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A WITTEN STYLE PROOF OF MORSE INEQUALITIES FOR
ORBIT SPACES

MANUEL CALAZA

ABSTRACT. Let G be a compact Lie group acting on a closed manifold M. Witten’s method is used to
prove Morse inequalities for the cohomology of the orbit space M/G.

1. Introduction

Let M be a closed manifold with a smooth action of a compact Lie group G. Let
C (M/G) denote the space of G-invariant smooth functions on M. Such functions
can be considered as "smooth" functions on the orbit space M/G, defining a so called
"differentiable structure" on M/G. If f C(M/G), a G-orbit F is said to be a
critical orbit of f if one of its points (and thus all of them) is a critical point of f.
A critical orbit F is said to be nondegenerate if, for any smooth transversal of F,
the points in F fq E are nondegenerate critical points of fl; if this holds for some
transversal of F, then it holds for all of them.
A function f C (M/G) is called a G-Morse function if its critical orbits are

nondegenerate. For such a function f, let Crita(f) be the set of its critical orbits,
which is a finite set. The existence of nondegenerate G-Morse functions was proved
by Wasserman 12]; indeed Wasserman has shown the density of the space of such
functions in C (M/G) with respect to the C topology.

If F is a nondegenerate critical orbit of a function f C(M/G), then the
Hessian of f defines a nondegenerate quadratic form Hef on the normal bundle Ne
of F. So Hef yields a decomposition of Ne as direct sum of the subbundles Ne,+
and Ne,-, where Hef is respectively positive and negative definite. The index of F
with respect to f is the rank me of Ne,-. All of these vector bundles are G-vector
bundles in a canonical way.

MAIN THEOREM. Let G be a compactLie group acting on a closed manifoldM of
dimension n, and Go its connected component containig the identity. Let H*(M/ G)
denote the real cohomology of the orbit space M/G, and/Sj dim HJ(M/G) (the
corresponding Betti numbers). For any G-Morsefunction f on M let

/zj # {F Crito(f) line j and Ne,- is G-orientable and Go-trivial}.
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Then we have the inequalities

o <_ lzo,

-0 _< -o,

12 ]l "F" 10 < //,2 --/Zl -F"
etc., and the equality

n n

(-1)Jflj (-1)J/.
j=0 j=0

The proof of this theorem is an adaptation of the method of Witten 13], especially
as it is shown by Roe in [9] (see also 1 ]). We fix a G-invadant Riemannian metric
on M, and the G-Morse function is used to modify the Laplacian on "basic forms" so
that its Schwarz kernel concentrates around the critical orbits, whose cohomological
contribution is thus obtained by a local study using the Koszul Slice Theorem.

In the Main Theorem, the function f" M/G IR defined by f can be considered
as a Morse function on the orbit space M/G, so that this result establishes some
kind of Morse inequalities for M/G. Nevertheless the index of f at the critical
orbits, in the classical sense, may not be well defined--this was solved by using
intersection cohomology instead of real cohomology in the more general setting
of singular stratified spaces [5]. So the Main Theorem shows that, at least on some
singular stratified spaces, certain Morse type inequalities hold for the real cohomology
independently of having no well defined index at some critical points.

The above remarks can be shown in the following simple example. Consider the
group Z2 Z/2Z acting on S C ]12 by symmetry with respect to the vertical axis.
Since the orbits are discrete, the ZE-Morse functions on S are just the usual Morse
functions that are ZE-invariant; for instance, the "high" function f(x, y) y is one
of them, which moreover satisfies that f is a homeomorphism of S1/Z2 onto [-- 1, 1 ],
and a diffeomorphism of ($1/Z2) \ F1, F2 onto (- 1, 1), where F1, F2 are the south
and north pole orbits, which are singletons. Thus F, F2 are the only critical points
of f in the suitable sense, where it respectively reaches the maximum and minimum.
Now the index of f at F is deafly zero because f(F) -1 and f itself induces
(f-+, f--) =- ([-1,-1 + ],0)for 0 < < 2. However f has no well
defined index at F2 because f(F2) and (f+, f-) ([-1, 1], [-1, ])
for 0 < < 2. On the other hand we clearly have met 0 and mr because

f reaches the minimum and maximum at these orbits of codimension one. But since
the Z2-action does not preserve the orientation of the tangent space of S at the north
pole, which is equal to N&,_, we get/zo and/z 0 according to the definition
in the Main Theorem. So our Morse inequalities are equalities in this case.

Recall that, for a Morse function f separating critical points, which is defined in same reasonable way
on some space, and with the usual notation fa f-I (-oo, a] for any a IR, one can classically define
the index of f at a critical point x to be equal to ix when H (fa+, fa-) 0 for small enough > 0 if
and only if ix, where f(x) a and we consider relative real cohomology.
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2. The basic complex

Let (f2 (M), d) denote the de Rham complex of M. The basic complex of the G-
action on M is the subcomplex fl (M/G) C f2 (M) of G-invariant forms ot (M)
such that txc 0 if X 3(M) is tangent to the orbits of G. It was proved by
A. Verona 11] that the cohomology of the basic complex is isomorphic to the real
cohomology ofMG. Thus we shall write H*(M/G) H*(f2 (M/G), db), where
dr, is the restriction of d. The Hilbert space of L2 differential forms on M will be
denoted by L2g2 (M), and let L2f2 (M/G) be the closure of g2 (M/G) in L2f2 (M).

2.1. The orthogonalprojection onto the basic complex. If 8 denotes the coderiva-
tive inducedby afixed G-invariantRiemannian metric on M, in general (fl (M/G)).
f2(M/G). Thus db has an adjoint 8b on f2(M/G) if the orthogonal projection
FI: L2fl (M) ---> L2f2 (M/G) preserves smoothness of differential forms; we would
have 8b 1"I o 8 in this case. So we need the following.

PROPOSITION 2.1. We have FI(f2(M)) f2(M/G).

This section will be devoted to proving Proposition 2.1. Observe that this result
is not obvious because of the possible existence of singular strata. Two orbits have
the same normal orbit type if they have equivalent normal slice representations [3].
The unions of the orbits with the same normal orbit type are the different strata,
which are submanifolds of M. The blowing-up construction yields a G-manifold M
with no singularorbits and an equivariant projection :" M --, M. We describe thee
construction of M and r to prove Proposition 2.1 with the following idea. Since M
has no s,ngular orbits, we have an orthogonal projection on CO differential forms,
II" f2 (M) ---> g2 (M/G). Then we use r and I’l to define a projection f2 (M) --->
,q (M/G), which turns out to be orthogonal by construction, and thus equal to the
restriction of 1-I.

2.1.1. Blowing-up singular strata. Let X be a stratum of M with dim X s,

N(X) its normal bundle, and P: P(X) --,., X the associated projective bundle. Let
Mx (M \ X) t.J P(X) and define rx" Mx --+ M in the following way"

[
rx(v) { P(v)

froM\X,
if v P(X).

Such a set Mx is the blowing-u of M along X, and rx is the blowing-up map-
ping. A differential structure of Mx is defined as follows by using local coordinates
(x x xs+l xn) adapted to X on an open subset U ofM. On U, the stratum
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X is given by xs+l xn O. Let (X1,..., Xs, xs+l, Xn) be the induced
coordinates on N(X), where Xs+l Xn are the coordinates induced by the frame
of N(X) on X tq U defined by O/OxS+,..., O/Oxn. For any {s + 1, n}, let
Ui {x

_
U Ix O} and Pi the part of P(X) defined by the vectors of N(X) on

X tq U with X O. We define coordinates on Ui U Pi by

i (yl yn) {(xl, ,xS,xS+l/xi xi, xn/xi) on Ui,
(X 1, ,Xs, xs+l/xi, 0, xn/xi) on Pi.

In this way, a smooth structure on Mx is defined by an atlas of M \ X and a coveting
of X by open sets Ui with coordinates as above.

This way of describing the blowing-up of a singular stratum is taken from [8]. A
different description is given in [3] and [7]; it consists of attaching a boundary to the
complement of the stratum by passing to "fiberwise polar coordinates" on a tubular
neighborhood of the stratum.

2.1.2. Lifting vectorfields tangent to singular strata. Let Z 2E(M) be tangent
to the stratum X. With respect to a chart (x xn) on U as above, we have

Let

where

on U.

j----’l

/(y/l, y) Zj (y/l,..., y, y[+ly[,..., y] y,y)
ifj 1 s ori j, and

/ Zj(y y,y+l(Y, Y) Yi Yi, Y’Yi)
Y

Y[ Zi(y y y+ly Yi Yi, YYi

otherwise. Such a Zx is a C vector field on Ui U Pi. In this way we construct a C
vector field on Mx, tangent to P (X), which is projectable by rx to Z. This Zx is
called the blowing-up of Z along X. This constru~ction allows lifting of G-invariant
vector fields on M to G-invariant vector fields on Mx, because the G-invariant vector
fields on M are tangent to all the singular stratanthis follows from the triviality of
G-invariant sections of the normal bundle of any stratum. This lifting will be denoted
by i" 3(M) -- 3(M); thus :x, o id.

Observe that, if rx() x, the value of Zx at is not determined by the value of
Z on x. So this procedure does not define a lifting to Mx of vectors tangent to X.
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2.1.3. Lifting actions. On Mx we have an action of G induced by the action of
G on M \ X and the action of G on P(X) the last one is definedby the action of G
on the normal bundle N(X). It is easy to see that this action on Mx is differentiable
by using the above local coordinates. With respect to this action, the projection rx is
a G-map, yielding

,coo coorx (M/G) C

Indeed we have the following.

LEMMA 2.1. For any a Lzfg(M) we have ot f2(M) ifand only ifra
f2(Mx)o.

Proof. If ct f2(M)6, then rct f2(Mx)o trivially. Now assume that
LV-f2s(M)o and X, Xs 2((M).

Because rx, o id, we write

c(X Xs) a(vx,i(X1) rx,i(Xs)) (ra)(i(X1),..., i(Xs));

it is differentiable because "r f2 (fflx) G. E]

2.1.4. Vectorfields on the orbit space. Now we show that f2(M/G) can also be
described by using "vector fields" on M/G. We take some definitions from 10]. Let
(M) be the space of G-invariant vector fields on M, let o(M)6 be the subspace
of elements of (M)o tangent to the orbits of G, and let (M/G) be the space of
derivations in Co(M/G) that preserve the ideals in Coo(M/G) defined by fixing any
stratum ofM and taking the functions that vanish the stratum selected. It was proved
by G. W. Schwarz 10] that the sequence

0 ----> 6(M) (M)c (M/G) O.

is exact. Thus 2((M)6/2((M) (M/G). Now, if ot e 2 (M/G), the G-
invariance of ct implies that a can be determined by its value on G-invariant vector
fields; i. e., c can be described as an antisymmetric r-linear map

(r)
c: (M)ax x(M)a COO(M/G)

of Coo(M/G)-modules. Moreover, since txa 0 for all X 6(M), the basic
form ct can be described as an antisymmetric r-linear map

(r)
or" (M/G)x x(M/G) COO(M/G)

of Coo(M/G)-modules. We point out for further use that G. W. Schwarz has proved
that (M/G) is finitely generated over COO(M/G) [10], so the above interpretation
of basic forms implies that fir (M/G) is finitely generated as well. Because of this
relation between 2((M/G) and f (M/G), the homomorphism i" (M)a (Mx)a
canonically induces i*" 2 (Mx/ G) f2 (M/G) such that i* o vx id on f2 (M/G).
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2.1.5. Construction ofa metric on the blowing-up. Consider a singular stratum
X of the G-action on M and the blowing-up map Zx: Mx ---> M. Let g be a
Riemannian metric on M. We are going to modify the metric g on M \ X inside a
tubular neighborhood of X in order to get a metric that may be smoothly extended
on Px.

For a small P0 > 0, consider the tubular neighborhood V of X of radius P0. On
V, the distance to X defines a function/9 that is constant on the orbits of the action.
Let o: (0, P0) R+ be a Co function such that o(p) for p close to P0 and
o(p) 1/p for/9 close to 0.
We modify the metric g on V \X leaving it invariant along the geodesics orthogonal

to X, and multiplying it by p(p) tangentially to the tube of radius p around X. The
new metric on M \ X extends in a differential way to a metric fix on Mx. This
construction is an adaptation of a similar one in [8]. This metric has the following
property.

LEMMA 2.2.

(1)

For all x M such that rx(J) x,

Proof. On M \ V, fix g and rx is the identity, so (1) is trivially satisfied. Now,
suppose that x 6 V \ X; again, rx is the identity, so r (Gx) GY which is inside
a tube Tp, of radius p, where rx is conformal. So (1) follows.

Finally, suppose that x is in the singular stratum X. We use local coordinates to
check that (1) is satisfied. Let (x xn) be local coordinates on an open subset
U C M containing x, and let (y l, yn) be local coordinates defined on Ui N Pi C

Mx for 6 {s + 1 n}, as it is shown in Section 2.1.1. With respect to these
coordinates, rx has the local expression

(y t, y, y,+ y,,) (yt yS, yi yS+ yi yi y,,),

and thus

rx. (id;xs OA)(2)

at , where A is the (n s) x (n s) matrix with all elements zero except its ith
column which is given by

(yS+l yi-l, 1, yi+l,..., yn).

Now, by definition of Px with respect to the chart qgi, we have T(Px)+/- (O/Oy
and by (2) we have

"rx. (T.(Px)"L) "rX,
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Again, by (2) we also have rx, 0 on

(O/Oys+l O/Oyi-I O/Oyi+l O/Oyn)

and rx, id on

It follows that

(O/Oy O/OyS).

,x, r (Px)) c (r (ox)a

and (1) is also satisfied in this case. ["l

LEMMA 2.3. For all x M and M with rx() x, the tangent bundle ofthe
orbit G contains the horizontal subbundle ofthefiber bundle x: r (Gx) -+ Gx.

Proof. We denote by H, V C T (ffl (Gx)) the horizontal and vertical subbun-
dles of the fiber bundle rx" r (Gx) -- Gx.

If x M \ X, then rx =- id and V {0}, and the result follows trivially in this
case.

If x X we consider the local chart tpi, and we get the matrix representation of
rx, given in (2). So V is the space generated by

O/Oys+l, O/Oyi-l, O/Oyi+l, O/Oyn

at , and H must be inside the subspace generated by OlOy 1, OlOy at be-
cause O/Oy is orthogonal to rff (Gx) by the definition of the metric. Moreover, by
construction of blowing-up, we have

T O:1(Gx)) I"1 (O/Oyl O/OyS) C T(GYc)

at X. Hence H C T(G$).

2.1.6. The global blowing-up. We repeat the above blowing-up process until we
get a G-manifold with regular orbits, obining a tower of blowing-up projections
whose com..,position is the projection :" M M. There is also a lifting of the... G-
action to M, and an extension of G-invariant vector fields, i" 3(M) 3(M),
that induces a homomorphism i*" f2(M/G) f(M/G) such that i* o 3" id on
f2(M/G).

From Lemmas 2.1, 2.2 and 2.3 we get the following.
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COROLLARY 2.1.
r*ot e 2 (M)6.

For any e L2f2(M)o we have t . f2(M)o if and only if

COROLLARY 2.2. There exists a G-invariant Riemannian metric on M such that
for all x M, if v () x then

and GY contains the horizontal subbundle ofthefiber bundle v: v -1 (Gx) -- Gx.

2.1.7. Smoothness ispreserved by FI. The regularity of the G-orbits on M means
that their connected components are the leaves of a G-invariant regular foliation "on M. The leaves of" are mapped by r to the connected components of the G-orbits
of M (which are the leaves of a singular foliation). Since .T" is a regular G-invariant
foliation, we have the orthogonal decomposition

(3) T T.T"+/-

of G-vector bundles, yielding

Ar * A .z
as G-vector bundles. Observe that the space of G-invariant sections of A T.T"+/-* is
fl (/1/G). Thus we get an orthogonal decomposition

n

defining, pointwise, an orthogonal projection..() --. (/o),
depending only on the decomposition (3). Then define H i* H :*: fl(M)o
g2 (M/G), where we consider r*" g2 (M)o fl (M)o.

Claim. If ct e fl(M)o and x e M, then (Fl-"a)(x) e/k Tx(Gx)+/-* is the compo-
nent of cr (x) with respect to the decomposition

(4)

To prove this claim, let/5 be the (possibly non-continuous) differential form on
M, defined at each x e M as the component of c(x) in/k Tx(Gx)+/-* by (4). Such
a/5 is measurable because it is smooth in the dense open set of regular orbits whose
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complement is a finite union ofmanifolds oflowerdimension and thus ofnull measure.
Furthermore,/5 L2f2(M/G) because I(x)l _< Ic(x)l for every x M.
Now fix x M and r-l(x). We write

T2M=A)BC,

where

A T(G,),
B T (r- (Gx)) f3 T(G.)+/-,

C T (v-(Gx)) +/-

If H and V are the horizontal and vertical subbundles respectively of the fiber bundle
r" r- (Gx) ---> Gx, we can write

A B T2 (’c-l(Gx)) H (D V.

We have (H v*c)(2) e/k B* C*. But by Corollary 2.2 we know that H C A
and B C V, so we can consider (H v*ct)() /k C*, and (v*fl)() /k C* again by
Corollary 2.2. Hence, (H r*c)(2) (r*fl)(2).

Since x e M is arbitrary, we get r*fl rI *o
_
(M/G), yielding fl

(M/G) by Corollary 2.1, and we have

fl i* v*fl i* FI z*cr 1-Ia;

the claim follows.
Now FI is easily seen to be an orthogonal projection, which is thus the restriction of

H: L2f2 (M) ---> L2f2 (M/G). On the other hand we have the orthogonal projection
f2 (M) --> fl (M) defined by

l fA*gotdg,Vol(G)

where A" G x M -- M denotes the given action, and we consider any biinvariant
metric on G. Then the composition

f2 (M) f2 (M)c f2 (M/G)

is an orthogonal projection too, and thus equal to the restriction of FI. This finishes
the proof of Proposition 2.1.

2.2. The basic Dirac operator.
as the composition

As we said, the operator 8b on f2 (M/G), defined

f2 (M/G) f2 (M) f2 (M/G),
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is the adjoint of db by Proposition 2.1. We define the basic Dirac operator on
L2 (M/G) by

Db db+ 3b FI o Dl(t/,
where D d + 3 is the Dirac operator on f (M).

LEMMA 2.4. Do is essentially self-adjoint in L2f2 (M/G).

Proof Since D is essentially self-adjoint in L2f2(M), liDli is also essentially
self-adjoint in L2f2 (M) by Lemma XII.1.6 (c) of [4]. But

o0)
with respect to the decomposition

L2f2 (M) L2K2 (M/G) L292 (M/G)+/-,

and the result follows.

LEMMA 2.5. Thefollowing properties hold:

(i) [3, I-l] K3 3K, where K (-1)nr+r[*, l’I]* on g2r(M).
(ii) lfc g2 (M/G) and 2 (M), then I’I (c A) cA I’l () and K (ot A)

t A K().
(iii) /fc 6 f2 (M/G) and K2 (M), then li(cv/3) ot v l-l () and K (ot v)

ot v K(), where tv (/)*.

Proof

where

For any a 6 ’r(M) we have

[3, li] ot (-1)nr+n+l[*d*. li]ot

(-1)nr+n+l(*d * rI rI. d. +. lid. -. lid.)
(--1)nr+n+l([*, rI]d +. d[., II])
(-1)"r+r ([., li]. 3 + 3. [.. li])

(K3 3K)ot,

Kot (--1)nr+r[*, I1] *Or --(--1)nr+r * [*. ri]ot

because .z (_ 1)nr+rol. This proves (i).
Let ?, LZf2 (M/G). We have

because c v y fl (M/G), so the first part of (ii) follows.
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Let F L2fl (M/G). We have

< v n(), > <n(), A V> <,

because c A F e f (M/O), yielding the first part of (iii).
The second parts of (ii) and (iii) follow from the equality K (-1)nr+r [*, I’I],

on f2 (M).

LEMMA 2.6. Any C (M/G)-linear operator T on f2 (M/G) defines a bounded
operator on L=f2 (M/G).

Proof. Since f2 (M/G) is finitely generated as a C(M/G)-module, let {a,...,
Ck} be a finite set of generators. Write any a e f2(M/G) as c )-i ai with
3 C(M/G). Then

IlTall- lIT E fioi --< E IIf"Till -< IIf,’ll IlTotill < constant Ilall.

So T defines a bounded operator on

LEMMA 2.7. The operator D liD is bounded on Lzf2(M/G).

Proof. We have

D -nD Dn nDn (id- n)Dn [D, n]n.

Thus if [D, H] is bounded on L2fl (M/G), so is D riD. This holds by Lemma 2.4
because [D, H] [8, H] is C(M/G)-linear on 2(M/G), which in turn follows
from Lemma 2.5 since, for all f C(M/G) and ct fl(M/G), we have

[, nlfa (K5 dK)(fa)
K5(fot) SK(fot)
g(fdot df v or) d(fK(ot))

fKSot df v K(ot) fSK(a) + df v K(ot)

f(Ka 6K)ot
f[t5, l-I]t.

Using Lemmas 2.4 and 2.7, we finally get the following result.

THEOREM 2.1. With the above notation, there is a complete orthonormal sys-
tem {qbi, 1,2,...} C f2(M/G) of the Hilbert space L=f(M/G) given by
the eigenforms of Ab with eigenvalues Zi, 1, 2,..., satisfying the inequali-
ties 0 < X < X= < ..., with Xi o0 ifdim f2(M/G) cx. In particular we have
the Hodge type decomposition

f2 (M/G) Ker Ab ( Im db ( Im db.
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Proof. Let

II llo,k II(id + o: ll0,
I1 11o , II(id + o >  ll0,

Let wk’ (M/G) be the closure of f2 (M/G) in the kth Sobolev completion wk" (M)
of f2 (M). We know that, on f2 (M/G),

Db liD FIDI’I DH- (DFI- HDH) D- (D- liD).

So the difference Db D is a bounded operator on L2f2 (M/G) by Lemma 2.7. Hence
the norms IIo,k and IIo,k are equivalent on f2 (M/G), and thus wk2(M/G) is
the liOn,k-completion of f2(M/G). Moreover, the compactness of the inclusion
wkf2 (M) wk-l f2 (M) implies the compactness ofthe inclusion wkf2 (M/G)
wk-I2(M/G). On the other hand, k wkf2(M/G) C k wkf2(M) f2(M),
yielding k wkf2 (M/G) L2f2 (M/G) tq 2 (M) (M/G). Combining these
facts with Lemma 2.4 and [2, Proposition 2.44], we get the stated result.

3. Differential forms on a neighborhood of an orbit

For x e M, let F Gx be the orbit of x. Let V be a tubular neighborhood of the
0-section of TF+/-, with radius X. By the Koszul Slice Theorem [10] we know that
V -= G x r B, where K Gx is the isotropy group and B is the ball of radius . in ]Rv

centered at 0 (n dim M, r dim TF, v n r). We can take small enough so
that the exponential map ofM is a diffeomorphism of V onto some open G-invariant
subset U C M. So the composition of the canonical identity V G x r B and

exPM defines an equivariant diffeomorphism b: G x K B - U. Thus * defines an
isomorphism f2 (U) f2 (G x r B)6 of graded differential algebras. We also have
the following isomorphisms of graded differential algebras:

(5)
(6)

(7)

(8)

In (7), K-invariance and r 0 are considered with respect to the action of K defined
by a (z, b, v) (za-, ba-, av). Isomorphism (5) is defined by the canonical
projection G x ]R --+ G x r ]R. Isomorphism (6) is canonical because G only acts
on the first factor G. Isomorphism (7) is induced by

2 (G),K:o (R) A t* 2(G), c (R) y I----+ t9/ A O)^y,
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where to^: / t* -- fl (G) is the canonical extension of the algebraic connection
to: t* f21 (G) [6]. Isomorphism (8) is defined by the diffeomorphism r/on G x
K x v given by r/(z, a, v) (za-1, a, av).

From (5)-(7) we get

(9) f (u)o - ((G)o,,=o (R) (B))K.

In particular,

(10) Coo(U/G) " COO(B/K).

4. Proof of the Main Theorem

4.1. Concentration around the critical orbits. For any G-Morse function f and
any s JR, define

(11) db,s e-sfdbesf db+ sdfA, Sb,s eSftbe-sf 8b sdfv,

(12) Db,s db,s + 3b,s Db + s(df A-dfv) Db + sH, Ab, DE
b,s

Suppose that b is a positive even Schwarz function on I with b (0) 1. Then t# (Db,s)
is of trace class, and let

The following result follows with the same arguments as in [9].

PROPOSITION 4.1.

etc., and the equality

With the above notation we get the inequalities

/o <_ ’o,
o < 1 o,

2 l + 0 +,
n

(--1)J/j E(--1)J/zff.
j=0 j=0

Again with the same arguments as in [9] we get the next result.

LEMMA 4.1. With the above notation we get:

(i) H2 is the endomorphism given by multiplication by Idfl 2.
(ii) HOb,s + Ob,sH is an endomorphism oforder zero.

Now consider the Fourier transform $ of b, which has compact support contained
in some interval [-p, p] for some large enough p > 0. The next result follows from
Lemma 4.1 as in Roe [9].



MORSE INEQUALITIES FOR ORBIT SPACES 259

LEMMA 4.2. On the product ofMG and the complement ofa 2p-neighborhood
ofthe union ofthe critical orbits of f, the Schwarz kernel ofP(Db,s) tends uniformly
to zero as s

Even though p is fixed, by dilating the metric transversally to the critical orbits, the
2p-neighborhood of the critical orbits can be made small. So, as in [9, Chapter 12],
Lemma 4.2 will be used to obtain the trace of p (Db,s) as the sum of the contributions
from the critical orbits.

For any fixed critical orbit F, we define the operatore on f2 (M/G) ofmultiplica-
tion by a non negative G-function on M, equal to 1 in a G-invariant 2p-neighborhood
of F, and supported in a G-invariant 3p-neighborhood. From Lemma 4.2 we get

Iz E Tr (Fqb(Db,s)lfV(M/)) --+ 0 as s ’l’
FCdt(f)

4.2. Local computation. The description ofthe forms given in Section 3 is useful
to simplify the calculus of the trace of the restriction of aPedp(Db,s) to LEg2j (M/G).
We can simplify the problem by going from the G-manifold M to the K-space ]Rv.
To begin with, we decompose H as follows. From the isomorphisms (5) and (6) over
ff2(U/G) we get g2(U/G) - f2(B/K). Via this isomorphism and (9), the projection
H: f2 (U)a --+ f2 (U/G) corresponds to the composition

l’I
((G)G,,=o (R) (B))K ----+ f2(B)K .--4 E2(B/K),

where the first arrow is the canonical projection, and I’I’ is the projection defined for
B like 1-I for M. So

Tr (Fb(Db,s)IL(M/G)) Tr (b(D,,)IL(,/K)),
with the obvious definitions of ape, b, D’b,s etc. in the new context ofv and K

For any fixed F 6 Crito(f), let f’ C(B/K) be the function that corresponds
to flu by (10). The origin 0 is a nondegenerate critical point of f’. So taking Morse
coordinates (xj) on some K-invariant open neighborhood of 0, we get the expression
f’ 1/2j .jx. The number of negative Xj’s is the index rne of f’ at 0. Assume
that the first rn F of the )j’s are negative, so the decomposition

defined by Hf, on ]R" is well adapted to the coordinates (xj).
Now, from [9, Chapter 12], we know that the eigenforms of A’ on g2 (") have

the expression

lrp,q,,, hpj(Xj) exp - I:glx d’xi, A... A
j=l j
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with p (Pl, pv), Pi e N, q = (ql,..., qv), qi {4-1}, I (il,..., ik), and
’swhere the hpj are the Hermite polynomials, up to a normalization. The correspond-

ing eigenvalues are

,p,q,l,s S (13jl(1 + 2pj) +
J

From this it follows that the absolute value of the eigenvalues of D on f2 (JRv) are
also of order s as s ’1’ 00, except the eigenvalue zero that corresponds to the election
of Po (0, ..v)., 0), qo = (1, .m:), 1, -1, (v:-.,n:), 1) in the above expression. The
set {tPp,q,t,s} is a complete orthonormal system of L22(lR), and thus {l’l’p,q,t,s}
generates L2fl (]RV/K) as Hilbert space.

Let o,s denote the eigenform po, q0, to, s, with

Po (0, ...(v), 0), qo (1, (my)..., 1, 1, (v-mr:)... 1), Io (1,..., mr),

that corresponds to the eigenvalue zero of A’,, and also of Ds’. We distinguish two
cases.

Case 1. Suppose @o, f2 (]R/K).

This property means that Fl’qz0,s @o,s; so we get

I’l O,s Db,sO,s = sO,s O,D, FI’D’-’"

because DPo,, 0. Moreover, we have the following.

LEMMA 4.3. If aPO,, 2(IRV/K), and 0 ap Lz2(IRV/K), with .l. Po,s,
then

(D,,, ) O(s) as s oo.

Proof. For

we have

0 . L22(RV/K),

(D,:, :) (Ds’:, :> + ((D D’):,
> min{3+ - 0 3+ is an eigenvalue of D on 2(]Rv)}

+ constant,

which is of order s as s "p oo, because D D’ is bounded in LZg2(]RV/K) by
Lemma 2.5. !"1

Case 2. Suppose @0,s ’ f2 (]RV/K).
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LEMMA 4.4. In this case we have l’I’aPo,s = 0; i.e., o,s f(,V/K)+/-.

Proof. o9 dxl A.../x dxm is the volume form of the K-invariant space ]R. If
is not invariant we have

pr (o) f k*ogdk 0
Vol(K)

because k*o9 4-o9 for all k K. Then Fl’aP0,s 0 because aP0,s is the product of a
K-invariant function and

Suppose o9 is invariant. Then o9 is not horizontal because 0,s 2 (,V/K). So
the regular K-orbits in ]R have positive dimension. Now, since o9 is a volume form
on ]R, it has top tangential degree along the regular G-orbits. So Fl’o9 0 on the
union of regular G-orbits, which is a dense open set, yielding Fl’o9 = 0 on the whole
]R, and thus on the whole ]R

As in the above case we get the following.

LEMMA 4.5. If aPo,s q[ f2(]RV/K), and 0 is in L2f2(,V/K), then

(D’t,,s, ap) O(s) as s oo.

Proof. This follows by arguing as in the above case, since in this situation we
have ap _k aPo,. I-!

Now we can finish the proof of the Main Theorem. From Lemma 4.3 and
Lemma 4.5 we get

= D’ H’lim Tr (tF (Db,s) [L2f21(RV/K)) lim E (ItFt (b,s) r]tltp,q,,,s, [p,q,l,s)
$...,oo

P,q,!

1 if 0, f] (1u/K),= 0 otherwise.

Now simply observe that

o,s function d’xl /x... /x d’xme J (]RV/K)

which means that me j, and N,_ is G-orientable and G0-trivial. So

/zj lim
$--OO

and the Main Theorem fol!ows from Proposition 4.1.
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