq

IB(n, q, XX x4xO)l <</.lq-e 1og17 Xo
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Proof. This is Lemma 4.4 in [15].

LEMMA 3.2. (i) We have

IA(n, q)l << x-l+d(n).
q>x

(3.4)

Thus the singular series (R) (n) is absolutely convergent.
(ii) For n 4(mod 24), one has

Cl < (n) << (log log n) 11

with some absolute constant Cl > 0; whilefor n 4(mod 24), one has (n) O.

Proof Part (i) is (4.12) of [15] and Part (ii) is Proposition 4.3 of [15].

LEMMA 3.3. Let P > 2 and T > 2, and k 0 or 1. Then we have

q<P xmodq T
L(k) - -t- it, X dt << p2T log4(k+)(p2T).

Here and in the sequel, the sum * is over all primitive characters.

LEMMA 3.4. Let P > 2, T > 2, and am with m 1, 2,... be a sequence of
complex numbers. Then we have

q<P xmodq T
MM [2 Mo+Mamx(m) dt << (p2T + m)laml.

mitm=go m=Mo

LEMMA 3.5. For T > 2, let N* (ct, q, T) denote the number ofzeros ofall the L-
functions L (s, X) withprimitive characters X mod q in the region Re s > (, IIm s _<
T. Then

N* (ct, q, T) << (q T) 2f-o0/5 logC (q T)
where c > 0 is an absolute constant.

LEMMA 3.6. Let T > 2. There is an absolute constant c2 > 0 such that

HX mod q L (s, X) is zero-free in the region

Re s > 1 c2/max{log q, log4/5 T}, IImsl < T,

exceptfor the possible Siegel zero.

Lemmas 3.3-3.6 are well-known results in number theory. For the proofs of
Lemmas 3.3-3.5, see for example pp. 640 and 642, 634, and 669 in Pan-Pan 17].
For Lemma 3.3, see also Bombieri 1], and for a slightly weak form of Lemma 3.5
which suffices for our purposes, see Huxley 12]. For the proof of Lemma 3.6, see
Satz VIII.6.2 in Prachar [19].
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Let M NL-12, and

4. An explicit expression

S(ct) (log p)e(p2t).
M<p2<N

It is convenient to establish the asymptotic formula

S4(ot)e(-not)dot --(n)n + 0 i0g’N (4.1)

and then in 6 we derive Theorem 2 (i.e., (2.5)) from (4.1). The purpose of this section
is to establish an explicit expression for the left-hand side of (4.1) (see Lemma 4.1
below). And in 5 and 6 we shall estimate this explicit expression to obtain (4.1).
Define

V (X) e(m2.),
M<m2<N

W(X, ,) (logp)x(p)e(p2)0 8x e(m2X), (4.2)
M<p2<N M<m2<_N

where 8x or 0 according as X is principal or not. Also, define

r-/4+ -.* max IW(x,))I,J
I.l<l/(rQ)r<P X mod

and

(fl/(rQ)r-1/4+’ * ]W(x,
r<P xmodr \d-l/(rQ)

Now we state the main result of this section.

1/2

LEMMA 4.1. Let n, ,All be as in Theorem 2. Then

S4(oOe(-no)do --(R)(n)n
+ O{(j2K2 + j2K + j2 + NI2j)L23} + O(NL-I),

where (n) is the singular series defined as in (3.3).

Proof. Introducing Dirichlet characters, we can rewrite the exponential sum S(ct)
(see for example [4], 26, (2)) as

(. ) C(q,a)s C(X, a)W(x,V(.)--
xmodq

(4.3)
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Thus,

where

S4(c)e(-nc)dc Io + 411 + 6/2 + 4/3 + 14, (4.4)

Ij tp4(q)
C4-j (q, a)e -- J-l/(qQ)q<p

(a,q)----I

C(x,a)W(x,.)
X mod q

e(-n.)d..

We will prove that Io gives the main term, and I,/2, 13, 14 the error term.
We begin with I4, the most complicated one. Reducing the characters in 14 into

primitive characters, we have

1
1141 tp4(q)

Xl modq

1/(qQ)_, B(n, q, Xl X4) W(Xl, W(x4, X)e(-nX)dX
x4mod q d-1/(qQ)

E * * IB(n, q, XIX0,4(q) X4X0)I

rP r4P x mod r x4mod r4
roIq

l/(qQ)

x IW(x1x, )... IW(x4x, ) Ida,
-/(qO)

where X is the principal chacter modulo q and ro [r r4]. For q P and
M < p N, we have (q, p) 1. Using this and (4.2), we have W(Xj X, )
W(X, ) for the primitive characters Xj above. Using this and Lemma 3.1, we obtain

,[/(roO)Emo,
IB(n, q, XX X4x)l

4(q)qP
rOIq

/(roO)

IW(x, X)I.. "IW(x4,
P r4P X mod r x4mod r4

If we apply the inequality

1/4+e 1/4+e 1/4+ 1/4+er-l+e < r r2 r3 r4 (4.5)



THE EXCEPTIONAL SET 1N THE 4 PRIME SQUARES PROBLEM 279

to the above quantity and use Cauchy’s inequality, then we get

max
xlmod rl

I’l<l/(rlQ)

X { -r-l/4+ - * }max W(x2, L)
r2<_P x2mod r2

IXl<-l/(r2Q)

X {rl,4+ ,(fll<r3) IW(x3, X)I2dX
r3P x3mod r3 kd-1/(r3Q)

4 IW(x4, Z)I2dz
x4mod r4 d-1/(r4Q)

J2K2L7.

1,2}
1/2 }

(4.6)

Similarly, we can bound/3, I2, and Ii in terms of J and K, to get

By Lemma 7.11 of 11 ],

NIl2
V() e(uE)du + O(1)

JMI/2 M<m<N
m-ll2e(m,) + O(1). (4.8)

Using this and the elementary estimate

m-/e(m.) << min(Nl/, M-1/eI)I-I),
M<m<N

(4.9)

one easily gets

max IV(Z)I << N12
IxI_<I/Q

l/Q

IV(X)I2dX <<
J-1/a

Nd,k + M-l.-2d. << L6.

It thus follows from (4.6) and (4.7) that

1141 + 1131 + 121 + Illl << {j2K2 + j2K -1- j2 + Nl12j}L23. (4.10)
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It remains to compute I0. Substituting (4.8) into I0, we have

/ /
4

1 B(n, q)rl/<qo> m-1/2e(m,k)Io " -’’($ d-1/(qQ) M<mN

+o{lB(n,q,l f,/(qO)a-/(qO)M<m m-a/2e(mX)dX (4.11)

By (4.9) and Lemma 3.1 with r0 1, the O-te in (4.11) can be estimated as

"[B(n’q)l{zl/N3/2dX f+ / IXI-3dXIN1/2L23.

Now we extend the integral in the main te of (4.11) to [-1/2, 1/2]; by a similar
argument we see that the resulting e=or is

l/2
(( L 17 M-E]x[-4dX (( M-2(pQ)3L17 (( NL-,

al/(e)

where we have used (2.1). Thus e main te of (4.11) becomes

__1 B(n, q)
(ml... m4)-1/2 + O(NL-1).

16 4(q) u
+’’’+m4

By (3.4), the first sum above is (n) + O(L-). The second sum can be calculated as

(ml’" "m4)-l/2+O(M1/21/2) F4(1/2)n{1 + O(n-1/E)}+O(L-6)
+"’+4 n + O(NL-),

on appealing to Lemmas 7.17 and 7.18 of Hua 11 ]. Now by Lemma 3.2 (ii), (4.11)
becomes

7r2

Io --(n)n + O(NL-1). (4.12)

Lemma 4.1 now follows from (4.4), (4.10), and (4.12).

5. Estimation of J

We have

J << Lmax JR
R<_P

where JR is defined similarly to J except that the sum is over r R. The estimation
of JR falls naturally into two cases according as R is small or large. For R > Ls,
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where B is some positive constant, one appeals to contour integration, mean-value
estimates for the Dirichlet L-functions or their derivatives, the large sieve inequality,
and Heath-Brown’s identity. While for R < LB, one uses the classical zero-density
estimates and zero-free region for the Dirichlet L-functions.
We first establish the following result for large R. In Lemma 5.5 we shall consider

small R.

LEMMA 5.1. Let A > 0 be arbitrary. Then there exists a constant B B(A) > 0
such that when L < R < P,

JR << N1/2L-A,

where the implied constant depends at most on A.

To prove this result, it suffices to show that

* max
Ikl<_l/(rQ)r.R X mod

IW(x, 3.)1 << R1/4-eN1/2L-A (5.1)

for Ln < R < P and arbitrary A > 0. Let

(x, x) [] (A(m)x(m) 8x)e(m23.).
M<m2<N

(5.2)

Then

W(X, 3.) #(X, 3.) ’ [] (log p)x(p)e(p2J3.) << N1/4.
j>2 M<p<N

(5.3)

Thus (5.1) is a consequence of the estimate

*Y IM<I/(rQ)r",R X mod

I’(X, 3.)1 << RI/4-eN1/2L-A (5.4)

where R _< P and A > 0 is arbitrary.
Let M112 < u < N1/2, and let M1 Mlo be positive integers such that

2-M/2 _< M... Mlo < u, and 2M6, 2Mlo _< u 1/5. (5.5)

For j 1,..., 10let

logm if j=l,
aj(m) if j 2,3,4,5,

/z(m) if j =6,7,8,9, 10.

We define the following functions of a complex variable s:

aj(m)x(m)
f(s) f(s, x)

mm~M.
F(s) F(s, X) f (s)... flo(s).
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Now we recall Heath-Brown’s identity (see Lemma in [9]) for k 5, which states
that

--(S)
j=l

(-1)J-It(s)J-I(s)GJ(s) + (s)(1 (s)G(s))5,

where ((s) is the Riemann zeta-function, and G(s) Y’m<_u/5 lz(m)m-s. We choose
k 5 because the identity with k < 4 will give weaker results, and when k > 6 it
produces the same estimate as the case k 5. Equating coefficients of the Dirichlet
series on both sides provides an identity for -A(m). Also, for rn < u the coefficient
of m-s in

-(s)(1 (slG(s))5

is zero. Thus,

A(m) ()(-1)j- Y]
j ""m2j

mj+ m2j

(log m)/z(mj+l).../z(m2)).

Applying this identity to the sum

y A(m)x (m), (5.6)
MI/2<m<u

one finds that (5.6) is a linear combination of O(L10) terms, each of which is of the
form

o’(u;M)=
m "--’M mlO,-,MlO

Ml/2<mi ...mlo<_u

al (m)x (m) ao(mo)X (mo)

where M denotes the vector (M1, M2, M10). By using Perron’s summation for-
mula (see for example, Lemma 3.12 in [23] or Theorem 2, p.98 in [17]) and then
shifting the contour to the left, the above r (u; M) is

1 f I+I/L+iT
F(s, x)uS-MS/2ds + 0 (gl/2L2)2zri a l+l/L-iT S T

1 {fl/2-,r +f,/2+iT...lf.f I+I/L+iT} "-0 (N1/2L2)2zri al+l/z-r a l/2-ir a /z+ir T

where T is a parameter satisfying 2 < T < N1/2. The integral on the two horizontal
segments above can be easily estimated as

Ur Ur N1/2L
max [F(r 4-iT, X)[ << max N(1-tr)/EL

1/2<_cr<l+l/L T 1/2<cr<l+l/L T T
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on using the trivial estimate

F(cr 4- iT, X) << If (or 4- iT, X)I’" Iflo(cr 4- iT,

<< <<
Thus,

lf_T( ) u1/2+it
F q-it, xr(u,M)=

r
1-M1/2(1/2+it) dt+O (N1/2L2 )+it T

Since R > LB (so X - X), in (5.2) we have

ff(X,X)= E A(m)x(m)e(m2X)= J e(u2)d E A(m);g(m)
M<m2<N I/2 Mi/2<m<u

and consequently if’ (X, X) is a linear combination O (L lo) terms, each of which is of
the form

NI/2

f e(u.)dr(u; M)
J MI/2

x) N1/2L2
U-1/2+ite(u2X)du dt + 0

T
(1 + IXIN)).

By taking T N/2 and changing variables in the inner integral, we deduce from the
above formulae that

I(x,X)l L1 max
M

v-3/4e log v+Xv) dv dt d- N2/15L 12, (5.7)

where the maximum is taken over all M (M1, M2, Mlo). Since

d(_)t d2(t )t=------+X logv+Xvvv logv + Zv
4roy dv2 4rrv2’

by Lemmas 4.4 and 4.3 in [23], the inner integral in (5.7) can be estimated as

M-3/4min
(Itl d- 1) 1/2’ min It +4zrZvl<<

M<v<N

N1/4L9/(ltl-k 1) 1/2 if Itl _< To,<< N1/4L9/It[ if To < Itl _< T, (5.8)
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where To 8rN/(RQ). Here the choice of To is to ensure that It + 4r.vl > Itl/2
whenever It > To; in fact,

It -t-4rXvl >_ Itl-4rlvl/(ra) > [tl/2 + To/2-4rN/(RQ) >_ Itl/2.

Therefore it follows from (5.7) and (5.8) that the lemma (more precisely, the << in
(5.4)) is a consequence of the following two estimates: For 0 < T1 < To, we have

+ X dt << Rll4-eN1/4(T1 + 1)ll2L-A, (5.9)
rR xmodr dTi

while for To < T2 < T, we have

,f2r (1 ) Rll4_Nll4r + it, X dt << T2L-A. (5.10)
r’R xmodr tiT2

Both (5.9) and (5.10) are deduced from the following bound.

LEMMA 5.2. Let F(s, X) be defined as above. Thenfor any R > and T3 > O,

-* + it, X dt (( (R2T3 -I- RT/2N3/20 -[- gl/4)ZC. (5.11)
r’,,R xmodr tiT3

Now we can complete the proof of Lemma 5.1.

ProofofLemma 5.1.
is now

By taking T3 T1 in Lemma 5.2, the lehand side of (5.9)

<< (R2Ti + RTI2N3/20 + Nll4)Lc << Rll4-N1/4(T + 1)I2L-A,
provided that LB < R _< P N2/15- with a sufficiently large B. Here LB < R
guarantees that Ni/4Lc is dominated by the quantity on the fight-hand side. This
establishes (5.9). Similarly we can prove (5.10) by taking T3 T2 in Lemma 5.2.
Lemma 5.1 now follows.

It remains to prove Lemma 5.2, which follows from the following two propositions.

PROPOSITION 5.3. If there exist Mi and Mj with 1 < < j < 5 such that
MiMj > N/5, then (5.11) is true.

Proof. Without loss of generality, we may suppose that 1, and j 2. Using
Perron’s summation formula and then shifting the path of integration to the left as
before, we get

ll2+I/L+iNL’ +it+w, dwWO(L2)fl Wit, 27r-’dl/2+l/L_iN W

1 If,-’" I+ + + O(L2).
2ri /2+l/L-iN iN din
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Here one notes that the function (2M’)t"-M’ has a removable singularity at w = O.
Thus, on the above vertical segment from -iN to N, we have

(2M1)t M <<w 1 + Iol

where w u + iv. Using the well-known bounds (see for example [17], p. 271,
Exercise 6 and p. 264, (13))

-)/21tl- log2(rltl) forL’(cr + it, X) << log2(rltl) for
0<or < 1,1tl >_2,
r >_ 1,1tl >_ 2,

the contribution from the horizontal segments can be estimated as

max r(l-(I/2+u))/2(N
O<u<l/2+l/L

max r1/4-u/2N-1/2-uM << L2.
O<u<l/2+l/L

Therefore, we have

fl +it, X << L’ +it +iv X +
N 1""/ Ivl

{f( )14dv}
1/4

<< L L’ + it + iv, x
N 1 / Ivl

by HiSlder’s inequality. Thus,

f2T (_)14* fl +it, x dt
r’R xmodr JT3

<< L4 * dt + L’ +it+iv, x I1rR xmr 16T3 T3IvIN

+ R2T3L8 =: E + 2 + R2T3L8,

where 1 and "’2 denote the contributions from the two integrals within the braces
respectively. Clearly,

’-4 L..,.. I -.F-do rRIv’
, f2T+o ()14L’ + iw, X dw

)modr JTa+v

L4

_
L + iw, X dw << RZT3L3

l_<6r I + II xmodr d-ST
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on using Lemma 3.3 in the last step. To bound 2, one first changes the order of
integration to get

’2 L4 dt
dT3 r’,,R xmodr Ta<lw-tl<N ( )14 dll)

L’ + iw, X + Iw tl

Now 6T3 < Iw- t[ _< N implies that either 6T3 + < w < N + or-N + < w <

-6T3 + t. So, since T3 < < 2T3, one deduces that in either case Iw t[ Iwl/2 >
Iwl/2 [tl >_ 0, and this shows that Iw tl > Iwl/2. Consequently, by Lemma 3.3,

2T3

E2<<L5 dt
d T3

,f2xmax
4Ta<x<N+2T3 X r,R xmodr ax  )14w, dw << R2T3L 13

Collecting the above estimates for E1 and 2, one obtains

()14f + it, X dt << R2T3L3. (5.12)

Arguing similarly, we also have

f2 - + it, X dt << R2TaL 13. (5.13)

Since

HJ +it, x
j=3 M3...MI0<m<2 M3...MIo

with b(m) < ds(rn), by Lemma 3.4 one has

b(m)x(m)
ml/2+it

E E*f fj d-it, x dt
r,R xmodr tiT3 ]j=3

<< E (R2T3 + m)d(m)
rn

M3...Mlo<m<2SM3...Mlo

<< (R2T3 + M3""M10)Lc << R2T3 +
M1M2

(5.14)

One thus concludes from H61der’s inequality, (5.12), (5.13), and (5.14) that

dt
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r’..R xmodr

f2 +it, x dt
rR xmodr JT3

rR Xmod J T j=3

<< (R2T3)l/2 R2T3 +
M1M2

<< (R2T3 +

since M1M2 > N1/5. This proves Proposition 5.3.

PROPOSITION 5.4.

then (5.11) is true.

Ifthere is a partition {Jl, J2} ofthe set {1, 101 such that

H + H <<
jJI jJ2

Proof. For v 1, 2 define

Fv(s, X):= H j(s, X)=
bv(n)x(n)

n
jEJv n<<Nv

where Nv I-IjEj, Mj and by(n) << Ldlo(n). Applying Lemma 3.4 we see that

dt

2 } 112

dt

F2 +it, x dt
r’..R xmodr JT3

<< R2T3 + Ibl(n)l2 R2T3 + Ib2(n)l2 Lc

n<<Ni n<<N2

<< (R2T3 + N1)l12(R2T3 + N2)112Lc

<< (R2T3 + RT/2N3/20 + Nll4)Lc,

since N1 + N2 << N3/10 and N1 N2 << N1/2. This proves Proposition 5.4.

(5.15)
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ProofofLemma 5.2. In view of Proposition 5.3, we may assume that MiMj <
N/5 for all i, j satisfying 1 < < j < 5. It follows that there is at most one Mj
with 1 < j < 5 such that M > N/. Without loss of generality, we can suppose
this exceptional Mj is M, so for j 2, 3, 4, 5 we have Mj < N/. From this and
the assumption that M6 Mo < N/, we deduce that Mj < N/ holds for
j =2,3 ,10.

Although M may exceed N/, it is bounded from above by the inequality
MM2 <_ N/. From this and the assumption M/ << M... M0 << N/, we
see that there is an integer with 2 _< _< 8, such that

M1. Ml < N/5, but M MI+ > N/5.

Take N M... Mt+ and N2 Mr+2... Mo. Then we have

N/5 << N << Ni/SMt+ << N/SNi/l << N3/ and N2 << N/2/Ni << N3/.

Thus we have N + N2 << N3/, i.e., the assumption of Proposition 5.4 is satisfied.
Lemma 5.2 now follows from Proposition 5.4.
Now we treat the case R < LB.

LEMMA 5.5. Let A > 0 and B > 0 be arbitrary. Thenfor R < LB, we have

JR << NI/2L-A,

where the implied constant depends at most on B.

Proof. We use the explicit formula (see [4], p.109 and 120, or [17], p.313)

EA(m)x(m)=xu... E up {(u ) }+ 0 + 1 log2(quT) (5.16)
m<_u Ir, l_<T P "

where p =/5 + , is a non-trivial zero of the function L (s, X), and 2 < T < u is a
parameter. Taking T N1/6 in (5.16), and then inserting it into ff’(X, X), it follows
from the fact that M/2 < u < N/2, M NL-2, and (2.1) that

e(u2.)d E(A(m)x(m) x)

N12
e(u2) E up-ldu + O{N/3(1 + I’IN)L2}

d Mtl2 Ir, I_<NV6

<< Nl/2L3 E N(#-l)/2 + 0(N7/15)"
I,I_<N/6

Now let r/(T) 2 log-4/5 T. By Lemma 3.6, Hxmodq L(s, X) is zero-free in the
region cr > 1 r/(T), Itl _< T except for the possible Siegel zero. But by Siegel’s
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theorem (see, for example, [4], 21) the Siegel zero does not exist in the present
situation, since r < Ln. Thus, by Lemma 3.5,

IYl<N/6

N(#-I)/2 LC fo
1-r/(NI/6)

(N1/6) 12(l-a)/5 N(a-1)/2do

<< LcN-(N/6)/1 << exp(-caL 1/5).

Consequently,

rR mod

max II(X, .)l << N1 (5.17)
IXl<_l/(rQ)

where R _< P, and A > 0 is arbitrary. Lemma 5.5 now follows from (5.17), (5.2),
and (5.3).

6. Estimation of K

In this section, we estimate K by establishing the following Lemma 6.1. We
remark that in proving Lemma 6.1 we need not distinguish the two cases R > Ln
and R < L as in Lemmas 5.1 and 5.5, since we need not save a factor L-A on the
fight-hand side of (6.1).

LEMMA 6.1. We have

K << Lc (6.1)

where c > 0 is some absolute constant.

Proof By the definition of K and (5.3), we have

Thus to establish (6.1), it suffices to show that

for R < P and some c > 0.

(f 1/(rQ) )1/2
_
* I(X, X)l2d;k << R1/4-eLc (6.2)

r’.,R xmodr \J-1/(rQ)
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By Gallagher’s lemma (see [5], Lemma 1), we have

f Ir(X’ JI2dX << E (A(m)x(m) 3x) dv
d-1/(rQ) o<m2<_o+rQ

M<m2<N

(A(m)x (m) x) dr. (6.3)
-rQ +r

M<m2N

Let X max(v, M) and Y min(v + r Q, N). Then the sum in (6.3) can be written
as

E (A(m)X (m) 3x). (6.4)
X<m2<Y

Using Heath-Brown’s identity to this sum, and applying Perron’s formula as before,
we see that (6.4) is a linear combination of O(L 10) terms, each of which has the form

f_r ( ) Y1/2(1/2+it)-X1/2(1/2+it)
F + it, X !tr(u, M):= - r 2 + it

N1/2L )dt+O
T

where M, F(s, X) are as in [}5, and T is a parameter satisfying 2 <_ T <_ N1/2. One
easily sees that

y1/2(1/2+it) X1/2(1/2+it)

+it lfxYU-3/4+it/2du lfxr ( )u-3/4e
2 - log u du.

The integral can be easily estimated as

<< y1/4_ xl/4 << (v q-rQ)1/4- v 1/4 << vl/4{(1 q-rQ/v)1/4- 1}.

Since v satisfies M- rQ <_ v <_ N, and r Q _< 2RQ _< 2PQ 2NL-14 2ML-2,
the above quantity is << v-3/4RQ << M-3/4R Q. On the other hand, one has trivially

y1/2(1/2+it) X1/2(1/2+it) y1/4 N1/4
_1 << <<
2 + it " Itl

Collecting the two upper bounds, we get

y1/2(1/2+it) X1/2(1/2+it)

1/2+it
gl/4 (RQ<< min M-3/4R Q, -,1 << L9 min N3/4,

Taking

T N1/2, To N/(QR),
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we see that

or(u; M) << RaZ9ft ()N3/4 I_<To
F + it, X dt

+ N1/4L9 Lo f ( + it, x)<ltl_<T

And consequently (6.3) becomes

I(x, .)12d,k << N-112L38 max F + it, X
J-1/(rO) M I_<T

N312L38
nx (fTo-I-

(QR)2
<ltl-<T

NL24

(QR)2"

Now the left-hand side of (6.2) is

<< N-1/4L19 maxE E * flM I_<Tr’.,R X mod r

dt

*Lo ( ) dt NI/2RLI2N3/4L19
rnxE E F q-it, x q-+ RQ Itl<-r -1 Qr"R xmod <

Thus, to prove (6.2) it suffices to show that the estimate

E E F --it X d, ((Rl/4-egl/4gc

xmo r at,
(6.5)

holds for R < P and 0 < T < To, and

E E * + it, X dt << RI/4-e(RQ)N-3/4T2LC (6.6)
r’R xmodr tiT2

holds for R < P and To < T2 < T.
The estimates (6.5) and (6.6) follows from Lemma 5.2. The proof of Lemma 6.1

is completed.

ProofofTheorem 2. By Lemmas 4.1, 5.1, 5.5, and 6.1, we get (4.1). In view of
Lemma 3.2, it remains only to derive (2.5) from (4.1).

Applying the inequality a4 b4l < [a bl{la[ + [bl}3, we get

L f0’{T4(ct) S4(ot)}e(-not)dot << IT(c) S()llT(c)13dc

/ S(c)llS(a)13dc. (6.7)
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By Htilder’s inequality, the last integral above is

(f01 )1/4 (f01 )3/4<< IT(a) S(ct)lada IS(ct)lada =: B/4H32/4, say. (6.8)

Here H2 does not exceed log4 N times the number of solutions of

p2 + p p + p24, pj < N/2. (6.9)

By [20], Satz 3 the number of solutions of (6.9) with pP2 P3P4 is O(NL-3). Also
by the prime number theorem, (6.9) has approximately 8N log-2 N trivial solutions,
namely those satisfying pP2 = P3Pa. Therefore,

H2 < 8(1 + e)N log2 N << NL2. (6.10)

The integral H1 is less than logaN times the number of solutions of (6.9) with
pj < N1/2 replaced by pj < M1/2, and consequently H1 << ML2 by a similar
argument. Putting these upper bounds into (6.8) and using M NL-l, one sees
that the last integral in (6.7) is << NL-. The same estimate also holds for the next-
to-last integral in (6.7), and hence the quantity in (6.7) is bounded by NL-1. The
desired result (2.5) now follows from (6.7) and (4.1). Theorem 2 is proved.
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