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A SMOOTHER ERGODIC AVERAGE

KARIN REINHOLD

ABSTRACT. We study the pointwise behavior of the smoothed out averages

Pnf(X)= 1 flt-n " f(Tl+tx)dt,
k=l I<k/2

where Tt is a measure preserving flow on a probability space. We show that these are good averages in LP,
p > 1, if Ck is a convergent sequence or if they are given by stationary random variables. When p the
averages are good if limkoo t > 0.

1. Introduction

Let (X,/5, m) be a probability space and T a measure preserving point trans-
formation on it. Birkhoff’s Ergodic Theorem shows that the averages Anf(X)
(1/n) -=1 f(T’x) converge almost everywhere for any function f L I(X). How-
ever Bergelson, Boshernitzan and Bourgain [3] showed that if Tt is a flow on X given
by measure preserving point transformations, then the averages along observations
slightly perturbed at time k, Bnf(X) (l/n) Y’=I f(Tk+*kx), fail to converge even
for L(X) functions. In fact these averages fail to converge so badly that Akcoglu,
Bellow, del Junco and Jones 1] showed that they are strong sweeping out averages
for any sequence Ek --+ 0.

They concluded then that in applications, the ergodic averages do not converge
because, by limitations of instruments, time measurements can not be taken exactly
at instant k. Therefore, instead of dealing with averages along arithmetic sequences
(as is the case of the averages An f), in applications one rather has an average of the
form Bn f. However, in the same spirit, one could also argue that by limitation of
instruments one can not measure time instantly. That is, measurements can not be
taken at any particular instant, rather they are an average measurement around those
instants. One such model results when the measurement at time k is actually the
following average measurement around instant k"

1 ft f(Tk+tx)dt.
Ek I<k/2
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In this model, the time averages take the form

1 1f,(1) Pnf(X) f(Tk+tX)dt.
r/

k=l 6k I<k/2

These averages have extra smoothness and therefore are expected to be betterbehaved.
And indeed they are.

In this work we look at a more general setting than in (1). That is, we assume that
the averages at time k are "weighted" averages, where the weights are given by an
approximation to the identity.

The paper is organized as follows. In Section 2 we show that maximal function
associated with these type of averages is strong type (p,p) for p > 1, and when
infk k > 0, the maximal function is also weak type (1,1). We also show that the
averages converge if the sequence k converge.

The convergence of the sequence g is not necessary for the convergence of these
averages. In Section 3 we study a certain kind of non-convergent sequences k
for which there is pointwise convergence of Pn f(x). However, in these cases, the
ergodicity of T1 is necessary. A counterexample also shows that in the general case,
ergodicity of T1 is not sufficient either.

Lastly, Section 4 shows convergence results when the sequence k is given by a
stationary sequence of random variables.
We thank the referee for very useful comments.
Throughout this work, a probability space means a complete probability space.

And C denotes a constant whose value may change from one occurrence to the
next.

2. Positive results

Let Tt }t EIR be a measurable flow of measure preserving transformation on a prob-
ability space (X,/3, m). Let tp be a positive, integrable function on ]R satisfying the
following conditions"

(a) f tp(x)dx 1.
(b) The function b(x) suPlyl>_lxl 0(y) is integrable.

Define p, f(x) f f(Ttx)tp(t)dt, where tp, (t) tp(t/)/. Given any sequence
of positive numbers }= C (0, 1), define the averages

Pnf(x) tp,k f(TkX).
n k=l

We will also consider the maximal operator Mf(x) SUPn> en f(x)l.
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LEMMA 2.1. Consider g{ with Lebesgue measure and the shiftflow Ttx x + t.
Then there exists a universal constant C such that:

(A) For any f Lp (,), p > 1,

C
IIMYlIp < Ilfllp,

(p- 1)

andfor any f L log L,

m{x" Mf(x) > )} < Ifl 1 + log+ I"lflll
(B) Ifinfk>_l k > > O, thenfor any f LI (ll),

C
m({x" My(x) > }) < -llfll.

Proof. This lemma is immediate by the Maximal Ergodic Theorem and the
Hardy-Littlewood Maximal Theorem because under our assumptions on o, the max-
imal function sups>o osf is dominated by the Hardy-Littlewood maximal func-
tion sup,>o(1/ fill<q2 f(x + t)dt (see [15] or [16]). Thus sup IAflllp <_
(C/(p 1))llfp and sup>oofllp < (C/(p- 1))llfllp for p > 1, where C
denotes a universal constant.

(A) Since Ienfl < An(sups>o losfl), then, for f Lp with p > 1,

sup INn f < supof lip < f lip
p (p-l) >o (p-l)2

Now, if f L log L, then sups>o Io fl L1. Hence

C f ( Ifl)dm.< suploafl _< - Ifl 1+log+ ilfll8>0

(B) Since e < k < 1,

af afIo f(x)l _< Ifl(x -I- t)o(t/)dt <_ Ifl(x + t)(t)dt.

Letting Sf(x) f f(x + t)(t)dt, we have

m({x: suplPnf(x)ln >’}) < m({x" supAnSlfl(X)n >eLI)
C C’

< llSIflll Ilflll. rn
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The next lemma is essentially Calder6n Transfer Lemma [6], adapted to our needs.

LEMMA 2.2. (A) If Mg is a weak (1,1) operator for functions g on I with
Lebesgue measure andflow Ttx x + t, then for any measure preserving
flow {Tt} on a probability space (X, , m), the operator Mf is also weak
(1,1).

(B) If Mg is a strong (p, p), 1 < p < oo, operatorforfunctions g on with
Lebesgue measure andflow Ttx x + t, then for any measure preserving
flow {Tt} on a probability space (X, 3, m), the operator Mf is also strong
(P, P).

LEMMA 2.3. Let {k} be a sequence ofreal numbers in (0, 1).

(a) Then suPn>_ Pnf satisfies a strong (p,p) inequality.
(b) Ifk > > Ofor all k, then suPn> P,,f satisfies a weak (1,1) inequality.

Proof. This lemma follows from Lemmas 2.1 and 2.2.

PROPOSITION 2.4. Given f E LI(x), then lim,0o,f(x) f(x) for a.e. x.

Proof. Let B {x" o,f(x) f(x)as --+ 0}.
Since Tt is a measure preserving, measurable flow, the application q" X x ---+

X, q(x, t) Ttx is measurable and m(TtA) m(A) for all A E . With this
notation, let

q-l(B) {(x, t): o,f(Ttx) --> f(Ttx)as --> 0}

Let C q-1 (BC), the set of pairs (x, t) where convergence fails.
Let Cx {t: (x, t) C} and Ct {x: (x, t) q C} and let . denote the Lebesgue

measure on ]R. Then, by Fubini’s Theorem, .(Cx) 0 for mma.e.x.
Indeed, consider F(x, t) f(qc(x, t)) f(Ttx). Note that q,Fx(t) f Fx(t +

s)o,(s)ds. Now, since f is integrable and q is measurable, F is measurable and
locally integrable. By Fubini’s Theorem, Fx(t) F(x, t) is measurable and locally
integrable for m--a.e.x. For such an x, the Lebesgue Differentiation Theorem
adapted to convolutions with approximation to the identity (see [15] or [16]), gives
lim,._,0 p, Fx (t) Fx (t) for a.e. t, proving the claim.

Then

O= fx Z(CX)am(x) =m Z(c) f m(C,)at.

Since 0 < m(Ct) < 1 for a.e. t, we have m(Ct) 0 for a.e.t. However

Ct {x" q(x, t) B} {x" Ttx B} Tt-l(Bc).
Since the flow is measure preserving, m(Bc) 0. Hence lim,0 o,f(x) f(x) for
a.e.x.
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Let f tp, f if > 0 and fo f. Proposition 2.4 has the following immediate
consequence.

COROLLARY 2.5. If limkk >_ 0, then limn_(1/n) -nk= (p,f (x)
f (X) a.e. for any f L 1.

COROLLARY 2.6. If 1 <_ p < c, then lim,_o (p, f f in Lp.

Proof. Let f LP. Given 0 > 0 there exists 8 > 0 such that if rn (A) < then

fa Iflpdm< o/2P. This property also shows that for any , fa Io, flPdm < o/2P.
Indeed, since the flow is measure preserving, rn(Tt-1 A) m(A) < d; for all and
hence

falO,f(x)lPdm(x)<-faflf(Ttx)lPo,(t)dtdm(x)
f o,(t) fA If(Ttx)lPdm(x)dt

[f(x)lPdm(x)dt

< o(t)dt -.
Let A0,v {x: Io,f(x) f(x)l < 0forall < v}. By Proposition 2.4,

rn(A0,v) 1 asv 0. Fixv v(0) so thatrn(Ao,) > 1-3. Then, given
0 > 0 there exists v such that for all < v,

IIo’f fll fa I*f flPdm + fac I*f flPdm
tl,v tl,v

< 37.

To prove the pointwise convergence of the averages Pn f, we refer to the following
theorem of R. Jones and M. Wierdl (Theorem 2.10 in [9]).

THEOREM 2.7. Let (X, E, m) be a measure space. Denote by D the set of a.e.
measurable functions. Let tp be a Young function and let (L, I1) be the corre-
sponding Orlicz space. Let Tn,k be a dissipative double sequence oflinear operators
which are continuous in measure, positive, and map L D. Let rn -k Tn,k be
the associated averaging sequence. Assume for every f Lo we have rnf f
a.e. for some f D. Suppose that (gk) C L is a sequence offunctions with the
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property that gk "+ g a.e. for some g L,, and supk Igklll < oo; then

E Tn.kg , a.e.
k=l

Let rrf denote the projection of f onto the subspace of invariant functions under
T1 defined by limn--,oo An(f)(x) rf(x) for a.e. x and f 6 Lt’, p > 1. We are
now ready to prove the convergence of the averages Pn f.

PROPOSITION 2.8. Let Tt be a measure preservingflow on a probability space
(X,,m).

(a) If limoo > 0, then for any f Lp, p > 1, limnoo Pnf(x)
rf for a.e.x.

(b) Iflimkoo i 0 thenfor any f Lp, p > 1, limn--,oo Pnf(X) :rf a.e. x.

Proof This proposition is a consequence of Jones and Wierdl’s Theorem 2.7.
In our situation, L0 Lp, Tn,kf(x) f(Tix)/n and rnf(X) AnY(x)
n- Y’]= f(Tkx). Clearly, Tn.k is dissipative since, for any f Lp, limn--,oo
f(Tix)/n 0 for a.e.x.

By the Pointwise Ergodic Theorem r,, f --+ rrf a.e. for any f LP. The functions
g 9, f are all in LP if f 6 LP, and by Proposition 2.4, have the property gk --+ f,
a.e..

It remains only to show that supk Igkl LP.
We have two cases to consider. Iflimoo > 0, then k > 0 inft > 0.

Hence

afsup Igtl _< sup o,f < f(Ttx)cp(t)dt.
k >o 0

Since b is integrable, supk Igl Lt’ if f Lp, p >_ 1.
If limkoo k 0, then (see [15] or [16]) the maximal function is dominated by

the Hardy-Littlewood maximal function

supt Igkl < supg,lfl,>0 < C(o) sup,>0 1 fill<, If(x + t)ldt,

and the later maximal function is in LP, only if p > 1.
nIn either case, Theorem 2.7 gives Pnf n = Tkgk --+ zrf a.e.. 1"1

The technique used in Proposition 2.8 failed to show pointwise convergence in L
in the case when Ck --+ 0. However, mean convergence holds even in this case. It is
not difficult to see that if limtoo > 0, there is mean convergence in Lp for
p > 1. Indeed, mean convergence in Lt’ for p > or in L when t ---> > 0, is
an immediate consequence of Proposition 2.8. The next corollary then completes the
Case p 1, showing that if t --+ 0 then the averages Pnf converge at least in the
L norm.
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COROLLARY 2.9. Let 1 _< p < o. If limk_, k > 0, then limn_, Pnf
converges to zrf in Lp.

This corollary is an application of the following result and Corollary 2.6.

LEMMA 2.10.
(Y, II. II) such that

Let Tn.k be a double sequence of operators on a Banach space

(a) Zn,k 0 as n --+ cx,
(b) sup.= Tn, C

where IlTn.kll denotes the operator norm. Let rn Y.k=l Tn,k and assume that
limn-, rnY for any y Y. Let Yk, Y Y such that limk_ Yk Y. Then
limn--,oo =1 Tn,kYk .

Since rnY Y, it suffices to show that=(Tn,kYk Tn,kY) -’ 0 as

Tn,kYk Tn,kY IIT,(Yk Y)II IIT,IIIlY Yll
k=l k---1 k=l k=l

K x

_< Tn,k Yk Y + Tn,k Yk Y
k=l k=K+l

I+II.

To handle the second term, choose K so that given e > 0, Yk Y < /C for all
k > K. Hence II < (e/C) =r+ IITn,*ll _< (/C) C .

For that fixed K, since T,k 0 as n oo, given > 0 there exists N > K
such that I < for all n > N.

Thus we have shown that for any > 0 there exist N such that ’--1 T,kYk
=1 Tn,kY _< 26 for all n > N. D

3. Non-convergent sequences

In this section we only consider the special case cp Xt-.5,.51. To avoid con-
fusion we will denote cp, f by I f. We will also use the notation Pf(x)
(l/n) _’= I,kf(x).

LEMMA 3.1. Let D span{f T f: f L}. If limn--, (l/n) E=2
I- 6l/(6k- V ) O, then limn--, Pnf exists and 0 a.e. for any f D.

Proof. Let f g- Tlg, g L. Then

Pnf(X) _1 l,kg(Tx) I,_g(Tkx)
n k=2

lg(rx) Ig(r,,+x)
n n
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Assume k- > k; then

1 fk g(Ttx)dt
6k-1 _<ltl<k-1

Thus

as n ---> cxz.

IP,f (x)l <_
n k=2 6k-1 /6k

211gll
Ilgllo + ----> 0

LEMMA 3.2. Let {ek} be a sequence in (0,1) satisfying the variation condition
limn-oo(1/n) -=2 [k-1 -kl/(6k-1 k/ 6k) O. Then limn-oo Pf(x) exists a.e.

for any f Lp invariant under T1 ifand only if thefollowing hold:

(a) /f p > 1, lim,_oo Pn f exists a.e. for any f e LP,
(b) /f p 1 and ek >-- > 0for all k, limn-oo Pn f exists a.e. for any f e L

Proof. Let I {f e LP: T1 f f}, the invariant functions of T1, and D
span{f Tlf: f L}. The direction (=) is trivial because if f I then
Pf(x) Pnf(X). Let’s prove (=). By Lemma 3.2, if f D, limn Pnf 0
a.e.. On the other hand if f I, then Pn f(x) Pf(x) which converges a.e. by
hypothesis. Hence Pnf(x) converges a.e. for any function in I + D, a dense subspace
of LP. The lemma then follows by the maximal inequality in Lemma 2.3. []

Lemma 3.2 is interesting because it says that if the sequence {k} doesn’t have
a large variation, then Pnf converges for all f in Lp provided P’f converges for
invariant functions. In the case when T1 is ergodic, the second statement is trivial
since the only invariant functions are the constants. But if the sequence {ek does not
converge, then ergodicity of T1 is necessary.

LEMMA 3.3. T1 is ergodic if and only iffor any sequence {k} satisfying the
condition ofLemma 3.2 one has thefollowing:

(a) If p > 1, limn Pnf exists a.e. for any f 6 LP.
(b) If p 1 and ek > > 0for all k, limn Pnf exists a.e. for any f L 1.

Proof. (=) The proof follows from Lemma 3.2 because if T1 is ergodic then
the only invariant functions are the constants so Pn’ f (x) converges trivially for any
invariant function.
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(=) If T1 is not ergodic, we will construct a sequence for which the averages do
not converge. Construct a sequence {k} taking only two values c and/3 in the
following way. Let a 1 and inductively construct ak and bk such that b 2ak
and ak+l 2bk. Then the collection of sets A [ak, bk) and Bk [b, ak+l) form
a partition of the positive integers. Now let ej ct if j Ak and ej fl if j Bk.

Then, if f is an invariant function for

f(Tx))
But

IAkl bk ak ak 4k-l,
IBkl a+l bk bk 24k-l,

so

Ej<_. AjI Y’-- 4j 4k 1

bk 1 2 4k- 1 3 (2 4k- 1)

-,l<k Bjl ,- 2 4i 4- 1

bk- 1 2 4k-- 1 3(4k-l- 1/2)

2
--+ as k --+ cx,

3

1
---> as k ---> oz.

3

Hence,

Similarly,

lim Pb- f(x
2 1

kc - Iof(x) + " Ief (x).

1 2
lim Pa-f(x) - Ia f (x) + - le f(x).
k.-o

By choosing an invariant function f which is not constant, we see that the limit of
Pn f does not exists a. e.

Clearly the sequence ek satisfies the conditions of Lemma 3.2 because in a block
of length 2n there are only n changes. Thus this example shows that ergodicity is
necessary.

Example 3.4. With the help of Lemma 3.3 we can construct non-convergent
sequences {ek} (taking more than finitely many values as in the above example) for
which the averages Pn converge a.e. when T1 is ergodic.
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Construction. Fix 0 < 6 < 1/4 and find n > 1/6. Construct the sequence
inductively. Let 6 6 and

min 6k - ’16k+ max{6, 6k h-}
if 6k-1 < 6k < 1/2 or 6k 6,

if 6 < 6k < 6k-1 or 6k 1/2.

This sequence satisfies the hypothesis of Lemma 3.3, thus Pnf(x) converges a.e. for
f L 1, but the sequence {6} itself does not converge.

The results obtained so far in Sections 2 and 3 seem to indicate that if T1 is ergodic,
given any sequence {6k} in (0,1), the averages Pnf(X) converges a.e. for any f Lp,
p > 1. However the ergodicity of T1 alone is not sufficient. We thank the referee for
the following example.

Example 3.5. Consider the flow Ttx x +t on the Torus [0,1] mod 1. Let
f(x) 1 ifx 6 [0, 1/2) and f(x) -1 ifx 6 [1/2, 1). Let {x} denotethe fractional
part of x.

Let {Nj }j0 be a rapidly growing sequence of integers to be determined, say
26) andNo 1 and Nj+I >_ IONj for j _> 1. Let 6 v//200 and J1 (6, 5

s: (1/2
Define the sequence {6k oo}k=l in the following fashion:

If N2j _< k < N2j+I, let

If N2j+I k < N2j+2, let

if {ku/} E J1

Notice that for all x,

1/2V f/2I1/vsf (x f(x -t- Vct)dt f(x -I- t)dt O.
d-1/Ef d-1/2

And

ll/loof (x) 100 f(x + ft)dt
a -1/2oo

{1 ifx [6, 1/2 -6)
-1 ifx [1/2 +6, 1-6).
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Let Bj [Nj, Nj+I). Since the sequence {kv/} is uniformly distributed in [0, 1),
we can choose the numbers Nj such that

1#{kB2j {kv/}e J2}
> IJ2l-= 2 100

and
N2j+I

#{k E B2j-I" {k} ( J1}
N2j

Then, for x [0, 1/200],

PNzj+, f (x)

>_ IJll E
2 100

1

1

and

showing that these averages diverge on a set of positive measure, even though Tx
x / is an ergodic transformation.
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4. Random sequences

In this section we require that the probability space (X, 1, m) be a Lebesgue space
in order to be able to use ergodic decompositions, and that E {k be a stationary
sequence ofrandom variables defined on a probability space (9, C, P), taking values
on [0, 1].

Defining oof(x) f(x), the time averages now take the form

1
Pnf(X, w) ,

n k=l

where x X and to

The results of this section follow from the Return Times Theorem. Bourgain
proved a first version of this theorem in [4], Bourgain, Furstenberg, Katznelson and
Ornstein gave an alternate proof in [5], and Rudolph in [13] gave a proof through
joinings and the formulation of the theorem that we present here.

Let S be a measure preserving transformation on a Lebesgue probability space
(, G, v). The tuple (, G, v, S)is called a dynamical system. By abuse of notation,
if (X, 1, m) is a Lebesgue probability space and Tt is a measurable flow of measure
preserving transformations, then the tuple (X, , m, {Tt}) is also called a dynamical
system.

It will be clear from the context which definition ofdynamical system we are using.

THEOREM 4.1. (RETURN TIMES THEOREM). Let (f2, G, v, S) be a dynamical
system, and let g Lp (v). Then there is a subset f2g C f2 offull measure so thatfor
any otherdynamical system (X, , m, T) and f Lq(m) (lip + 1/q 1, 1 _< p _<
oo), ifw a,

lim
1 g(Skw)f(Tkx)

k---oo n k=l

convergesfor lz-a.e, x X.

Note 4.2. Given a sequence {ek} of stationary random variables defined on a
probability space (f2, C, P) and taking values in [0, 1], they define a measure pre-
serving one sided shift on the infinite product space f2 x k=l [0, 1] endowed with
v the measure induced by the distribution of the random variables. Let G be the
completion of the Borel sets with respect to the Borel probability measure v. Since
f2’ is a complete separable metric space, a theorem of von Neumann [11] implies that
(f2’, G, v) is a Lebesgue space.

In what follows, we will not mention this infinite product construction but we are
actually working in this space when we apply the Return Times Theorem.
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LEMMA 4.3. For any sequence E {k} of stationary random variables, there
exists a set f2e ofprobability 1 such thatfor any dynamical system (X,/3, m, {Tt }), if
w f2E, then limnoo Pnf(X, w) existsfor a.e. x and any f L.

Proof We will first show that there exists a set fie such that for any dynamical
system (X,/3, m, Tt }) where T1 is ergodic, the averages PNf(x, to) converge for
a.e.x.

Note that, by Proposition 2.4, for almost every x the map defined by F: --->
qg,(f)(x), F(0) f(x), is continuous and hence uniform continuous on [0, 1].

Let In,i [i/n, (i + 1)/n). Because the sequence of random variables {ek}k is
stationary and f 6 L, it follows from the Return Times Theorem 4.1 that for each
pair (i, n), 0 < < n, there exists a set f2i,n C f2 of probability such that if
to . ’i,n,

1 N

CnN’i f(x) -- XIn.i(k(W))Oi/nf(Tkx)
k=l

converges for a.e. x 6 X as N --+ cx, for any dynamical system (X, fl, m, T1). Then
’E l,.jnoo_ n-1Ui_-O fi,n is a set of probability one.

Given > 0 arbitrarily small, define

n

Because the uniform continuity ofthe map q)(f)(x), we can find an no such
that m(A) > 1 for all n >_ no. Fixing n > no, if f

_
L,

PNf(x, w) PMf(X, w)l
n- 1 N

< PNf(x, w)- 2 -- 2 XI,., (k(W))qgi/nf(TkX)
i=0 k=l

n- 1 M

n-1

+2 IC’ f(x) C’f(x)[
i=o

-’11+/2+/3.

To estimate the first two terms, observe that since T is ergodic, for a.e. x, there
exists No No(x), such that for all N > No,

1 N

2 X(A)c(TkX) < m((A)C) + "N k---1
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Thus

n--1 1 N

I Xt., ((w))lo,,(>f(Tkx) oi/#f(Tkx)l
i=o
’)- 1 n- 1

[1 +411fll]

for all N N0.
The second te I is handled in the same way, producing the same estimate

provided that M N0.
To handle the the third te, recall that b the Return Times Theorem, for each

w e and any pair (n, i), 0 < n, {C"f(x)} is a Cauchy sequence, for a.e.

x. Thus, for a.e. x, there exists N N(x) such that if N, M N, IC f(x)
C f(x)l <

Thus we have shown that for any w e, given 8 > 0 for a.e. x there exist
max(N0, N) such that for all N, M , Ief(x) PMf(X)I < a(3 + 811fll).

Hence, for each w e and f L, the averages Pf(x, w) fo a Cauchy
sequence for a.e. x X. Therefore they converge.

The general case where T may not be ergodic is readily obtained via the ergodic
decomposition of the system (X, , m, T).

If we have a flow for which T is not ergodic, since (X, , m) is a Lebesgue
space, we can decompose the measure m into its ergodic components under T. Let
(V, ’, v) be the factor of (X, , m) defined by the sigma algebra of T-invafiant sets
of X. Then the collection of Borel measures {mo}ov on the fibers has the propey
that (X, , mo, T) is an ergodic system for v-a.e, v V, and

re(A) fv mo(A)dv for all A

(For a detailed explanation of decomposition over factor algebras see Rohlin [12],
and for a simplified approach see Rudolph [14].)

Now, given w e, let C {x" lim PNf(x, w) exists}. Since (X, mo, T)
is an ergodic system for v-a.e, v V, mo(C) 1 for v-a.e, v V. Hence, re(C) 1
also.

Applications of Htilder’s inequality now yield convergence results in LP.
Given any dynamical system (X,/3, rn, Tt}), by Lemma 4.3 the set of functions

f Lp where limn--,oo Pnf(x, w) exists for a.e. x, for all w f2e, is dense in Lt’.
We need only to see that it is also closed.

Notice that in the above lemma, there was no integrability condition imposed
on the stationary sequence {k}. For Lp convergence we will have to require some
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integrability condition on the reciprocal of k, more precisely 1/ek Lq-1, with the
convention

L {measurable functions on

THEOREM 4.4. Let E {k} be a sequence ofstationary random variables and
p and q conjugate indexes, that is 1 < p, q < o and 1/p + 1/q 1. Assume that
either tp has compact support and o Lq, or qb L 1. If 1/k Lq-l(), there
is a set e ofprobability 1 such that if w f2e, then for any dynamical system
(X, fl, m, {Tt}) and any f LP(X), limn Pnf(X, w) existsfor a.e. x.

Proof We will only prove the case 1 < p < cry. The case p 1 is handled
similarly. The case p x is nothing but Lemma 4.3.

Let f2 be the set from Lemma 4.3, and

[1/k(W)]q-1 exists
n---x n k=l

Since X, 1/k Lq-1 (’2), t is a set of probability 1. Define g2e f2’ tq f2.
We will show that for any dynamical system, the subspace H {f 6 LP: for all

w 6 g2e, limn--, Pnf(x, w) exists for a.e. x is closed.
By the existence of the ergodic decomposition, we can assume that T is ergodic.

Let f 6 LP. Given d > 0, choose g 6 H such that f g lip < t, and let h If g l.
Case 1. q9 has compact support and is in Lq.
Since the support of tp is compact, there exists L such that support ofo C [-L, L].

Then

Then for each w f2e,

otl/qllollq < (2L) 1/p tl/qlloll qlim sup Iere(f g)(x w)l _< (2L) 1/p Ilhllp
N--oo

for almost every x.
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Case 2. b(x) sUPlyl>_lxl qg(y) is integrable.

1/q

1/q

dt

Then, for each

limsup IeN(f g)(x)l _< Ilhllp IIqll Oll/q < IIblll oll/q
N---x

for almost every x.
From the estimates in either case it follows that if w e and 8 > 0,

(2) limsup IPN(f g)(x, w)l < C(p, w)
N--x

for almost every x. This is enough to show that the sequence Pn (f)(x, w) is Cauchy.
Indeed,

IPn(f)(x, w) Pm(f)(x, w)l _< IP(f g)(x, w)l + IPm(f g)(x, w)l

+ IP,,(g)(x, w) Pm(g)(x, w)l.

Estimate 2 shows that for each w 6 f2e, there exist N1 such that if n, rn > N1, the
first two terms are < C(p, w)6 for almost every x. Since g H, if w 6 fie, the
sequence Pn (g)(x, w) is Cauchy for a.e.x. Hence there is N2 such that if n, rn >_ N2,
the third term is smaller than 8. Hence, if w 6 f2e, for all n, rn >_ max{N1, N2},
IPn(f)(x, w) Pm(f)(x, w)[ < (1 / 2C(p, w))3.

This proves that for every w f2e, Pn f (x, w) is a Cauchy sequence for a.e. x,
and hence f 6 H. I’-!
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