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AN INEQUALITY FOR p-ORTHOGONAL SUMS IN
NON-COMMUTATIVE L,

GILLES PISIER

ABSTRACT. We give an alternate proof of one of the inequalities proved recently for martingales (= sums
of martingale differences) in anon-commutative L ,-space, with 1 < p < 00, by Q. Xu and the author. This
new approach is restricted to p an even integer, but it yields a constant which is O (p) when p — oo and
it applies to a much more general kind of sum which we call p-orthogonal. We use mainly combinatorial
tools, namely the Mobius inversion formula for the lattice of partitions of a p-element set.

0. Introduction

In a recent paper [PX], Quanhua Xu and the author have proved non-commutative
versions of the Burkholder-Gundy classical inequalities (see [BG], [B1]-[B4]) relat-
ing the L,-norms of a martingale with those of its square function (1 < p < 00). We
will continue this investigation here. Our objective is two-fold. First we will improve
the order of growth of the constant in the main inequality from [PX] when p — oo.
We obtain a constant which is O (p) when p — 00, thus yielding the “sharp” order
of growth. Sharp constants themselves are known in the classical-commutative-case,
see [B3] and [B4, §11], but they seem out of reach of our method.

Secondly, we wish to extend the inequality from martingales to a much broader
class of sums in non-commutative L,-spaces: the p-orthogonal sums, which are
defined as follows.

Let (M, t) be avon Neumann algebra equipped with a standard (= faithful, normal)
trace with 7(1) = 1, and let L, () be the associated “non-commutative” L ,-spaces.
(Of course, if M is commutative, we recover the classical L, associated to a probability
space.) Let p > 2 be an even integer. A family d = (d;);; is called p-orthogonal if,
for any injective function g: [1,2,..., p] — I, we have

T(dg1yds@ g3 ds@) - - - dg(p-1yds(p)) = 0.

In the commutative case, i.e., for classical random variables, this notion is very
close to that of a “multiplicative sequence” already considered in the literature (see
Remark 2.4 below for more details).

Let us assume ! finite for simplicity. We will denote simply by || ||, the norm in
L,(7).
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Then the following inequality, which is our main result, holds:

>
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where we have set

©02)  S@,p)=max { “ (Tara)"”

@)

Clearly, any martingale difference sequence is p-orthogonal, but the class of p-
orthogonal sums includes a broader class of sums which appear rather naturally in
Harmonic Analysis. For instance, let A C G be a subset of a discrete group with unit
element e. We call A p-dissociate if for any choice #1, t2, . .., t, of p distinct points
in A we have

-1, - -1
i . e, # e

See [Ru] for examples of this in the Abelian case. Thenlet A: G — B(£2(G)) be the
left regular representation of G, let M be the von Neumann algebra generated by A
and let 7 be the usual normalized trace on M defined by

16 (x) = (xd,, 8.).

Let (8;):ec be the canonical basis of £;(G).
With this notation (and with t as before), for any function x: A — L,(7) the
family

d = A1) ®@x()

is p-orthogonal in L,(tg x 7). Therefore (0.1) holds in this case too for any finite
subset I C A. More generally, a family (A;);c; of disjoint subsets of A will be called
p-dissociate if every family (t;);e; With #; € A; for all i in [ is itself p-dissociate.
Then assuming, say, that x is finitely supported, if we define

d; = Zw) ® x(¢)

teA;

we again obtain a p-orthogonal sum so that (0.1) holds in this case too. For instance
in the case G = Z and A; = [2},2!*1], treating the cases of {A; | i even} and
{A; | i odd} separately, we can recover from (0.1) one of the classical Littlewood-
Paley inequalities for Fourier series:

§ an el nt

n>0

< GliSllp
p
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- (gl 2.0e)

and where, say, we assume that (a,),-0 is a finitely supported sequence of scalars.

A surprising feature of our proof of the martingale inequalities (or their extensions)
is that we use very elementary tools. Indeed, in the non-commutative setting which is
our main motivation, most of the usual techniques such as stopping times or maximal
inequalities are unavailable, or apparently inefficient. Therefore, we must use only
Holder’s inequalities and certain identities. For example when p = 4 we are using
an identity of the form

(Zd,)4 =x+6) d-8(} ) (X 4)
-3 (Zd})z +6( a7 (Zd,-)z.

where

a eint
n

2k_<_n<2k+l

where

T = > dydidid,
i1,i2,i3,i4 all distinct
More generally, for any even integer p, there is an analogous identity for (}_ d;)?
in which the coefficients appearing (such as 6, —8, —3, 6 when p = 4) can be ex-
plicitly computed using the Mobius inversion formula, classical in the combinatorics
of partitions (cf. [R1], [R2], [A]). In particular, there are explicit formulae (due to
Schiitzenberger, see Theorem 1.2 below) for these coefficients, which lead to supris-
ingly good bounds for the constants in our inequalities.

Remark.0.1. Many examples of non-commutative martingales can be given using
(non-commutative) Harmonic Analysis. Let G be a discrete group, and let Ag: G —
£,(G) be its left regular representation. The von Neumann algebra of G is defined as
M = Ag(G)", and it can be equipped with the standard trace t defined by 75 (x) =
(x8.,8.). Let G,(n € N) be a non-decreasing sequence of subgroups, and let M, =
Ag(G,)". Then, denoting by E, the (contractive) conditional expectation from M
to M, (which is also contractive on L,(tg) whenever 1 < p < 00), for any f in
L, (tg), the sequence d, = E, f — E,_, f is a martingale difference sequence, hence
satisfies (0.1).

Remark.0.2. Asexplained in [PX], the “free group filtration” is a typical example
to which the preceding point applies. By this we mean the case when G = Fo, the
free group with countably many generators denoted by {go, g1, 82,...}, G» C G
is the subgroup generated by {go, g1, - - -, 8-} and again M, = Ag(G,)". We will
use this example below in one of the proofs. We could consider more generally the
filtration associated to a free product of a countable collection of groups.
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Remark.0.3. Another example is the “free-Gaussian™ analog of the preceding.
Let (M, ) be a von Neumann algebra equipped with a standard normalized trace. Let
(xn)n>0 be a free semi-circular family in Voiculescu’s sense [VDN] in (M, t), and let
M,, be the von Neumann algebra generated in M by {xo, ..., x,}. Then again (M,,) is
an interesting example to which (0.1) applies. This case was recently studied by Biane
and Speicher [BS]. Their main result gives evidence that, for martingales relative to
the free group filtration and its free-Gaussian analog, the constant appearing in (0.1)
might actually be bounded when p — 00, but this remains open.

Acknowledgement. 1 thank the referee for his careful reading of the manuscript.

1. Mébius inversion

We will make crucial use of some well known ideas from the combinatorial theory
of partitions, which can be found, for instance, in Rota’s texts [R1], [R2] or in the
book [A]. We denote by P, the lattice of all partitions of [1, ..., nl], equipped with
the following order: we write 0 < 7 (or equivalently w > o) when every “block”
of the partition o is contained in some block of 7. Let 0 and i be respectively the
minimal and maximal elements in P,, so that 0 is the partition into » singletons and

i the partition formed of the single set {1, ..., n}. We denote by v(rr) the number of
blocks of 7 (so that v(0) = n and v(1) = 1).
Forany z in P, andany i = 1, 2, ..., n, we denote by r; (;r) the number of blocks

(possibly = 0) of m of cardinality i. In particular, we have Y ] ir;(w) = n and
Y iri(m) =v(m).

Given two partitions o, 7 in P, with 0 < 7 we denote by w(o, ) the Mobius
function, which has the following fundamental property.

PROPOSITION 1.1. Let V be a vector space. Consider two functions ®: P, - V
andVV: P, - V.

@) I
Vo) = Y &),
then ~
®(0) = ;M(n, o)W ().
i) If
V(o) = ) o),
then ~

®(0) = ) ulo, mW(r).

n>0
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(iii) In particular,
Z u(r,o)=0 VYo #0.

O<rm<o

Remark. (iii) follows from (i) applied with @ equal to the delta function at Od.e.,
b(r)=0Var #0and ®(0) =1)and ¥ = 1.

We also recall Schiitzenberger’s theorem (see [A] or [R1-2]):

THEOREM 1.2. For any ® we have

@, m) = [Ju=1""'¢ — ne,

i=1
and consequently

1.1) > 1w, )| = nt.

neP,

‘We now apply these results to set the stage for the questions of interest to us. Let
E,, ..., E,, V be vector spaces equipped with a multilinear form (i.e., a “product”)

¢: Ey x---xE, = V.

Let I be a finite set. Foreachk = 1,2,...,nandi € I, we give ourselves elements
d; (k) € E;, and we form the sum

F = Zd,-(k).

iel

Then we are interested in “computing” or “expanding” in a specific manner the
quantity

@(Fi, ..., Fy).

We can start by writing, obviously,

O(F1, ..., ) =Y ¢ldgy(1), ..., dgeny ()
4

where the sum runs over all functions g: 1,2, ...,n] — I. Let w(g) be the partition
associated to g, namely the partition obtained from | J;; g~ ({i}) after deletion of all
the empty blocks. We can write

o(Fi,....,F) =) ®(0)

o€eP,
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where (o) = Zg: 7(g)=0 ©(dgy(1), ..., dgmy(n)). By Theorem 1.1, if we let
V(o) = ana & () we can write using (ii) and (iii) in Proposition 1.1:

@(F1, ..., Fp) = ®0) +)_ &)

0<o

= ®0) +) ) po,m¥(m)
O0<o =0

= O +) V) ) wom)
O<m 6<057r

= @) - ) ¥(mu©, ).
0<n

Recapitulating, we state:

COROLLARY 1.3. The following identity holds:
O(F1, ..., Fo) = ®(0) = ) W(mu(O, )
O<m
where
PO = D @dgy(D), ..., dgm ()
g injective
and

V)= Y. @dgny(D)s ..., dgeny()).

g m(g)zm
2. The commutative case

Although the main point of this paper is the non-commutative case, we prefer to
present the proof first in the classical setting. This will make it much easier for the
reader to follow the arguments in the next sections. Note that although many results
similar to our Theorem 2.1 below exist in the literature (e.g., see [St] and Remark 2.4
below), we could not quite find a reference for the same result.

Let (2, m) be any measure space and let p = 2k be an even integer. Let (d;);es
be a finite sequence in L, = L,(m). We will say that (d;)ic; is p-orthogonal if for
any injective map g: I — [1,..., p] we have

2.1 / deydgdg(3) - - - dg(p-dg(pydm = 0.

Clearly, if p = 2 we recover the usual orthogonality in L,. Throughout this section,

we will let
1/2
S = (Z ldi|2> :

iel
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It is easy to check that any martingale difference sequence in L, is p-orthogonal
(consider the largest value of g, say g(i) = n and take the conditional expectation of
index n — 1, before the integral in (2.1)).

THEOREM 2.1.  Let (d;)icr be a p-orthogonal finite sequence in L, = L, (2, m).
Then for all even integers p = 2k, we have

1/p
22) AplISllp, = (Z lld; II,’j) <

iel

>

iel

<2pliSl,
p

where 0 < A, < 1 is a constant depending only on p.

It is well known that a random variable f on a probability space is exponentially
integrable, i.e.,

36 > 0 such that /exp(Slfl)dP < 00
iff f € L, for any even integer p > 0 and
3 K suchthat || f||, < Kp Vp > 0even integer.

Moreover, the corresponding norms are equivalent. Thus we have:

COROLLARY 2.2. Let (d;)ic1 be a (countable) family of random variables on a
probability space (2, P) which are p-orthogonal for any even integer p = 2k. Then,
if the “square function” S = (Y_ |d;|*)!/? is in the unit ball of Lo, we have

fexp (8|Zd5‘)dP <2

where 8 > 0 is a numerical constant (independent of the family (d;)).

Proof of Theorem 2.1.  For simplicity we restrict ourselves to the R-valued case.
We apply the combinatorics in §1 to the multilinear form

¢ Lyx---xL,>R

defined by @(x1, X2, ..., Xp—1, Xp) = [ X1X2...Xp_1X, dm. The hypothesis in The-
orem 2.1 guarantees that $(0) = 0. Let f = Y_,, d;. Applying Corollary 1.3, we
thus obtain

@23) IAIE == u(©, m)¥(r)
O<m

where

iel

p ' rj(m)
() =/]‘[(ng) du.
Jj=1
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1/j
If j > 2, then Izd,! | ? < S, s0 by Holder’s inequality (2@ 4 2z _ p),

el < [ 10O a < LIS
Thus we obtain

112 <) 1O, )] 1IN SEe.
0<”

Note that 0 < 7 implies 71 () < p — 2, hence the last sum can be rewritten as

D UfIISNE e, witha, = D |u(O,m)l.

0<r<p-2 nm=r

A moment of thought shows that a, = ()b, where b, is the sum of |u(0, o')| over

all partitions o of [1, ..., p — r] without any singleton. A fortiori, by (1.1), we have
by < (p—r).
Thus we finally obtain
IF1E < 3 ufipisie (” ) (p =L
O<r<p-2 r

Therefore, using the sublemma below, we conclude that
Ifll, < 2plSlp-

SUBLEMMA 2.3. Let x, y be positive numbers such that

DY x'y”"(lr’)(p—r)!

O<r<p

Then x < 2py.

Proof. Lett = y/x. We have

1< Z (f)t”"(p—-r)!.

O<r<p
Using f0°° sPTe~*ds = (p —r)! and f0°° e~*ds = 1, we obtain
o0 o0
1< f [(A +ts)? —1le™%ds = / (1 +1s)Peds — 1
0 0
whence 2 < f0°° exp(pts — s)ds.

Therefore if p < 1 this implies 2 < (1 — pr)~ hence 1 < 2p (and if pr > 1,
then } < p which is even better). O
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We now turn to the reverse inequality.

With the same notation as before, we now “isolate” the terms in (2.3) corresponding
to the partitions 7 such that r,(w) = p/2,i.e., w is a partition of [1, ..., p]into p/2
pairs. Let o, be the number of such partitions. For such a &, by Theorem 1.2 we

have (0, 7) = (—1)?/2 and W () = [ (¥ |d;|2)""> dm = ||S|2. Thus we obtain
2.4) IFI2 = ap(=DP2HSIE = 30, m)W ()

where the symbol Z' means that we sum over all # withrj(7) < p—2and ry () <
p/2. A simple calculation shows that

ap = pI272(p/2)17".
We can write
2.5) Y uOmMY@ = Y Cr)
0<r<p-2
where C(r) = Y nmy=r (0, m)¥ ().

. r2(m)<p/2 .
By arguing as above, we obtain

Ic()l < (”)(p —UFILSP".
r

But now, this estimation will be sufficiently efficient for our purposes only if r > 0;
the term C(0) has to be estimated separately. We have

ICOI < " card(r | rym) = Aj, ¥j = OTI(G — DHY
A

/ (Z d"z)h (Z "1"'3)As o (Z Id:l")A" dm,

where the sum runs over all integers A; > O such that p = A; +2A; +- - - + pA, with
Ay < p/2 and )\.1 =0.
Since 2 < 3 < p, we can write 5 = 152 + ¢ with 6 > 0. Hence, by Holder,

“ = ldi|3)l/3 = 1152 (3 1 ||g)o’ P

Leth = (e ldi ||{,’)1/”. Since A, < p/2, we have 24, < p — 2 and since we
may as well assume h < || S||,, (otherwise the left side of (2.2) is negative), we again
obtain, by Holder,

[(Twr) (i) am

3 1/3 p—2A2
(> 1)
p
I S“2M+(l-—0)(l’—2i~z) . h9(p—2?~z)
p

" S"I[;—20h20 .

IA

22
ISI

IA

IA
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Thus, returning to (2.4) and (2.5) we can write

IFIE Z epllSIE = 3 1C@) = 1CO)

O<r<p-1

which implies

!
aplSIp < IFI5+ 3 USSP + BylSl A
O<r<p—1""

where B, is a constant depending only on p. Clearly, since 6 > 0, this last estimate
shows that the ratio ||S||, - [max{|| f|l,, h}1~! must be bounded above by a constant
depending only on p. This yields the left side of (2.1). O

Remark 2.4. The literature contains numerous attempts to generalize orthogo-
nality. For instance, in Stout’s book [St] a sequence of (real valued) random variables
is called “multiplicative” (resp. “multiplicative of order ) if it admits moments of
all order (resp. of all order < r) and is p-orthogonal for all p (resp. forall p < r). We
are aware of works by Azuma (1967), Serfling (1969), Dharmadhikari and Jogdeo
(1969) (for which we refer to [St] for precise references) which all relate to the notion
of p-orthogonality, but we could not find results like Theorem 2.1 in the literature,
although it might be known. One notable exception is the paper [Se] (see also [LS])
which contains a statement ([Se, Th. 2.1]) similar to the right side of (2.2), namely it
is proved there that there is a constant A such that for any p-orthogonal family (d;);en
and any n, we have

(2.6)

n
D di| = An'”supd;]],.

1 ? ieN
Note that (2.6) follows also from the right side of (2.2). The basic idea of the proof
of (2.6) in [Se] turns out to be essentially the same as the one used above for the
right side of (2.2), but the dependence of A with respect to p (or the connection with
the combinatorics of partitions) does not appear in [Se]. (I am very grateful to Prof.
Serfling for kindly communicating to me a copy of this paper upon request, to allow
a comparison with the above results.)

Remark 2.5. As acorollary, we obtain a proof of the classical Burkholder-Gundy
inequalities, which say that ||S||, and "Zd,, "p are equivalent whenever d = (d,)
is a martingale difference sequence. Indeed, as already mentioned, these are p-
orthogonal. Moreover, the inequality (Z \d, II},’ )1/ P <2 ||Z dy || is elementary (by
interpolation between p = 2 and p = 00). Therefore, (2.2) implies in this case that
for any choices of signs €, = +1 we have

@7 |> ent <G I>a

p
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Finally interpolation and duality starting from (2.7) allow us to pass from p an even
integer to the whole range 1 < p < 00.

Note there is a well known very classical proof due to Paley [Pa] (for dyadic mar-
tingales), which is also based on the case when p is an even integer, but Paley’s proof
uses the “martingale assumption” several times (and not merely p-orthogonality);
moreover he uses the maximal inequalities, which do not seem to have a counterpart
for non-commutative martingales.

Remark 2.6. Note that we cannot have a lower bound A4, S|, < |Xd: ||p for
general p-orthogonal sums. Indeed, just taking a pair dj, d, and the rest equal to
zero, we see that when p = 4 this would imply that ||d; ||, < A;‘ lldi + da ||, which
is clearly absurd without any assumption on the pair d;, d,. (Note in particular that
p-orthogonality does not even imply linear independence!.)

3. The non-commutative case

Let M be a von Neumann algebra equipped with a faithful normal and normalized
trace 7. Let 1 < p < oo. The space L,(M, t) (or simply L,(7)) is defined as
the completion of M with respect to the norm [|x||, = 7(Jx|?)1/? (here of course
lx| = (x*x)!/2). It is natural, say by convention, to set Lo (t) = M equipped with
the operator norm.

Now if p is an even integer we say that a finite sequence (di)ies in L,(7) is
p-orthogonal if, for any injective map g: [1,..., p] = I, we have

‘L'(d;(l)dg(z) o d;(p_l)dg(p)) =0.

Observe that p-orthogonality is inherited by subfamilies, and also, that if the cardi-
nality of I is < p then any family d = (d;);¢; is p-orthogonal, but this is actually
irrelevant for our purposes, since we are only interested in the case when I is large
compared with p.

Of course if M is commutative, then (M, t) can be identified with L (€2, m)
for some measure space (£2,m) and t(x) = f xdm, so that we recover the notion
introduced in the preceding section. The main result of this paper is the following
non-commutative version of Theorem 2.1.

THEOREM 3.1. Let (M, t) be as above. Let p > 2 be an even integer. Then for
any p-orthogonal finite sequence (d;)ie1 in Lp(t), we have

>

iel

3.1

3
< TPIIS e,
Lp(r)
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where the “square function” S is defined as

172
(32) S = (Z drd; + d,~d,.*> .

iel

In particular, when I is infinite, if S converges (strong operator topology) to a bounded
operator in the unit ball of M, and if (d;);c; is p-orthogonal for all p, then the series
> d; obviously converges in L, () and its sum satisfies

(e 6|l =2

where § > 0 is a numerical constant (independent of the family (d;)).

Proof. Let f =), di. As before, we can write
T HPP == p0, m)¥(m)
O<m
where ® and W are now defined as follows:

d(0) = Z T(dyds) - - - Ao 1y )
g: n(g)=0

V(r) = ) ),

o>m

or equivalently,
) = Y. tdaydee - dipo1ydem)-
g: m(g)zo

A quick inspection of the proof of Theorem 2.1 shows that all we need is the next
statement.

SUBLEMMA 3.2.  For any partition 7, we have
W ()| < (a||S"p)l7"'l(ﬂ)"f“;.(n),

where a = 37.

Indeed, using this and arguing as for Theorem 2.1, we obtain
1712 < 32 WISl (f ) (-n,
O<r<p

hence by Sublemma 2.3, we conclude that

I fllp < 2epllSilp.
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This shows (3.1). The last assertion in Theorem 3.1 is then deduced from this ex-
actly as Corollary 2.2 was deduced from Theorem 2.1. We leave the details to the
reader. 0O

Remark. The inequality (3.1) probably admits a converse (analogous to the left
side of (2.1)), but we could not prove it. The difficulty lies in the fact that (when, say,
p = 4) terms such as

¥ =) t(drdidid)
ij

may be negative in the non-commutative case. For instance, if (d;)1<;<n is a family of
anti-commuting self-adjoint unitaries (i.e., a spin system) then d;*d;d}d; = —1I for all
i # j and itis equal to I otherwise. Hence, in this case ¥ = n — (n®> —n) = 2n —n?

Remark. The above proof actually shows that || f||, < 2apS(d, p), with S(d, p)
as defined in (0.2).

To prove Sublemma 3.2, we need several more lemmas. In the first one, we denote
by F; the free group with free generators (g;);c; and by ¢ the normalized trace on
the von Neumann algebra of F; (essentially as in Remark 0.2).

SUBLEMMA 3.3. Fix p > 2 and let 1 € P,. Let By be the union of all the
singletons of ,and let B, be the complement of By in[1, ..., pl. Let fx = Y., di(k)
be a (finite) sum in L,(t). Let fy = Y ;; Mg&) ® di(k) in L,(¢ x t). Then, for a

suitable discrete group G, there are elements F\, ..., F, in L,(t¢ X T) satisfying
(3.3) I Fell, = Il fill ¥k € B, and ||Fill, = || fell Yk € Bi,
and such that
(3.4) > tdgy(D) ... dery(P) = (16 ® DFi F2 ... Fpl.
n(@)zn
Proof. First consider the case when & has only one block [1, ..., p], i.e., we

want to rewrite
Y=Y td)...d(p).
iel
Then if p = 2 this is easy; we can write
¥ o= ) o((g)* Mg T(di(1)d;(2)
i,jel
= (¢ x 7)[F1F2]
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where

Fi =) ag)*®@d(l), F=) Ag)®dQ),

and we obtain the announced result.
Now assume that 7z has one block [1, ..., p] but that p is arbitrary. Let

Fi =) Mg)*®1®1...184d(1),
Fr =) Mg)®Ae)* @1 ®1®4di(2),
F; =) 10Ar)®AMg)* ® - ®1®d(3),

and so on, until

Fpop=) 19 ®18Mg) ®Mg)* ®di(p— 1),
F, =) 1®--®1®AMg) ®di(p).

Then it is easy to check that (3.3) holds in L,(t¢ x t) where G is a product
of suitably many copies of the free group F;. Moreover, we clearly have ¢ =
(t¢ ® T)[F1F,...Fp]. In addition, we have produced a group G and families
&Yier, -+ -+ €ED)ier in VN(G) such that, for any map g: [1,..., p] = I, we have
16 Egqy - - - Eo(py) # 0 if and only if g(i) = g(j) ¥ i, j and in that case the non-zero
value is equal to 1.

It is now easy to see the recipe for the general case.

Let Ay, ..., A, be the blocks of the partition & with more than one element. We
will introduce discrete groups Gy, ..., G, and their product G = G| x -+ x G,.
Let VN(G) denote the von Neumann algebra of G, generated by the left regular
representation Ag. We will identify Ag with Ag, ® -+ ® Ag, and VN(G) with
VN(G)®: - ®VN(G)).

For each ¢ with 1 < g < v the previous argument (applied to each block sepa-
rately) produces elements (&‘iq )ier in VN(G,) such that for any function g: A, — I,

TG, (]"[ae " {-'g(a)) = 1 iff g takes one single value only and = O otherwise. (Here

the product sign is meant to respect the order of the elements in A,.)
Then we define

Fr e VN(G)®---®VN(G,) ® Ly(7)

as follows:
— 1
YkeA Fo=) &1 - 01edk),
iel
Vke A Fi =) 1@§®1-®dik),

iel
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Ve A, Fo=) 100§ ®dK.

iel
Finally,ifk ¢ A;U---UA, (i.e., k belongs to some singleton block of the partition )
we set

Fi=1®:---®1® fi.

Then it is easy to check that (3.4) holds. Finally, going back to the definition of
(é‘,." )ier we see that (3.3) holds. Indeed, it is well known that (analogous to Fell’s
absorption principle) we have

[T rererereted] =i ed] .

The latter identity can be checked easily in our case by expanding the p-th powers of
the sums on both sides and observing that the corresponding moments are pairwise
identical. We leave this to the reader. O

LEMMA 34. Let p > 2 be an even integer. For any d = (di)ics in L,(7), we
have

3.5) D Me)®di

iel

3
—3S{, p).
p54S( p)

We will deduce this from the next result. The inequality (3.6) below is due to
Buchholz [Bu2]; we include a slightly different argument. ((3.7) is well known.)

LEMMA 3.5. Let p = 2 be an even integer. Let (c;)ic1 be a free circular family
in Voiculescu’s sense (cf. [VDN)) normalized so that ¢(|c;|*) = 1 and ||ci|leo = 2.
Then for all d = (d;)ie1 in Lp(t) we have

Zci®di

iel

(3.6) = K,S(d, p)

p

1/p
where K, = [(p,;Z)H-lW] < 2. Moreover, we also have

3.7 Y e ®di
iel

<3n/8 “Zc; ® d; “p.
p

Proof. Let p =2q. By [Spl] (see also [BSp] and [HT]), we can write

[Taod] =Y Tt i

JTES,','C iiy.ig€l
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where the first sum runs over a certain subset S7¢ of the set S, of all permutations
of [1, ..., g]. This subset is defined as follows. We consider the sequence of num-
bers @ = [1,7(1),2,7(2),...,q9,7m(g)]. We will associate to 7 a partition of
[1,2,...,2q] into disjoint pairs like this: Let 1 <i < j < 2q. Then we say that
the two-point set [i, j] belongs to the partition if, in €2, we find the same number
at both the i-th and the j-th place. Clearly this is indeed a partition of [1, ..., 2q]
into pairs composed of an odd and an even integer. We will denote by S;° the set of
permutations 7 such that the associated partition just defined is non-crossing (cf. [K,
Sp2]). It can be shown by a counting argument (cf. [K]) that card(S}°) = (2;) 1

q+1
(Catalan number). Hence we have

IlZci ®d; ",, < Kpy

where y is the positive number defined by

Z (@ iy, - - 4 i)

nesy
Tlyeoey lq

y”=max‘

} .

Thus the proof of (3.6) can be easily completed using Lemma 3.6 below (perhaps
of some independent interest). To check (3.7) we can note that by Voiculescu’s
results, the family (¢;);c; has the same distribution as a family of the form (u;|c;|)icr
where (u;)ier and (c¢;);e; are x-free and where (#;);¢; and (A(g;))iec; have the same
*-distribution (in the sense of [VDN]). Let § = ¢(|¢;|) (independent of I). A simple
computation shows that § = 8/3x. In addition, note that (u;¢(|c;|))ies can be viewed
as obtained by a suitable conditional expectation from (;|c;|);c;. Hence we can write

s “Zui ®di"p < Ilzuilcil ®di||p = "ZC.' ®di|lp

which yields (3.7). O

Proof of Sublemma 3.2. 'We apply Holder’s inequality to the right side of (3.4);
then we use (3.3) and (3.5) to obtain Sublemma 3.2. 0O

LEMMA 3.6. Let (d;(k))ic1, k=1,2,..., p (with p = 2q as above) be families
of elements in L, (). Then, for all t in S;,‘” , we have

(3.8) Y T (Dd, @) ... di, (p = Ddiy, (P)

iliz,..iqel

<55,...5,

where S = S((d;(k))ie1, p).- More generally, for anyt > 1, we have

P
< [[s«@@yier, po).

k=1

3.9

. 3 dy (Ddiyy @) .. di, (p = Vi (P)

ifoig

t
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Proof. Note that when ¢ = 1, (3.9) obviously implies (3.8). We will prove (3.9)

(for all # > 1) by induction on q. The case g = 1 is very easy since it is well known
that forall 1 > 1,

3.10) | L dma@)] <

(T amaar)” N2 N(Caera)”

Assume that (3.9) has been proved (for all ¢ > 1) for the value g — 1. Let us
show that it also holds for g. By definition of S3°, the partition of [1, ..., 2q] into
pairs associated to 7 is non-crossing. This implies that this partition admits an
interval [k, k + 1] as one of its blocks. Moreover if we delete this block the resulting
partition of the remaining set (with the induced ordering) is still non-crossing. Let

x = Zil...iq d;(1)d;,,,(2) ...di,(p — 1d;,, (p). Thus we can write

2t

x= a Zdi(k)di(k + 1)by;

o iel
hence
3.11) x|l < Zdi(k)di(k+1) -C
iel qt
where

C=sup{| Y aTte| |17h0 <1},

Now, by the induction hypothesis we know that for any s > 1, for any u with
l#llo < 1, we have

Z aguby|| <C',

s

with C’ = ne¢[k,k+1] S((di(§))ie1, (p — 2)s). Thus the linear mapping v defined by

v(y) =) ayba

is bounded from L into Ls; with norm < C’. Since the partition corresponding
to Y beua, is obviously non-crossing also, we have the same bound for ‘v(y) =
3" by yaq, or equivalently we know that v is bounded with norm < C' from Ly to L.
By interpolation, for any 0 < 6 < 1, it follows that v is also bounded from L, to L,
where

1-6 0
s’

1-6
s

+

— D

1 —

z=

If we choose s so that 1 = 1 [1 - é] Then imposing b = ¢, we find § determined by
1

0(1—1/s)=1—1=1_1 Thenthevalueofaisgivenbyl =% =0(1-1)=

s
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1 1

T = ?1" Thus we conclude that v is bounded from L, to L; with norm < C’. In

other words, we have established that
c<C.

Note that (p — 2)s = 2(q — 1)s = 2q¢ = pt. Moreover, by (3.10) (applied in L,
instead of L,) we have

[T dwae+n] <cr
with

" > d®ad®*) “ " (X die+vdice+ 1) "

pt

Hence we can finally deduce from (3.11) that ||x|, < CC” < C’C” and since
(p — 2)s = pt we find that C'C” is less or equal to the right side of (3.9). 0O

Remark. The analogs of Proposition 1.1 and Theorem 1.2 for the lattice of non-
crossing partitions are proved in [Sp2]. Thus we can combine this with the same
argument as above if the function 0 — ® (o) is supported by the set of non-crossing
partitions, and the resulting constants will remain bounded when p tends to co.
However, we could not find a significant application of this idea.

4. Applications to harmonic analysis

The results of this section can be viewed as a continuation of a series of investi-
gations devoted to Fourier series with coefficients in a non-commutative L ,-space,
such as [TJ], [BP], [LP], [LPP], [X].

As explained in the introduction, our main inequality applies to p-dissociate parti-
tions A = |, Ai of asubset A in adiscrete group G. The inequality in Theorem 4.1
below is closely related (and partly motivated) by the recent papers [H1-2] on the so-
called A (p).p-sets, which are a certain non-commutative version of Rudin’s classical
A(p)-sets (cf. [Ru]). The basic examples of such sets are the p-dissociate ones.
However, in the quest for examples of the “largest possible” sets satisfying such
inequalities, the next result turns out to be more efficient and more flexible (in par-
ticular in the analysis of A (p).p-sets constructed as random subsets of a given set),
even though its assumptions become more complicated than the condition of being
p-dissociate.

THEOREM 4.1. Letl =Y, jes Pj bean orthogonal decomposition of the identity
of Ly(t). Let p = 2q be an even integer > 2. Let d = (d;)ic1 be a finite family
in Lp(t). We set x° = x* if q is odd and x® = x if q is even. Let F be the
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set of all injective functions g: [1,2,...,q] — 1. For any g in F, we let x, =

d;(l)dx@)d;(;;) cee dﬁq). We define

N(d) = sup card{g € F | Pjx, # 0}.
jeJ

Then we have

Zd

iel

[(4N(d))”" +p- 9%] S, p).

Proof. Since the argument is essentially the same as in [H2] modulo the combi-
natorics of §1, we will only sketch the proof.
Let f =Y ,.; di. We have
FIE =15 2l
Developing this product as in §1 but with n = g this time, V = L,(7) and ¢ the
product mapping, we obtain

@.1) =00 = Y w®mwen)

O<neP,

where ®(0) = Z,,(g)_a xg. Using Sublemma 3.3 and (3.5) with p replaced by ¢
(recall ¢ = ——) we obtain

4.2) WGz < 1FI15® @S],

On the other hand, we can write

IeO)I} = Z||P,~<l>(0)u%

jeJ
Z Z Pixg
geF

jeJ

=y tuxguzN(d)

jeJ geF

D g I3N @)

gEF
D t@y - A4y (@0 - dg) - N(@);

IA

IA

hence by a special case of Lemma 3.6, we have

(4.3) I®0)13 < Nd)SW, p)™.
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Thus, arguing as in the proof of Theorem 2.1, combining (4.1), (4.2) and (4.3), we
finally obtain

I£1% < N@'25@, p)? + > (f)(q — I @S, p))i~;
0<s<q
hence, if we now set y = %%l%), we have

172 q _ —s
1S N@yT+ ) (s)@ )N ey)™.

0<s<q

1/9
We claim that y > min {(W) 3‘,#“] Indeed, if y < (2N(d)/2)~1/4 then,

as in the proof of Sublemma 2.3, we have
o0
3/2 < / (1 +aty)le™ dt
0

which, if gya < 1, yields 3/2 < (1 — gya)~! whence y > 3q+x; otherwise gya > 1
which also implies y > 3q+x. Thus we conclude as announced that a fortiori we have
1/y < @N@)Y?HV1 4 3qa. O

COROLLARY 4.2 [H2]. Let A C G be asubset of adiscrete group G. Let p = 2q

be an even integer > 2. For any t in G, let N,(t, A) be the number of q-tuples
(t1, ..., t;) of mutually distinct elements of A such that

-1, -1 17}
t=1 h; t4...tq.
We assume that

Ng(A) =sup Ny(¢, A) < o0.
teG

Then, for any finitely supported family a = (a;):en in a non-commutative L,-space
associated to a semi-finite trace T, we have

Y rea

teA

< [(4Nq<A))‘/P + p%”] S, p).

Ly(tgxT)

Proof. We apply the previous result to T = 1t x T so that L(t) = La(16) ®2
L»(T) and to the L decomposition Ly(t) = €D,c H: with H; = A(t) ® Ly(T) and
I = A. Clearly, if we setd; = A(t) @ a;, t € A we find N(d) < Ny(A) and the
result follows since S(d, p) = S(a,p). O
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S. Tensor products of Banach spaces

The main idea exploited above can also be used in a very abstract setting, which we
briefly indicate in this section. Let Ey, ..., E, be Banach spaces and let E; ® --®E p
be their projective tensor product equipped with its projective norm denoted by || ||
(e.g., see [DF)).

Foreachk =1,2,..., p consider a finite sum
fe=" dik)
iel

where d; (k) are elements of Ej.
Now let (&;);c; be a sequence of independent +1-valued random variables on a
probability space (2, P) with P(g; = £1) = 1/2, as usual.

Note. The family (g;);¢; is the Abelian counterpart of the family (A(g;));er used
above.

We wish to develop the tensor product

i® - ®fp

in the Banach space E\& - - - @E,,. We will use the notation in §1 applied to the
canonical multilinear mapping ¢: E; x --- X E, = E|®---®E,. Hence we now
have

P0) =) dey(1) ® -+ ® dgp (p)
8

where the sum runs over all injective maps g: [1,2, ..., p] = I. Letn be a partition
of[1,..., p]. Usingthe random variables (&;);cs instead of (A(g;));es in the preceding
section, it is easy to adapt the proof of Sublemma 3.2 to obtain the following result:

Let A C [1, ..., p] be the union of the singletons of the partition 7 (note that the
cardinality of A is at most p — 2, unless 7 = 0) and, as before, let

V)= Y dgy(1) ® - ® dg(p(P)-
g m(g)zm
Then we have
fi® - ® fr=00) - ) ¥muWd,m)
O<m
and

1w E)la < JT0AN-TT Sk

keA kgA
S = (E

p) 1/p

where

> eidi(k)

iel
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We can now state the main result of this section.

THEOREM 5.1.  With the above notation, we have

[®®f,— Y dn®-®dn| = Y. [k

g [1,..,pl=1 ACl,...,p] keA
g injective A |Al<p-2
T8 0 —14n
k¢A
In the particular case Ey = E; = -+ = E, = E we obtain:

COROLLARY 5.2. Let f = Y, d; be a finite sum in a Banach space E. Let
f®? = f®---® f (p-times). Then

fFor — Z dey ® -+ Qdg(py|| =< Z (f)(p—s)!”f"ss*p—s

g [1,..,pl—>1 0<s<p-2
g injective A
where § = (E | oes i) .
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