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AN INEQUALITY FOR p-ORTHOGONAL SUMS IN
NON-COMMUTATIVE Lp

GILLES PISIER

ABSTRACT. We give an alternate proofof one of the inequalities proved recently for martingales (= sums
ofmartingale differences) in a non-commutative Lp-space, with < p < oo, by Q. Xu and the author. This
new approach is restricted to p an even integer, but it yields a constant which is O(p) when p oo and
it applies to a much more general kind of sum which we call p-orthogonal. We use mainly combinatorial
tools, namely the Mtibius inversion formula for the lattice of partitions of a p-element set.

O. Introduction

In a recent paper [PX], Quanhua Xu and the author have proved non-commutative
versions of the Burkholder-Gundy classical inequalities (see [BG], [B 1 ]-[B4]) relat-
ing the Lp-norms of a martingale with those of its square function (1 < p < oo). We
will continue this investigation here. Our objective is two-fold. First we will improve
the order of growth of the constant in the main inequality from [PX] when p --+ oo.
We obtain a constant which is O (p) when p oo, thus yielding the "sharp" order
of growth. Sharp constants themselves are known in the classical-commutative-case,
see [B3] and [B4, 11 ], but they seem out of reach of our method.

Secondly, we wish to extend the inequality from martingales to a much broader
class of sums in non-commutative Lp-spaces: the p-orthogonal sums, which are
defined as follows.

Let (M, r) be avon Neumann algebra equipped with a standard (= faithful, normal)
trace with r (1) 1, and let Lp (r) be the associated "non-commutative" Lp-spaces.
(Ofcourse, ifM is commutative, we recover the classical Lp associated to a probability
space.) Let p > 2 be an even integer. A family d (di)il is called p-orthogonal if,
for any injective function g" 1, 2 p] --+ I, we have

* *(dg(1)dg(2)dg(3)dg(4) O.

In the commutative case, i.e., for classical random variables, this notion is very
close to that of a "multiplicative sequence" already considered in the literature (see
Remark 2.4 below for more details).

Let us assume I finite for simplicity. We will denote simply by lip the norm in

Lp(r).
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Then the following inequality, which is our main result, holds:

(0.1) Ed < p S(d p)
2

Lp(r)

where we have set

(0.2, S(d,p,=max{ll(Ed.di) /2 (Edid) 1/2 ]p p

Clearly, any martingale difference sequence is p-orthogonal, but the class of p-
orthogonal sums includes a broader class of sums which appear rather naturally in
Harmonic Analysis. For instance, let A C G be a subset of a discrete group with unit
element e. We call A p-dissociate if for any choice t, t2 tp of p distinct points
in A we have

t?lt2tlt4 tpltp :fie.

See [Ru] for examples of this in the Abelian case. Then let ,k: G B(e2(G)) be the
left regular representation of G, let A4 be the von Neumann algebra generated by X
and let re be the usual normalized trace on .A4 defined by

r(x) (x, ,).

Let (tt)t.G be the canonical basis of e2(G).
With this notation (and with as before), for any function x: A -- Lp(’t’) the

family

dt = X(t) (R) x(t)

is p-orthogonal in Lp(G ’). Therefore (0.1) holds in this case too for any finite
subset I C A. More generally, a family (Ai)il of disjoint subsets of A will be called
p-dissociate if every family (ti)il with ti . Ai for all in I is itself p-dissociate.
Then assuming, say, that x is finitely supported, if we define

di E X(t) (R) x(t)
tA

we again obtain a p-orthogonal sum so that (0.1) holds in this case too. For instance
in the case G Z and Ai [2i, 2i+1[, treating the cases of {Ai even} and
{Ai odd} separately, we can recover from (0.1) one of the classical Littlewood-
Paley inequalities for Fourier series:

n>O
CpllSllp
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where
1/2

(>_ol eint [2)S

_
an

2 <n<2 +

and where, say, we assume that (an)n>O is a finitely supported sequence of scalars.
A surprising feature ofour proofofthe martingale inequalities (or their extensions)

is that we use very elementary tools. Indeed, in the non-commutative setting which is
our main motivation, most of the usual techniques such as stopping times or maximal
inequalities are unavailable, or apparently inefficient. Therefore, we must use only
H61der’s inequalities and certain identities. For example when p 4 we are using
an identity of the form

4(di E +6, d4 -8 (, d3 ) (, di)
-3 (4)2+6 (d/2) (di

where , . diidi2di3di4
il, i2, i3, i4 all distinct

More generally, for any even integer p, there is an analogous identity for ( di)P
in which the coefficients appearing (such as 6,-8,-3, 6 when p 4) can be ex-
plicitly computed using the M/Sbius inversion formula, classical in the combinatorics
of partitions (cf. [R1], [R2], [A]). In particular, there are explicit formulae (due to
Schtitzenberger, see Theorem 1.2 below) for these coefficients, which lead to supris-
ingly good bounds for the constants in our inequalities.

Remark.O. 1. Many examples ofnon-commutative martingales can be given using
(non-commutative) Harmonic Analysis. Let G be a discrete group, and let ." G
e2(G) be its left regular representation. The von Neumann algebra of G is defined as
M .(G)", and it can be equipped with the standard trace r defined by re(x)
(Xde, de). Let Gn(n

_
N) be a non-decreasing sequence of subgroups, and let Mn

&G(Gn)". Then, denoting by En the (contractive) conditional expectation from M
to M (which is also contractive on Lp(r) whenever 1 < p < oo), for any f in
Lp (rG), the sequence dn Enf En-1 f is a martingale difference sequence, hence
satisfies (0.1).

Remark.O.2. As explained in [PX], the "free group filtration" is a typical example
to which the preceding point applies. By this we mean the case when G Foo, the
free group with countably many generators denoted by {go, g, g2 }, Gn C G
is the subgroup generated by {go, gl,..., gn} and again Mn L(Gn)". We will
use this example below in one of the proofs. We could consider more generally the
filtration associated to a free product of a countable collection of groups.
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Remark.O.3. Another example is the "free-Gaussian" analog of the preceding.
Let (M, r) be a von Neumann algebra equipped with a standard normalized trace. Let
(Xn)n>_O be a free semi-circular family in Voiculescu’s sense [VDN] in (M, r), and let
Mn be the von Neumann algebra generated in M by {x0,..., xn}. Then again (Mn) is
an interesting example to which (0.1) applies. This case was recently studied by Biane
and Speicher [BS]. Their main result gives evidence that, for martingales relative to
the free group filtration and its free-Gaussian analog, the constant appearing in (0.1)
might actually be bounded when p oo, but this remains open.

Acknowledgement. I thank the referee for his careful reading of the manuscript.

1. Mbius inversion

We will make crucial use of some well known ideas from the combinatorial theory
of partitions, which can be found, for instance, in Rota’s texts JR1], JR2] or in the
book [A]. We denote by Pn the lattice of all partitions of [1 nl, equipped with
the following order: we write cr < rr (or equivalently zr > or) when every "block"
of the partition cr is contained in some block of r. Let and i be respectively the
minimal and maximal elements in Pn, so that t) is the partition into n singletons and
i the partition formed of the single set n }. We denote by v(rr) the number of
blocks of zr (so that v(t)) n and v(i) 1).

For any zr in Pn and any 1, 2, n, we denote by ri (7r) the number of blocks
(possibly 0) of rr of cardinality i. In particular, we have -7 iri(rr) n and

n ri (rr
Given two partitions tr, rr in Pn with tr < rr we denote by/z(tr, zr) the M/Sbius

function, which has the following fundamental property.

PROPOSITION 1.1.
and q" Pn V.
(i) If

then

(ii) If

then

Let V be a vector space. Consider twofunctions : Pn V

(r) (r, a)*(r).

(r) z(cr,
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(iii) In particular,

tz(rr, a)=O Va#6.
O_<rr <a

Remark. (iii) follows from (i) applied with equal to the delta function at 0 (i.e.,
(zr) 0 zr ) and (0) 1) and q 1.

We also recall Schtitzenberger’s theorem (see [A] or [R1-2]):

THEOREM 1.2. For any zc we have

n

Ix(O, zr) H[(-1)i-(i 1)!]r’(’)
i=1

and consequently

(1.1) Iz(6, zr)l n!.
r Pn

We now apply these results to set the stage for the questions of interest to us. Let
El, En, V be vector spaces equipped with a multilinear form (i.e., a "product")

tp: E1 x... x En "-’> V.

Let I be a finite set. For each k 1, 2 n and I, we give ourselves elements
di (k) c:. Ek, and we form the sum

Then we are interested in "computing" or "expanding" in a specific manner the
quantity

o(F1, Fn).

We can start by writing, obviously,

o(Fi Fn) go(dg()(1) dg(n)(n))
g

where the sum runs over all functions g" 1, 2, n] ---> I. Let zr (g) be the partition
g-1associated to g namely the partition obtained from [-Jit ({i }) after deletion of all

the empty blocks. We can write

p(F1 Fn) (a)
aPn
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where (cr) g: r(g)=,r o(dg(1)(1), ,dg(n)(n)). By Theorem 1.1, if we let
q (or) ,_ (r) we can write using (ii) and (iii) in Proposition 1.1"

(F Fn) (6) + ()
<

,(6) + (,

(61 (1,(6, 1.
6<

Recapitulating, we state"

COROLLARY 1.3.

where

and

Thefollowing identity holds:

p(Fi Fn) (O) E q(r)(O, n’)
O<:n"

g injective

o(dg() (1) dg(n)(n))

q,(n-)
g: r (g)>_zr

qg(d) (1), dg@)(n)).

2. The commutative case

Although the main point of this paper is the non-commutative case, we prefer to
present the proof first in the classical setting. This will make it much easier for the
reader to follow the arguments in the next sections. Note that although many results
similar to our Theorem 2.1 below exist in the literature (e.g., see [St] and Remark 2.4
below), we could not quite find a reference for the same result.

Let (g2, m) be any measure space and let p 2k be an even integer. Let (di)il
be a finite sequence in Lp Lp(m). We will say that (di)i# is p-orthogonal if for
any injective map g: I --+ [1,..., p] we have

f dg(1)dg(2)dg(3)...dg(p_l)dg(p)dm O.(2.1)

Clearly, if p 2 we recover the usual orthogonality in L2. Throughout this section,
we will let

S Ic4
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It is easy to check that any martingale difference sequence in Lp is p-orthogonal
(consider the largest value of g, say g(i) n and take the conditional expectation of
index n 1, before the integral in (2.1)).

THEOREM 2.1. Let (di)iEl be a p-orthogonalfinite sequence in Lp Lp(2, m).
Thenfor all even integers p 2k, we have

(2.2) ApllSllp E Ildill _< di < 2pllSIIp
iEl

where 0 < Ap < 1 is a constant depending only on p.

It is well known that a random variable f on a probability space is exponentially
integrable, i.e.,

3 d > 0 such that f exp(dlf[)dP

iff f Lp for any even integer p > 0 and

3 K such that f lip "< Kp Yp > 0 even integer.

Moreover, the corresponding norms are equivalent. Thus we have:

COROLLARY 2.2. Let (di)i be a (countable)family of random variables on a
probability space (2, P) which are p-orthogonalfor any even integer p 2k. Then,

if the "squarefunction" S (’ Idi 12) 1/2 is in the unit ball ofLo, we have

where d > 0 is a numerical constant (independent ofthefamily (di)).

ProofofTheorem 2.1. For simplicity we restrict ourselves to the/-valued case.
We apply the combinatorics in 1 to the multilinear form

tp: Lp ... Lp -defined by p(x, X2 Xp-l., Xp) f xx2... Xp-lXp dm. The hypothesis in The-
orem2.1 guarantees that (0) 0. Let f it d/. Applying Corollary 1.3, we
thus obtain

(2.3) Ilfl[, /x(O, zr)q(zr)
O<zr

where

(/ )rj(rr)
j=l
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If j> 2, thenld/I 1/j (- )< S, so by H61der’s inequality + p-rt() 1

jiq(rr)l < [flrt(zr)sp-rl(Zt)dt < ilfll,(llSllpp-r().

Thus we obtain

Ilfll I(0, )1 IIfII’()IISII-’().

Note that 0 < implies r () p 2, hence the last sum can be rewritten as

flSll-a with ar I(,
OrNp-2 r()r

A moment of thought shows that ar ()b where b is the sum of over
all paitions of [1 p r] without any singleton. A foiofi, by (1.1), we have

br (p r) .
Thus we finally obtain

O<_r<_p-2
(rIlfllpllSIl- (p r)i

Therefore, using the sublemma below, we conclude that

Ilfllp _< 2pllSIIp.

SUBLEMMA 2.3.

Then x < 2py.

Let x, y be positive numbers such that

xP <-- xryp-r(Pr)(P--r)’
O<_r<p

Proof Let y/x. We have

1<_ (Pr)tp-r(p-r),.
O<r<p

Using f Sp-re-sds (p r)! and fo e_Sds 1, we obtain

1 < [(1 + ts) 1]e-ds (1 + ts)Pe-Sds- 1

whence 2 <_ f exp(pts s)ds.
Therefore if pt < 1 this implies 2 < (1 pt)- hence 7 -< 2p (and if pt > 1,

then 7 -< P which is even better), vI
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We now turn to the reverse inequality.
With the same notation as before, we now "isolate" the terms in (2.3) corresponding

to the partitions zr such that r2(zr) p/2, i.e., zr is a partition of [1, p] into p/2
pairs. Let Otp be the number of such partitions. For such a zr, by Theorem 1.2 we

have/z(O, zr) (-1)p/2 and q(zr) f (, Idil2) p/2 dm= IISIIpp. Thus we obtain

(2.4) Ifll p(-I)p/2/IIISII ’z(O,
where the symbol ’’ means that we sum over all zr with rl (zr) _< p 2 and r2(rr) <
p/2. A simple calculation shows that

We can write

Olp p![2p/2(p/2)!]-1

(2.5) ’/z(O,n’)q(zr)= C(r)

where C(r)
r2(r)<p/2

By arguing as above, we obtain

O<_r<_p-2

But now, this estimation will be sufficiently efficient for our purposes only if r > 0;
the term C(0) has to be estimated separately. We have

IC(0)l _< card(zr rj(zr) .j, Yj > 0)FI((i 1)!)’
f (E (E ..,.’)" din,

where the sum runs over all integers Rj > 0 such that p . + 2)2 -1- q- p,p with

.2 < p/2 and Xl 0.
-0 0__ with 0 > 0. Hence, by H61der,Since 2 < 3 < p, we can write - --+ p

(2.,,.’)’" ,_o_< IISIIp
p

Let h (-it Ildi II)/P. Since .2 < p/2, we have 2Z2 < p 2 and since we
may as well assume h < IlSllp (otherwise the left side of (2.2) is negative), we again
obtain, by H61der,

f "m<IISIIPx’(EI’[
< [[Sl[2x2+(-)(p-2x2) ho(p-2.2)

p-EOh2O_< IISIIp
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Thus, returning to (2.4) and (2.5) we can write

0<r<p-1

which implies

IC(r)l- IC(0)l

0<r<p-1

P! p-2oh2o7-.t IlfllSP-r + pllSllp

where/3p is a constant depending only on p. Clearly, since 0 > 0, this last estimate
shows that the ratio IISIIp [max{llfllp, h}]- must be bounded above by a constant
depending only on p. This yields the left side of (2.1). v1

Remark 2.4. The literature contains numerous attempts to generalize orthogo-
nality. For instance, in Stout’s book [St] a sequence of (real valued) random variables
is called "multiplicative" (resp. "multiplicative of order r") if it admits moments of
all order (resp. of all order < r) and is p-orthogonal for all p (resp. for all p < r). We
are aware of works by Azuma (1967), Serfling (1969), Dharmadhikari and Jogdeo
(1969) (for which we refer to [St] for precise references) which all relate to the notion
of p-orthogonality, but we could not find results like Theorem 2.1 in the literature,
although it might be known. One notable exception is the paper [Se] (see also [LS])
which contains a statement ([Se, Th. 2.1]) similar to the fight side of (2.2), namely it
is proved there that there is a constant A such that for any p-orthogonal family (di)i
and any n, we have

<2.6,
p

iN

Note that (2.6) follows also from the right side of (2.2). The basic idea of the proof
of (2.6) in [Se] turns out to be essentially the same as the one used above for the
fight side of (2.2), but the dependence of A with respect to p (or the connection with
the combinatorics of partitions) does not appear in [Se]. (I am very grateful to Prof.
Serfling for kindly communicating to me a copy of this paper upon request, to allow
a comparison with the above results.)

Remark 2.5. As a corollary, we obtain a proof of the classical Burkholder-Gundy
inequalities, which say that S lip and dn are equivalent whenever d =(dn)
is a martingale difference sequence. Indeed, as already mentioned, these are p-
orthogonal. Moreover, the inequality (E Ildn II)lip < 2 , d, IIe is elementary (by
interpolation between p 2 and p oo). Therefore, (2.2) implies in this case that
for any choices of signs en 4-1 we have
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Finally interpolation and duality starting from (2.7) allow us to pass from p an even
integer to the whole range 1 < p < o.

Note there is a well known very classical proof due to Paley [Pa] (for dyadic mar-
tingales), which is also based on the case when p is an even integer, but Paley’s proof
uses the "martingale assumption" several times (and not merely p-orthogonality);
moreover he uses the maximal inequalities, which do not seem to have a counterpart
for non-commutative martingales.

Remark 2.6. Note that we cannot have a lower bound At,llSIIt, lie de lit, for
general p-orthogonal sums. Indeed, just taking a pair d, dE and the rest equal to
zero, we see that when p 4 this would imply that IId lip _< A; Ild + d211p which
is clearly absurd without any assumption on the pair dl, dE. (Note in particular that
p-orthogonality does not even imply linear independence!.)

3. The non-commutative case

Let M be a von Neumann algebra equipped with a faithful normal and normalized
trace 3. Let 1 < p < c. The space Lt,(M, 3) (or simply Lp(:)) is defined as
the completion of M with respect to the norm Ilxllp r(lxlt,) I/t, (here of course

Ixl (x*x)/2). It is natural, say by convention, to set Loo(r) M equipped with
the operator norm.
Now if p is an even integer we say that a finite sequence (di)i! in Lp(’r) is

p-orthogonal if, for any injective map g: 1 p] -- I, we have

Observe that p-orthogonality is inherited by subfamilies, and also, that if the cardi-
nality of I is < p then any family d (di)il is p-orthogonal, but this is actually
irrelevant for our purposes, since we are only interested in the case when I is large
compared with p.

Of course if M is commutative, then (M, 3) can be identified with Loo(f2, m)
for some measure space (f2, m) and r(x) f xdm, so that we recover the notion
introduced in the preceding section. The main result of this paper is the following
non-commutative version of Theorem 2.1.

THEOREM 3.1. Let (M, 3) be as above. Let p > 2 be an even integer Thenfor
any p-orthogonalfinite sequence (di)it in Lt,(r), we have

(3.1)
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where the "squarefunction" S is defined as

(3.2) S= __d;di + did

Inparticular, when I is infinite, ifS converges (strong operator topology) to a bounded
operator in the unit ball ofM, and if (di)iEt is p-orthogonalfor all p, then the series

di obviously converges in LE(r) and its sum satisfies

)
where > 0 is a numerical constant (independent ofthefamily (di)).

Proof. Let f Eiq.l di" As before, we can write

z[(f*f)p/2] /z(0, zr)q (zr)

where and q are now defined as follows"

(o’) E r(d;()dg(2)...d(p_)dg(p)),
g: r(g)=tr

,(zr) (r),

or equivalently,

I(Tr) (d(1)dg(2 d* 1)dg(p))g(p--
g: r(g)>_tr

A quick inspection of the proof of Theorem 2.1 shows that all we need is the next
statement.

SUBLEMMA 3.2. For any partition rr, we have

I(r)l (cllSIIp)P-<")llfllp<),

where

Indeed, using this and arguing as for Theorem 2.1, we obtain

O<r<p

hence by Sublemma 2.3, we conclude that

Ilfllp _< 2cpllSllp.
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This shows (3.1). The last assertion in Theorem 3.1 is then deduced from this ex-
actly as Corollary 2.2 was deduced from Theorem 2.1. We leave the details to the
reader. El

Remark. The inequality (3.1) probably admits a converse (analogous to the left
side of (2.1)), but we could not prove it. The difficulty lies in the fact that (when, say,
p 4) terms such as

may be negative in the non-commutative case. For instance, if (di) <_i <_n is a family of
anti-commuting self-adjoint unitaries (i.e., a spin system) then d.*, did.*,dj I for all
# j and it is equal to I otherwise. Hence, in this case p n (nE n) 2n nE.

Remark. The above proof actually shows that f 2ctpS(d, p), with S(d, p)
as defined in (0.2).

To prove Sublemma 3.2, we need several more lemmas. In the first one, we denote
by Ft the free group with free generators (gi)i! and by go the normalized trace on
the von Neumann algebra of Ft (essentially as in Remark 0.2).

SUBLEMMA 3.3. Fix p > 2 and let r Pp. Let B be the union of all the
singletons ofzr, andlet BE be the complementofB in [1, p]. Let fk -,it di(k)
be a (finite) sum in Lp(z). Let fk it .(gi) (R) di(k) in Lp(go x 3). Then, for a
suitable discrete group G, there are elements F Fp in Lp(r6 x 3) satisfying

(3.3) IIFkllp IlfkllpVk 82 and IIFkllp--IlfkllpVk B1,

and such that

(3.4) r(dg(1)(1)...dg(p)(p)) (r6 (R) r)tF1F2... Fp].
n’(g)>_rr

Proof. First consider the case when zr has only one block [1 p], i.e., we
want to rewrite

ap E r(di(1)...di(p)).
il

Then if p 2 this is easy; we can write

ap go(Z(gi)*(gj))r(di(1)dj(2))
i,j.l

(go x z)[F1F2]
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where

F1 E A.(gi)* di(1), F2 Z A.(gj) dj(2),

and we obtain the announced result.
Now assume that zr has one block 1 p] but that p is arbitrary. Let

F1 y.(gi)* (R) (R) 1... (R) di(1),

F2 Z(gi) Z(gi)* @ 1... @ @ di(2),

F3 1 Z(gi) @ Z(g)* @’" @ @ dg(3),

and so on, until

Fp-1 I @... @ I @ Z(gi) @ X(gi)* @ di(p I),

Fp

Then it is easy to check that (3.3) holds in Lp(ZG x z) where G is a product
of suitably many copies of the frcc group t. Moreover, wc clearly have
(to @ r)[Fl F2... Fp]. In addition, wc have produced a group G and families
(ii)i (f)il in VN(G) such that, for any map g: [I p] I, wc have

pzo(()... #g(p)) 0 if and only if g(i) g(j) V i, j and in that case the non-zero
value is equal to I.

It is now easy to scc the recipe for the general case.
Let Ai, A bc the blocks of the paition w with more than 0nc clement. Wc

will introduce discrete groups G1 G and their product G G x x G.
Let VN(G) denote the von Ncumann algebra of G, generated by the Icff regular
representation o. Wc will identify with ... @ o and VN(G) with
VN(G)@. .@VN(G).
For each q with q v the previous argument (applied to each block sepa-
rately) produces elements ()iet in VN(Gq) such that for any function g" Aq I,

ta es onee va ue only 0 ot,e ise. (HereGg
the product sign is meant to respect the order of the elements in Aq.)
Then wc define

as follows:

Vk cr_A1

Fk VN(GI) (R)... (R) VN(G,) (R) Lp(’f

F, i (R) 1 (R)...(R) 1 (R)di(k),

Vk . A2 Fk , 1 (R) (R) 1...(R)di(k),
i.I
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Yk A Fk 1 (R)...(R) (R)di(k).
il

Finally, ifk A1U...t_J A, (i.e., k belongs to some singleton block of the partition r)
we set

Fk 1(R)’"(R) l(R)fk.

Then it is easy to check that (3.4) holds. Finally, going back to the definition of
(/q)i we see that (3.3) holds. Indeed, it is well known that (analogous to Fell’s
absorption principle) we have

The latter identity can be checked easily in our case by expanding the p-th powers of
the sums on both sides and observing that the corresponding moments are pairwise
identical. We leave this to the reader. E]

LEMMA 3.4.
have

(3.5)

Let p > 2 be an even integer. For any d (di)il in Lp(’), we

,(gi) (R) di <_ --.-S(d, p).
il p

We will deduce this from the next result. The inequality (3.6) below is due to
Buchholz [Bu2]; we include a slightly different argument. ((3.7) is well known.)

LEMMA 3.5. Let p > 2 be an even integer. Let (ci)it be a free circularfamily
in Voiculescu’s sense (cf. [VDN]) normalized so that o(Ici 12) 1 and Ilci I1 2.
Thenfor all d (di)il in Lp(r) we have

(3.6)

where Kp 2 l+p/2
< 2. Moreover, we also have

(3.7)

Proof. Let p 2q. By [Spl] (see also [BSp] and [HT]), we can write

7r.S ili2...iql
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where the first sum runs over a certain subset Sc of the set Sq of all permutations
of [1 q]. This subset is defined as follows. We consider the sequence of num-
bers f2 [1, zr(1), 2, zr(2) q, zr(q)]. We will associate to zr a partition of
[1, 2 2q] into disjoint pairs like this" Let < < j _< 2q. Then we say that
the two-point set [i, j] belongs to the partition if, in f2, we find the same number
at both the i-th and the j-th place. Clearly this is indeed a partition of [1 ,2q]
into pairs composed of an odd and an even integer. We will denote by S the set of
permutations rr such that the associated partition just defined is non-crossing (cf. [K,

argument card(S)Sp2]). It can be shown by a counting (cf. [K]) that (2qq) Z;r
(Catalan number). Hence we have

where V is the positive number defined by

!max
rS /

r(ddi,, d*di.,)
il iq

Thus the proof of (3.6) can be easily completed using Lemma 3.6 below (perhaps
of some independent interest). To check (3.7) we can note that by Voiculescu’s
results, the family (Ci)il has the same distribution as a family of the form (ui Ici ])il
where (Ui)ia.l and (Ci)ia.l are .-free and where (Ui)i.l and (’(gi))il have the same
.-distribution (in the sense of [VDN]). Let 8 q)(Ici I) (independent of I). A simple
computation shows that 8 8/3zr. In addition, note that (uicp(]ci I))il can be viewed
as obtained by a suitable conditional expectation from (ui Ici I)it. Hence we can write

which yields (3.7).

ProofofSublemma 3.2. We apply HNder’s inequality to the fight side of (3.4);
then we use (3.3) and (3.5) to obtain Sublemma 3.2.

LEMMA 3.6. Let (di(k))il, k 1, 2 p (with p 2q as above) befamilies
ofelements in Lp(’C). Then,for all rr in Sc, we have

(3.8)
ilia...iql

(di, (1)di.,, (2)... diq (p 1)di.,, (p)) <_ Sl&...sp

where Sk S((di(k))il, p). More generally,for any > 1, we have

(3.9) di,(1)d.,,,(2)...diq(p 1)d.,q,(p) < H S((di(k))iI, pt).
i! iq k=l
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Proof. Note that when 1, (3.9) obviously implies (3.8). We will prove (3.9)
(for all > 1) by induction on q. The case q 1 is very easy since it is well known
that for all > 1,

(_.di(1)di(1)*) 1/2

Assume that (3.9) has been proved (for all > 1) for the value q 1. Let us
show that it also holds for q. By definition of Sc, the partition of 1 ,2q] into
pairs associated to rr is non-crossing. This implies that this partition admits an
interval [k, k + 1 as one of its blocks. Moreover if we delete this block the resulting
partition of the remaining set (with the induced ordering) is still non-crossing. Let
x -,i...iq di (1)di,,o (2)... di, (p 1)dGtq (p). Thus we can write

x . aa di(k)di(k + 1)bu;
ot q.l

hence

(3.11)

where

il qt

Now, by the induction hypothesis we know that for any s > 1, for any u with

Ilulloo _< 1, we have

with C’ l-[[k,k+ll S((di())it, (p 2)s). Thus the linear mapping v defined by

v(y) ,ayb

is bounded from Loo into Ls with norm < Cp. Since the partition corresponding
to b,ua, is obviously non-crossing also, we have the same bound for to(y)

b,,ya,, or equivalently we know that v is bounded with norm < C’ from Ls, to L.
By interpolation, for any 0 < 0 < 1, it follows that v is also bounded from La to Lb
where

1 1 -0 0 1 1 -0 0
S,a oo b s 1

If we choose s so that 7 1 Then imposing b t, we find 0 determined by
o (1- 1-)Then the value of a is given by 7 00(1- l/s)- b s"



918 GILLES PISIER

+/- Thus we conclude that v is bounded from Lqt to Lt with norm < C’ Inqt"
other words, we have established that

Note that (p 2)s 2(q 1)s 2qt pt. Moreover, by (3.10) (applied in Lqt
instead of Lt) we have

with

(,di(k+l)*di(k+l))
Hence we can finally deduce from (3.11) that Ilxllt CO" C’C" and since
(p 2)s pt we find that C’C" is less or equal to the right side of (3.9). []

Remark. The analogs of Proposition 1.1 and Theorem 1.2 for the lattice of non-
crossing partitions are proved in [Sp2]. Thus we can combine this with the same
argument as above if the function cr (or) is supported by the set of non-crossing
partitions, and the resulting constants will remain bounded when p tends to oo.
However, we could not find a significant application of this idea.

4. Applications to harmonic analysis

The results of this section can be viewed as a continuation of a series of investi-
gations devoted to Fourier series with coefficients in a non-commutative Lp-space,
such as [TJ], [BP], [LP], [LPP], [X].

As explained in the introduction, our main inequality applies to p-dissociate parti-
tions A Ji! Ai ofa subset A in a discrete group G. The inequality in Theorem 4.1
below is closely related (and partly motivated) by the recent papers [H1-2] on the so-
called A (P)cb-Sets, which are a certain non-commutative version of Rudin’s classical
A(p)-sets (cf. [Ru]). The basic examples of such sets are the p-dissociate ones.
However, in the quest for examples of the "largest possible" sets satisfying such
inequalities, the next result turns out to be more efficient and more flexible (in par-
ticular in the analysis of A(P)cb-sets constructed as random subsets of a given set),
even though its assumptions become more complicated than the condition of being
p-dissociate.

THEOREM 4.1. Let 1 js PJ be an orthogonal decomposition ofthe identity
of L2(’). Let p 2q be an even integer > 2. Let d (di)it be a finite family
in Lp(z). We set x’ x* if q is odd and x x if q is even. Let F be the
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set of all injective functions g" [1, 2 q] -- I. For any g in F, we let xg
d(1)de,(2)d(3) ...dgq). We define

N(d) sup card{g F IPjxg 0}.
jEJ

Then we have

< [(4N(d)) /P+p.9-]S(d,p).
Proof. Since the argument is essentially the same as in [H2] modulo the combi-

natorics of 1, we will only sketch the proof.
Let f EiEl di. We have

Ilfll IIf*f... f<l12.

Developing this product as in 1 but with n q this time, V L2(r) and tp the
product mapping, we obtain

(4.1) f,ff, f<o () Ix(O, r)qs(rr)

where (cr) ,r(g)=<, xg. Using Sublemma 3.3 and (3.5) with p replaced by q
3zr(recall c -), we obtain

rl () (5 S p)q-rl (r)(4.2) IIq(zr)ll2 Ilfllp

On the other hand, we can write

hence by a special case of Lemma 3.6, we have

(4.3) 11@(6)11 _< N(d)S(d, p)2q.
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Thus, arguing as in the proof of Theorem 2.1, combining (4.1), (4.2) and (4.3), we
finally obtain

O<s<q

S(d,p)hence, if we now set y Ilfllp we have

l<N(d)l/2Yqq (qs)(q-s)!(tY)q-s.
O<s<q

We claim that y > min 2.1vfa)l/2 Indeed, if y < (2N(d)I/2)-1/q then,

as in the proof of Sublemma 2.3, we have

3/2 _< (1 +otty)qe-t dt

which, if qyot < 1, yields 3/2 < (1 qyot)- whence y > 3--, otherwise qyot >_ 1

which also implies y > 3-" Thus we conclude as announced that a fortiori we have

1/y < (2N(d)l/2)/q + 3qot.

COROLLARY 4.2 [H2]. Let A C G be a subset ofa discrete group G. Let p 2q
be an even integer > 2. For any in G, let Nq(t, A) be the number of q-tuples
(t tq ofmutually distinct elements ofA such that

t-lt.tlt4.., t.
We assume that

Nq(A) sup Nq(t, A) < cx.
tG

Then, for anyfinitely supportedfamily a (at)t^ in a non-commutative Lt,-space
associated to a semi-finite trace T, we have

Proof. We apply the previous result to r r x T so that L2(r) L2(r) @2
L2(T) and to the 2_ decomposition L2(r) t.G nt with Ht ,(t) (R) L2(T) and
I A. Clearly, if we set dt (t) (R) at, E A we find N(d) < Nq(A) and the
result follows since S(d, p) S(a, p).
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5. Tensor products of Banach spaces

The main idea exploited above can also be used in a very abstract setting, which we
briefly indicate in this section. Let E1 Ep be Banach spaces and let E1... Ep
be their projective tensor product equipped with its projective norm denoted by ^
(e.g., see [DF]).

For each k 1, 2, p consider a finite sum

fk ’di(k)
il

where di (k) are elements of Ek.
Now let (F,i)i be a sequence of independent +l-valued random variables on a

probability space (f2, P) with P (ei 4-1) 1/2, as usual.

Note. The family (F,i)i is the Abelian counterpart of the family ((gi))il used
above.
We wish to develop the tensor product

in the Banach space EI... Ep. We will use the notation in 1 applied to the
canonical multilinear mapping o" E1 x... x Ep -.-+ EI...Ep. Hence we now
have

0((5) dg()(1) (R)... (R)
g

where the sum runs over all injective maps g: [I, 2, p] --> I. Let r be a paition
of[l p]. Using the random variables (8i)i instead of ((gi))i in the preceding
section, it is easy to adapt the proof of Sublemma 3.2 to obtain the following result:

Let A C 1 p] be the union of the singletons of the paition (note that the
cdinality of A is m most p 2, unless 0) and, as before, let

() dg()(1) @...d(p)(p).
g: (g)

Then we have

and

where

0<r

kA
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We can now state the main result of this section.

THEOREM 5.1. With the above notation, we have

g: [1 p]---l
g injective

AC[1 p] kA
IAl_<p-2

VISk (p- IAI)!.
k.A

In the particular case E1 E2 Ep E we obtain:

COROLLARY 5.2. Let f il di be a finite sum in a Banach space E. Let
f(R)P f (R)... (R) f (p-times). Then

g: [1 p]---l O<s<p-2
g injective

s)!llfllSp-

where S (E[Ii, Fidi p) lip.
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