CORRIGENDUM TO OUR PAPER "INTERMEDIATE RINGS BETWEEN A LOCAL DOMAIN AND ITS COMPLETION"

WILLIAM HEINZER, CHRISTEL ROTTHAUS AND SYLVIA WEIGAND

There is an error in Theorem 5.8 of our paper [HRW1]. We would like to thank Sarah Sword for her help in uncovering this error. We have found a correct formulation of the theorem. This has led to our further development of this topic in [HRW2]. Here is the revised statement of Theorem 5.8 of [HRW1] which is proved in [HRW2].

THEOREM. Let (R, \mathbf{m}) be a normal excellent local domain and $y \in \mathbf{m}$. Suppose that R^* is the y-adic completion of R, that \widehat{R} is the **m**-adic completion of R, and that $\tau_1, \ldots, \tau_s \in y R^*$ are algebraically independent over the fraction field of R. Then the following statements are equivalent:

- (1) $S := R[\tau_1, ..., \tau_s]_{(m,\tau_1,...,\tau_s)} \hookrightarrow \widehat{R}[1/y]$ is flat. (2) If P is a prime ideal of S and \widehat{Q} is a prime ideal of \widehat{R} minimal over $P\widehat{R}$ such that $y \notin \widehat{Q}$, then $ht(\widehat{Q}) = ht(P)$.
- (3) If \widehat{Q} is a prime ideal of \widehat{R} with $y \notin \widehat{Q}$, then $ht(\widehat{Q}) \ge ht(\widehat{Q} \cap S)$.

As a corollary to the new theorem we obtain the following corollary in [HRW2].

COROLLARY. With the notation of Theorem 5.8, suppose that $\widehat{R}[1/y]$ is flat over S. Let P be a prime ideal of S with $ht(P) \ge dim(R)$. Then:

- (1) For every prime ideal \widehat{Q} of \widehat{R} minimal over $P\widehat{R}$ we have $y \in \widehat{Q}$.
- (2) Some power of y is in $P\hat{R}_{0}$.

Item (1) of the old version of Theorem 5.8 in [HRW1] is the same as item (1) of the theorem above, except that here we have replaced the term "primarily limiting intersection" in the old version by its definition in [HRW1], in order to make this corrigendum more reader-friendly. But the second equivalence in the old version, that states that prime ideals P of S (denoted B_0 in the paper) having height greater than the dimension of R and such that $y \notin P$ have the property that "the extension $P\widehat{R}$ is primary to the maximal ideal of \widehat{R} " is incorrect and is close to being vacuous, because, as the corollary above states, for those prime ideals P, some power of y is in $P\widehat{R}$.

© 2000 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received May 12, 2000.

WILLIAM HEINZER, CHRISTEL ROTTHAUS, AND SYLVIA WEIGAND

928

REFERENCES

- [HRW1] W. Heinzer, C. Rotthaus and S. Wiegand, Intermediate rings between a local domain and its completion, Illinois J. Math. 43 (1999), 19–46.
- [HRW2] W. Heinzer, C. Rotthaus and S. Wiegand, Intermediate rings between a local domain and its completion II, preprint.

William Heinzer, Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395 heinzer@math.purdue.edu

Christel Rotthaus, Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027 rotthaus@math.msu.edu

Sylvia Wiegand, Department of Mathematics and Statistics, University of Nebraska, Lincoln, NE 68588-0323 swiegand@math.unl.edu