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COARSE SHEAF COHOMOLOGY FOR FOLIATIONS

JAMES L. HEITSCH

ABSTRACT. We show that coarse cohomology for foliations can be defined as a sheaf cohomology and
use this fact to compute two examples.

1. Introduction

In [HH], we introduced a new invariant of a foliation of a compact manifold, its
coarse cohomology. This cohomology combines the usual cohomology ofthe ambient
manifold with the coarse cohomology (due to Roe [R]) of the holonomy covers of the
leaves of the foliation. It is expected that this theory will play an important role in
the theory of foliations. In particular, secondary classes, the coarse Chern character,
higher torsion invariants, spectral invariants of leafwise operators, and the coarse
index approach to the Miscenko-Kasparov theory and its applications to the Novikov
Conjecture should all have natural expressions in terms of coarse cohomology. For a
more complete discussion of this, see the introduction of [HH].

In this paper, we show that this cohomology is in fact a sheaf cohomology. The
immediate advantage of this fact is a spectral sequence which converges to the coarse
cohomology. We then use this spectral sequence to compute the coarse cohomology
of two important foliations, the double Reeb foliation and the Sullivan foliation.

2. Coarse sheaf cohomology

In this section we define the differential sheaf over a compact foliated manifold
whose associated cochain complex of continuous sections is the coarse de Rham
complex of the foliation. We will freely use the notation and results of [HH].

Let F be a codimension q foliation of a compact n dimensional manifold M
without boundary. Recall the holonomy groupoid F of F. A point y [y] 6 F
is the equivalence class of a path ’" [0, 1] - M whose image is contained in a
single leaf L. Two such leafwise paths , and ’2 are equivalent provided ’1 (0)
’2(0), ’ (1) ’2(1) and the holonomy along the two paths is the same on some
transversal containing , (0). There are natural maps s, r: - M defined by
s(y) y(0), r(y) ),(1). is a (generally non-Hausdorff) 2n q dimensional
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manifold with the local charts given as follows. Let U and V be foliation charts
of s(y) and r(y) respectively and choose , 6 y. Then the local chart (U, ,, V)
consists of all equivalence classes of leafwise paths which start in U, end in V and
which are homotopic to y through a homotopy of leafwise paths whose end points
remain in U and V respectively. It is easy to see that if U, V

_
Rn-q Rq, then

(U, ’, V) Rn-q x Rn-q x Rq. In order to apply the results of [HH], we assume
that v is Hausdorff.
We now recall the coarse de Rham cohomology for F. For each x 6 M, s-1 (x)

Lx, the holonomy cover of the leaf Lx containing x. Denote by e the submanifold
of XeF consisting of those points (Yl Ye) with s(yl) s(yj) for j 2,
We also denote by s the map s: e -> M given by s(yl Ye) s(yl). Note that
s-l(x) -- xe,x. Choose a metric on M. This induces a metric on each leaf L and so
also on L and x eL which makes them complete Riemannian manifolds. Their quasi
isometry types are independent of the choice of metric on M since M is compact.
Denote the metric on s-1 (x) by Dx. Given A

_
e and r > 0, define

Pen(A, r) {(Y’I, Y) e :! (Yl Ye) A with

s(yi) s(y) and Ds(y,)(yi, y) < r for 1, }.

Denote by Akc’e(F) the space of k forms to on e+l such that for all r > 0, sup(to)
Pen(Ae+l, r) is relatively compact, where Ae+ is the diagonal of e+. We have
two differentials defined on Ak’e(F), the usual exterior derivative d: Akc’e(F) ->
akc+,e(F), and 3" ac’e(F) > akc’e+(F) given by

e+2

j----1

where the rj" Ge+2 - Ge+l deletes the j th entry. The cohomology of the bicomplex
{Ae*’*(F), 3, d} is the coarse de Rham cohomology HX*(F) of F.

Definition 1. The coarse presheaf L* of F is the differential presheaf which
associates to each open set U C M and each non-negative integer q, the space

zq(u) akc’e(U) where akc’e(U) {ol-,(t:) Io akc’e(F)}.
k+e=q

The differential D: Lq(u) -> Lq+I(u) is given by D Ac’e(U) d + (--1)kd.
The coarse sheaf ,* of F is the differential sheaf associated to the differential
presheaf L*.

For each q,/q is a fine sheaf, so the (ech bicomplex associated to/* computes
the coarse de Rham cohomology of F. Theorem 2.1, page 132 of [B] gives a spectral
sequence which converges to HX* (F). Its E2 term is

E’q Hp (M; ’q (/*))
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where ’q (E*) is the homology sheaf of the differential sheaf/2". In particular,

7-[q(1:*) Ker(D: ff..q i--> z.q+l)/Im(D 12q- > E.q).

3. Two examples

In this section, we compute the coarse cohomology of the double Reeb foliation
and the Sullivan foliation using the above spectral sequence.

1. The double Reeb foliation.

The double Reeb foliation is the foliation F ofM S x S2 S x D2LI S )< D2

where each copy of S x D2 is a Reeb component [MS, p. 41]. This foliation
has a single compact leaf which is diffeomorphic to T2 and all the other leaves are
diffeomorphic to R2. For each x T2, the holonomy cover x is quasi isometric to
S x R with the usual metric which makes it coarsely equivalent to R with the usual
metric. For x M T2, x is isometric to RE with a metric making it coarsely
equivalent to [0, 00) with the usual metric.

PROPOSITION 2. Let r2 be the direct image under the inclusion T2 -> M of
the constant sheafT2 x R. The coarse cohomology ofthe double Reebfoliation F is

HX*(F) H*-(M; T,T2 ).

Proof We need only show that -/q (/*) 0 for q # 1 and 7-/1 (/2’) 7Zr2.
Eachx M-T2 has a neighborhood U so that the metric family {s-1 (U), d, s, U}

is coarsely equivalent to the metric family {U x [0, 00), dr, r, U}. See [HH]. For
each u U, d is the induced metric on Lu s-1 (u), and du is the usual metric on
{u} x.[0, 00). As they are coarsely equivalent, these two families have the same coarse
cohomology. But the coarse cohomology of [0, 00) is trivial, so the spectral sequence
of [HH] gives that the coarse cohomology of {U x [0, 00), du, r, U} is trivial. Thus
the coarse cohomology of {s -1 (U), d, s, U} is also trivial, so for all x M T2 and
all q, ’q (ff.*)x O.

Each neighborhood of x T2 contains a neighborhood U
_
D3 so that the

metric family {s-l(u), d, s, U} is coarsely equivalent to the metric family .T’x
{H, dr, zr, U}, where H c D3 x R is the set

{(u, u2, u3, t) >_ -u-2},
zr" H - U is the natural projection, and for each u U, the metric dv on r-1 (u)
[-u-2, 00) is the usual metric. We use the convention that if u 0, then > -00.

Let

[e+l {(Ul, U2, U3, to te) U x Re+l ti >_ --U]-2 0, }
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Then the coarse cohomology of the metric family .Tx may be computed just as the
de Rham coarse cohomology for a foliation is computed, with b/e+ substituted for
e+. In particular, we have the spaces Ac’e(.T’x) of k forms o9 on the space He+ such
that for all r > 0, sup(og) N Pen(Ae+, r) is relatively compact. Also d" Ac’e(.Tx)
A+’e(.Tx) and 6: A’e(Yx) -> --cak’e+l (’x) are as above, and the coarse cohomology
of .Tx is the cohomology of the bicomplex {Ac*’* (.Tx), 6, d}.
HX (.Tx) consists of constant functions on H1 with compact support. As b/ is not

compact, HX (.Tx) 0 which implies 7-t (/2*)x 0.
To compute the higher coarse cohomology of the metric family .Tx, we need the

following lemma. Denote by dh" Ac’e(’x) -> Ac+’e(.Tx) the exterior derivative
with respect to the u coordinates only.

LEMMA 3 (CONTROLLED POINCARI LEMMA). Suppose k > 0 and that each term
of og,,e Akc’e (.7:x) contains at least one dui. Further suppose that dh (ogk,e) 0.
Then there is ogk-,e Akc-’e(’x) such that dh(ogk_l,e)

Proof For a monomial og.e f(u, t)dui, A A dui, A dty, A A dtjk_<,+,
ak-’e (:x), set

P(og)(u, t) (f0 S
r-1 f(su, t)ds) dui, A... A dui A dtj, m... m dtjk_t,+,.

Denote by ix interior multiplication by the vector field X uO/Ou + U20/OU2
u30/Ou3 on He+l. Then the proof of the usual Poincar6 lemma [W, page 155] shows
that the form og,-.e cP(ixog,,e) satisfies the conclusion of the lemma. Extend to
general ogk.e by linearity.

Let c [/+j=k ogi,j] be a k > 0 dimensional coarse class for .Tx, where
h ogY whereA’ (.T’x). Then o9,o is a closed k form onH. We may write ogk,0 o9,0 + k,0

ogk,0h is a k form involving only the dui and ogYk,o is a k form with each term having a

dto. The fact that d(ogk,o) 0 implies that dh (o9,0) 0. The Controlled Poincar6
h RecallLemma gives a k- 1 form o9-,o Ac-’(f’x)such that dh(og_,o)

that the differential of the bicomplex {Ac*’*(.Tx), 6, d} is D d + (-1)k6. As c

[Y’i+j=k ogi,j D(ogk_l,O)], we may assume that ogk,h O. Now (.Ofk,O ogkf-,O A dto
for some element f k- ogkf_l,0o9-1,0 6 Ac ’(-Tx), and has no terms involving a dto.
In addition, as d(og[,o) dh (ogkf,0) 0, we have dh (ogkf_l,0) 0 also. If k > 1,
the Controlled Poincar6 Lemma again implies that there is an element o9k-2,o

f Thus d(ogk-2,0akc-2’0(’x) with dh(ogk_2,O) ogk-l,0" ogk-,O /X dto k,O"

As ct : [Zi+j=k ogi,j D(ogk-2,0/k dto)], we may assume that ogfk,O and so o9,o is 0.
If k 1, ogk,O is a form of pure fiber type, i.e., it contains no dui. As d(ogk,O) 0, it
must in fact be entirely independent of u. Thus, in both the k > and k cases,
we may assume that o9,o is completely independent of u, and we may regard it as an
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element of Ack’(R), i.e., as a coarse cochain on R. Here we use the extended coarse
cohomology of [HH] to compute the coarse cohomology of R.
Now consider Ogk_,, a k 1 form on/22. As d(Ok-,) d(Ogk,0), which is

independent of u, We have dh (o9k_ 1,1) 0 and proceeding as above, we may assume
ak-, contains no forms which contain no dtj. As dh (09k-l, 1) is still zero, proceeding
as above, we may assume that it contains no forms which contain one dtj, and then
if k > 2 that it contains no forms which contain dto/x dt. If k 2, the fact that
O)k_l, (U, t)dto/x dt and dh (Ogk-l,l) 0 means that we may assume that O)k_l,
is entirely independent of u, and so may be regarded as an element of Ack-’ (R).

Continuing in this manner, we may assume that Ei+j=k i,j is entirely independent
of u and so ct may be viewed as a k dimensional coarse class on R. Now the coarse
cohomology of R is zero in all dimensions except in dimension one where it is R.
In fact, one can show that a - f-oo o9(,0 gives an isomorphism between 7-/l(z;*)x
and R.

Thus for q # 1, we have -/q (*) 0. For q 1 and x T2, 7-/1 (/*)x R, and
for x M T2, 7-/1 (*)x 0. It is not difficult to see that there is no twisting in the
sheaf 7-/1 (/*) so it is in fact Rr2. E]

The point here is that the metric family ’x is sufficiently similar to the trivial
metric family (U x R, d, zr, U) that they have the same coarse cohomology. Thus for
the double Reeb foliation we have ’}-q (*) ’’rq (L) where A’q (L) is the sheaf
which assigns HXq(Lx) to each x. Below, we will see that the Sullivan foliation
does not satisfy this property.

To finish the computation of the coarse cohomology of the double Reeb foliation,
we compute H*(M; TO.r2). To do so, we tensorr2 with the fine, torsionless resolution
of the constant R sheaf over M given by R - co C1

_
C2
_

where ck is the
sheaf of germs of smooth k forms on M. This gives us the differential sheaf 7".r2 (R) C*
on M, whose stalk at x M T2 is 0, and at x T2 is Cx*. The set of continuous
sections r" (Rr2 (R) C*) of 7zr2 (R) Ck is thus the germs on T2 of smooth k forms on M,
and the cohomology of the cochain complex r’(Rr2 (R) C*) is H*(M; 7Zr2). Now the
normal bundle of T2 in M is trivial, so the cohomology of this cochain complex is the
same as the de Rham cohomology of T2 x D which is the de Rham cohomology
of T2. Thus we have the following.

THEOREM 4. Let F be the double Reebfoliation ofS x S2. Then

HX*(F) H*-(T2).

The isomorphism is effected as follows. Let (0, x, X2, X3) be coordinates on M
x S2. Then T2 is given by T2 = {(0, 0, x2, x3)}. Note that is diffeomorphic to

(M x RE) (T2 x {(0, 0)}). Define b" F - R by

X-2b (19, Xl, X2, X3, t,/’2) ln(tl2 + t22 + e-
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andb: F - M xgby b(y) (s(y), cPl(y)). The image ofb is {(x, t) > -x"2]
where we have the convention that if xl 0, then > -0. The map (b, Id)
is a leafwise map [HH] between the metric families {F, d, s, M} and .M {M x
R, dr, rr, M} where d is the usual metric on each {x} xR, and zr" M xR -> M isthe
projection. The induced map * on coarse cochains is the map of interest to us. Let

’ R - R be a smooth, non-negative function with non-empty support contained
in [-2, -4]. The closed coarse one cochain w wl,0 + o90,1, where 09,0 ap(t)dt
and oo,(to, tl) ft ap(t)dt ft (t)dt, defines a non-zero class in HXI(.A4).
Set M2 {(O,x,x2, x3) x2 > 1/2}. Note that on s-l(M2) C 1, *(tOl,O) 0,
and on s-l(M2) C 2, *(wo,) 0. Consider the forms on M, Cl dO, and
t2 p*(dO), where p: M -> S is the map (0, Xl, x2, x3) -> (x + x)-l/2(x2, x3).
Now the map p is not defined on S x {(4-1, 0, 0)} C M2, so u2 is not defined on
all of M. However, s*(c2)/x *(wo,1) is a globally well-defined one form on 2 and
s* (a2)/x*(o1,0) is also a globally well-defined two form on 1. Thus s* (or2)/x*(w)
is a well-defined coarse one cochain for F. We leave it to the reader to check that
D(s*(ot2)/x *(w)) 0, and that D(s*(otl)/x *(w)) 0. The cohomology of
T2 is generated by the classes of the forms 1, dO, dO2 and dO1 /x dO2. Under the
isomorphism H*-I(T2)

_
HX*(F), these classes map to the classes of *(w),

s*(ctl)/x *(w), s*(a2)/x *(w), and s*(c/x c2)/x *(09).

2. The Sullivan foliation.

The Sullivan foliation F is a one dimensional foliation of the compact manifold
M T1S2 x S2 with all leaves compact, but with the volumes of the leaves un-
bounded. See [S]. Here T1S2 is the unit tangent bundle of S2. For -1 < < 1
set Tt TS2 x {(x, y, z) z t}, where (x, y, z) are global coordinates on
S2 C R3. Then the foliation on T+/- is given by the fibers of r" T S2 - S2. For

1 < < 1, Tt is saturated by the leaves of F and the length of each leaf in Tt is f (t)
where f" (-1, 1) - R is a smooth positive function with limt--,+/-l f(t) cx. Set
T Tl t.J T_ 1. Then H*(M, T; R) is the cohomology of A* (M, T), the forms on M
which are zero on some neighborhood of T, and s: -> M induces a well-defined
map s*: A*(M, T) -> A*c’(F). Recall the maps zr, zr2:2 ---> and note that
since zr os zr2 os, 8 os* 0. In addition, d os* s* od, so we have a well-defined
natural map s*" H*(M, T; R) - HX*(F).

THEOREM 5. For the Sullivanfoliation F, the natural map

s*" H*(M, T; R) - HX*(F)

is an isomorphism.

Proof. Note that on M T the length of the leaves changes smoothly, which
implies that there is no leafwise holonomy there and so the graph of F over M T,
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m-r is locally a product bundle with fiber S 1. In particular, if-1 < rl < r2 <
then s-1 (Ur, <_t <_r Tt) C F 1 is compact. Using this fact, the argument after the
proof of Proposition 4.2 of [HH] shows that for x M T and q > 0, ’’q (/*)x 0.
We will show below that for x T, and all q, ’q (ff-’*)x O. Thus for q > 0,

The argument of [HH] also shows that the sheaf0(E.) restricted to M T consists
of ges of constant functions on -r, so it is the trivial R sheaf. Proposition 6
below gives (E*)x 0 for x T. As the codimension of T in M is two, any
twisting in the global sheaf0(E*) must take place in M T, so there is no twisting
and 0(E*) is the direct image of the trivial R sheaf over M T.

Let * be the differential sheaf over M of ges of differential fos on M
which are zero on some neighborhood of T. The usual Poinc6 lemma shows that
for x 6 M T, (*)x R and for q > 0, q(*)x 0. Note that (*)x
is just ges of constant functions on M T. For x 6 T, 0, so for x T and
all q, q(*)x 0. AS above, 0(,) is the direct image of the trivial R sheaf
over M- T.

It is now obvious that the map of differential sheaves s*: * * obtained
from s*: A*(M, T) A’(F) induces an isomohism s*" *(*) *(*).
As both * and * e fine sheaves, Theorem 2.2 of [B, page 132] then gives the
theorem.

Note that HP(M, T; R)
_

HcP(M T; R) Hp-I(T1S2 sl; g). As T1S2

S 03, HXp (F) R for p 1, 2, 4 and 5 and is zero otherwise.
To finish proof of the theorem, we have the following.

PROPOSITION 6. For all x T, and all q, ’-q (/*)x 0

Proof. We may assume that x 6 T1S2 {(0, 0, 1)}. It has a neighborhood
U
_
D5 with coordinates u,..., u5 so that T fq U {u u4 u5 0} and if

Tt fq U :/: 0,then Tt N U {u u4
2 + u5

2 1 rE}. Sullivan’s example is actually
given by the flow r of a unit vector field on M, so s-1 (U), the graph of F over U,
admits a surjection U x R - s- (U). This surjection is given by mapping the point
(u, r0) to the class of the curve r - br(U) where the domain of the curve is [0, r0].
Consider the metric family

.x U x R, dv zr, U}

where rr: U x R U is the natural projection and for each u U, de is the
usual metric on {u} x R. The metric family .T’x surjects onto the metric family
{s -1 (U), d, s, U} where the map is given by identifying each (u, r) E U x R with
(u, r + f(1 u42 u52)). If u4

2 + u 0 we make no identifications.
The zero dimensional coarse cohomology of {s-(U), d, s, U} consists ofconstant

functions.on s -1 (U) which have compact support. As s-(U) is non-compact, this
cohomology group is trivial so for all x T, o(E*)x O.
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Now suppose ct [)-4+j=k o)i,j] is a k > 0 dimensional coarse class for {s -1 (U),
d, s, U}. Using the above surjection, we may regard coi,j as a form on U x Rj+l

whose restriction to {u u42 + u 1 2} x Rj+l is periodic in each R variable
with period f(t). Note that eoi,j is not necessarily a coarse cochain for ’x, since in
general it will not satisfy the coarse support condition. We now proceed just as we
did in the case of the double Reeb foliation to show that we may assume i+j=q ci,J
is completely independent of u. However, we must take care that the construction
we use in the Controlled Poincar6 Lemma respects the identification.The flow of the
vector field X uO/Ou + U20/OU2 -t- U30/OU3 on U x Rj+l preserves the set {u
u42 +u 1 2 Rj+l, so if we integrate along the flow lines of X, the form ooi_,j
we construct with dh(o)i_l,j) o)i,j will be a form on U Rj+ whose restriction to
{u u42 + u 1 2} Rj+l is also periodic in each R variable with period f(t),
i.e., ai-,j will define a coarse cochain for {s -1 (U), d, s, U}. More specifically, in
the definition of q(09)(u, t) in the Controlled Poincar6 Lemma, replace the integral

(fsr-l f(su, t)ds) by the integral (fsr-l f(sul,su2, su3, u4, us, t)ds). Then

we may assume that ct is represented by a cochain ,i+j=k toi,j which is completely
independent of u. In particular each 09i, is a form on U xR/ which does satisfies the
coarse support condition since it is independent of u and it must do so at u42 + u52 0.
At the same time it must be periodic in each R variable of period f(t) for 6 (s, 1)
for some s < 1. It is clear that the zero form is the only such form, so ct 0.
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