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OPERATORS IN COWEN-DOUGLAS CLASSES

KEHE ZHU

ABSTRACT. The paper introduces a new approach to the Cowen-Douglas theory based on the notion of
a spanning holomorphic cross-section. This approach is less geometric and enables one to obtain several
additional results, including one about the similarity of operators in the Cowen-Douglass classes and
another about the representation of these operators as the adjoint of multiplication by z on certain Hilbert
spaces of holomorphic functions.

1. Introduction

Let H be a (separable) Hilbert space and let f2 be a domain in the complex plane C.
For a positive integer n the Cowen-Douglas class Bn() consists of bounded linear
operators T on H with the following properties:

(1) Ran(L/- T) H for every .
(2) dim[ker(XI T)] n for every f.
(3) Span{ker(.l- T): . f2} H.

Here I is the identity operator on H and Span{ denotes the closed linear span of
a collection of sets in H.

The first systematic study of the classes Bn (Q) was made by Cowen and Douglas
in [1]. Among the subsequent contributions to the subject we mention [2]. Several
ideas in the present paper can easily be traced to [2].

For an operator T B,,(g2) the mapping

z ker(zl- T), z f2,

gives rise to a Hermitian holomorphic vector bundle, denoted Er, over f2. It was
shown in 1 that two operators S and T in Bn (2) are unitarily equivalent if and only
if the corresponding Hermitian bundles Es and Er are equivalent. As a consequence
of this, it was shown in [1] that the curvature function of Er is a complete set of
unitary invariants for operators T in B1 (f2).

In this paper we introduce an approach to the Cowen-Douglas theory based on the
notion of a spanning holomorphic cross-section. This new approach is less geometric
and enables us to obtain several additional results, including one about the similarity

Received September 9, 1998.
1991 Mathematics Subject Classification. Primary 47A45; Secondary 46E22, 30C40.
Research partially supported by the National Science Foundation.

(C) 2000 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

767



768 KEHE ZHU

of operators in Bn (fl) and another about the representation of operators in Bn (f2) as
the adjoint of multiplication by z on certain Hilbert spaces of holomorphic functions.

Recall that a holomorphic cross-section of the Hermitian bundle Er is a holomor-
phic function ?’: fl H such that for every z 6 , the vector t’ (z) belongs to the
fibre of Er over z. We call ?’ a spanning holomorphic cross-section if

Span{I,(z)" z 6 f2} H.

We can now state the main result of the paper.

THEOREM A. Suppose n > 1 and T Bn(f2). Then the Hermitian bundle Er
possesses a spanning holomorphic cross-section.

As a corollary of this result we obtain the following representation for operators
in Bn (f2).

THEOREM B. Every operator T Bn() is unitarily equivalent to the adjoint
of multiplication by z on a Hilbert space of holomorphic functions on the domain
fZ {: z 2}.

This representation was mentioned in [1] in the case n 1. Partial results in this
respect were also obtained in [2].

As another application of our main result we will determine when two operators
in Bn (f2) are similar or quasi-similar. We will also determine the commutant of an
operator in B(f2). To state our results in this direction we need to define some
relations between reproducing kernels.

Let K1 and K2 be two reproducing kernels on ft. If there exists a constant C > 0
such that CK2- K1 is still a reproducing kernel on fl, then we say that K1 is dominated
by K2 and denote the relation by K K2. We say that K and K2 are similar, and
we denote the relation by K1 K2, if both K1 K2 and K2 Kl.

For a holomorphic cross-section t’ of Er it is easy to see that the function

Kr(z, w) (),(z), ),(w)),

is a reproducing kernel on ft. If t’s and t’r are holomophic cross-sections of Es and
Er, respectively, then we write ?’s t’r when Ks Krr, and we write ?’s
when Krs Kr.

THEOREM C. Suppose S and T are operators in Bn (). Then S and T are similar

ifand only if there exist spanning holomorphic cross-sections ?’s and ’r for Es and
Er, respectively, such that

Analogous results for unitary equivalence and quasi-similarity of two operators in
Bn() will also be proved.
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THEOREM D. Let T 6 Bn(Q) andfix a spanning holomorphic cross-section ’o
of Er. Then the commutant of T, denoted (T)’, is in a one-to-one correspondence
with the set ofholomorphic cross-sections ?’ of Er with y -< ?’o.

We will also show how our method can be applied to study pull-back bundles of
holomorphic maps into Grassmannians. Such bundles are studied in 1 and form the
basis for the analysis there. In particular, we will give another proof of the rigidity
theorem in [1] in the special case f2 C C, and we will obtain a companion result
about the similarity of pull-back maps.
We want to thank Boris Korenblum and Michael Stessin for helpful conversations.

2. Spanning holomorphic cross-sections

In this section we show that the Hermitian bundle Er, T Bn(), always has a
spanning holomorphic cross-section. This will enable us to represent every operator
T in Bn() as the adjoint of multiplication by z on a Hilbert space of holomorphic
functions in f.

LEMMA 1. EveryHerrnitian holomorphic bundle has a global holomorphicframe.

This result is well-known in complex geometry and is usually referred to as
Grauert’s theorem. See [4] or [1 ].

More specifically, the lemma above says that if E is a Hermitian holomophic vector
bundle of rank n over fl, then there exist holomophic cross-sections q ’n such
that for every z fl the vectors , (z) ’n (z) form a basis for the fibre space at
z. Thus a Hermitian holomorphic bundle is trivial as a holomorphic vector bundle.
In particular, to study Hermitian bundles such as Er, T Bn(2), we must look
for structures which are not only holomorphic but also Hermitian. The notion of a
spanning holomorphic cross-section in the context of Er is such a structure.

To prove the existence ofspanning holomorphic cross-sections in Er we first recall
a classical notion from complex analysis. Let X be a vector space of holomorphic
functions in f2. A set Z C fl is called a uniqueness set for X if the only function in
X that vanishes on Z is the zero function. By the identity theorem, Z is a uniqueness
set for X whenever Z has an accumulation point in f.

LEMMA 2. Suppose X is a Banach space consisting ofholomorphicfunctions in
f2 such that point evaluations are uniformly bounded linearfunctionals on compact
subsets of 2. Then there exists a sequence {an in f2 such that:

(1) {an has no accumulation point in
(2) {an} is a uniqueness setfor X.

Proof. First assume f2 I, the open unit disk in C. For 0 < r < 1 let

M(r) sup{If(z)l" Ilfll _< 1, Izl r}.
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If f is a unit vector in X with zeros {an }, repeated according to multiplicity, such that

f (0) # 0, then by Jensen’s formula,

nr
log If(O)l + loga -< log(M(r)),

k=l

or
nr 1 1

log If(O)l + log __< log(M(r)) + n log -,
k=l r

where r (0, 1) is any number such that f has no zeros on Izl r, and al ant
are the zeros of f in Izl < r. It follows that the zeros of any function in X must
approach the unit circle at a certain rate. If we now choose an increasing sequence
{r,,} in (0, 1) such that rn 1 at a lower rate, then any function f in X vanishing
on {rn must be identically zero, so that the sequence {rn is a uniqueness set for X
without an accumulation point in lI).

By using a conformal mapping, we see that the desired result is also true for any
open disk in C. Furthermore, we can choose the uniqueness sequence so that it lies
on any given radius of the disk.

In the case of a general domain C C, we can choose an open disk D in f2 such
that some boundary point z0 of D lies in the boundary of . Let Xo be the space
consisting of the restrictions to D of functions in X. By the identity theorem, the
restriction of f X to the disk D is a one-to-one linear mapping. Therefore, XD is a
Banach space of holomorphic functions in D with the norm inherited from X. Now
choose a sequence {zn} in D such that {zn} is a uniqueness set for Xo and such that
Zn zo as n +oo. If f X and f(a,,) 0 for every n, then the restriction of
f to D must be identically zero, and hence f(z) 0 for all z f2. Thus {an is a
uniquenss set for X without an accumulation point in 2. rn

LEMMA 3. Suppose ,: f2 H is holomorphic. For every x H define a
holomorphicfunction : f2 --+ C by

Z(z) ((z), x), z

Then the set

Hr {: x 6 H

can be made into a Banach space such that point evaluations are uniformly bounded
linearfunctionals on compact subsets of f2.

Proof. Let

H0 Span{,(z): z fl}.
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Then

ne {’: x H0},

and the mapping x - " from H0 onto He is one-to-one. Define a norm on H
by I1’11 Ilxll. Then He becomes a Banach space with point evaluations being
uniformly bounded linear functionals on compact subsets of 2.

Suppose H is a Hilbert space and , ’n are holomorphic functions from
into H. We say that , ?’n span H if

H Span{),k(Z)" 1 < k < n, z e }.

LEMMA 4. Suppose H is a Hilbert space. If ’1 and )’2 are two holomorphic
functionsfrom f2 into H, and ifthey span H, then there exists a holomorphicfunction
from 2 into C such that , tp, + ’2 also spans H.

Proof.

where

Clearly, we can assume ’2 - 0. Let

X={: x 6n},

’(z) (2(z), x), z

By Lemma 3, the space X can be made into a Banach space with point evaluations on
compact subsets of fl being uniformly bounded linear functionals on X. Applying
Lemma 2, we obtain a uniqueness sequence {an for X without an accumulation point
in g2. By a classical theorem of Weierstrass (see Theorem 15.11 in [7], for example),
there exists a holomorphic function tp: f2 C such that o vanishes exactly on {an }.
Now consider

’(Z) (Z)’I(E) -I" ’2(Z), Z ’.

If X in H is orthogonal to , (z) for every z f2, then

(z)(’l(Z),X)-Jr-(’2(z), x) 0

for every z f2. It follows that (’2(z), x) 0 whenever z is a zero of tp. Since the
zero set of tp is a uniqueness set for X, we conclude that (’2(z), x) 0 for every
z f2, and therefore (q (z), x) 0 for every z f2. Since ’1 and ’2 span H, we
must have x 0, and hence , also spans H.

THEOREM 5. Let H be a Hilbert space and , ’n be holomorphicfunctions
from f2 into H which span H. Then there exist holomorphic functions o On
from f2 into C such that thefunction

, (z) o (z)r’ (z) +... + o (z)r’n (z), z 2,

also spans H.
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Proof. We prove this by induction on n. The case n 1 is trivial and the case
n 2 is just Lemma 4. Now assume the result is true for some positive integer n and
assume that Y1 Yn, Yn+l are holomorphic functions from f2 into H which span
H. Let H1 be the closed linear span in H of the set

{(z): z f} u {+ (z)" z 2}.

By Lemma 4, there exists a holomorphic function h from f2 into H1 such that the
function hYn + Yn+l spans HI. It follows that H is spanned by the n functions

’l, }/n-l, h yn + Yn+

By the induction hypothesis, there exist holomorphic functions ol, on from
into H such that the function

spans H. I-!

y q91Y1 +’" + on-lYn-1 + on(hyn + Yn+l)

COROLLARY 6. Suppose n is a positive integer and T is an operator in Bn ().
Then the Hermitian bundle ET admits a spanning holomorphic cross-section.

Proof. By Lemma 1, the Hermitian bundle ET admits a global holomorphic frame
Y1 Yn. By the condition (3) in the definition of Bn (f), the functions ?’1 Yn
span H. The desired result now clearly follows from the theorem above. El

Observe that if {an is a uniqueness set for a space X and {bn is a uniqueness set
for another space Y, then the union {an O {bn (counting multiplicity) is a uniqueness
set for both X and Y. Therefore, by modifying the proofs ofLemma 4 and Theorem 5
only slightly, we can generalize Theorem 5 to the case of finitely many Hilbert spaces
as follows.

THEOREM 7. Suppose H1 nm are Hilbert spaces and n is a positive integer

Iffor every < k < m the functions Ykl, ’kn are holomorphicfrom f2 into Hk
and span Hk, then there exist holomorphicfunctions Ol n from 2 into C such
that thefunction

k lkl " + qgn"kn

also spans Hk for every 1 < k < m.

The main point here is that we can choose one set of coefficient functions {Ol,
on which works for all the spaces Hk simultaniously. Later on we will need this
slightly stronger process ofgenerating spanning holomorphic cross-sections in certain
Hermitian bundles.
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THEOREM 8. Suppose n is any positive integer and T is an operator in Bn(2).
Then T is unitarily equivalent to the adjoint ofmultiplication by z on some reproducing
Hilbert space ofholomorphicfunctions in f2.

Proof Fix a spanning holomorphic cross-section ?, for the Hermitian bundle Er.
Let = {’: x },
where H is the Hilbert space on which the operator T acts and

’(z) (x,

Note that " here is different from the "used earlier in Lemmas 3 and 4.
It is clear that H is a complex vector space consting of holomorphic functions

in . Since , is spanning, the mapping U" H -- H defined by U (x) " is linear
and one-to-one. Now define an inner product (,). on H by

(’, "), (x, y), x, y H,

where (,) is the inner product on the Hilbert space H. Then H becomes a Hilbert
space with point evaluations on compact s..ubsets of f2 being unformly bounded linear
functionals, and the mapping U: H -- H is a unitary transformation.

Let S UTU*. We show that S*, the adjoint of S, is the operator of multiplication
by z on H. Fix x 6 H. Then for any z 6 f2 we have

S*(x(z) uT"*U*(x(z) u*(x)(z)

(T*x)(z) (T’x, ?’())
(x, T, ()) (x, y())
z(x, ()) z(z).

This shows that T is unitarily equivalent to the adjoint of multiplication by z on the
space H.

From the above representation it is clear when an operator in Bn (fl) is reducible.
More specifically, an operator T 6 Bn (f2) is reducible if and only if T T T2,
where T nn () and T2 6 Bn2 (f2) with n + n2 n. But this follows easily from
the definition of Bn (fl) anyway. In particular, every operator in B (fl) is irreducible.

If we represent T Bn (g2) as the adjoint of multiplication by z on a reproducing
Hilbert space H, then T is reducible if and only if there exist mutually orthogonal
(non-trivial) z-invariant subspaces in H.

3. Reproducing kernels

Our analysis ofoperators in Bn (2) depends very much on the notion ofreproducing
kernels. Thus in this section we gather the necessary concepts and results from the
general theory of reproducing kernels that we shall use later on.
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We are primarily interested in holomorphic reproducing kernels. Thus we con-
sider Hilbert spaces H consisting of holomorphic functions in a domain f2. If point
evaluation at every point in f2 is a bounded linear functional on H, then H has a
reproducing kernel K (z, w). The following result of Moore (see [6] or [8]) is the
basis for the general theory of reproducing kernels.

THEOREM 9. A function K: f2 x f2 --> C is the reproducing kernel ofa Hilbert
space ifand only if - c -d’fj K z z >_ 0

i=l j=l

for every positive integer n, every collection {z, zn} in f2, and every sequence
{Cl,..., Cn} in C.

Note that if K is the reproducing kernel of a Hilbert space H, then the double sum
above is equal to the norm of the vector

n

x ckK(., Zk)
k=l

in H and therefore is non negative. Conversely, if a function K satisfies the positivity
condition in the theorem above, then one considers the vector space H0 consisting of
all functions of the form

f(z) ckK (z, Z/),
k=l

Zf2,

where n > 1 and {z 1,..., Zn} C f2. The positivity condition on K enables us to
define an inner product on H0 as follows:

aK (., z), bK (., wk) ai bj K (wj, Zi).
k=l k=l i=l j=l

It is then easy to check that K is the reproducing kernel ofthe Hilbert space completion
of H0.

As an application ofthe above theorem we give the following example ofgenerating
reproducing kernels from a given Hilbert space.

PROPOSITION 10. Suppose H is a Hilbert space and , 2 --> H is a holomorphic
function. Then thefunction

K (z, w) (, (z), ’ (w))

is the reproducing kernel ofa Hilbert space ofholomorphicfunctions in f2.
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Proof.
details.

The positivity condition is straightforward in this case. We omit the simple

Note that the Hilbert space H in the proof of Theorem 8 possesses a reproducing
kernel. In fact, the reproducing kernel is given by

K(z, w) (g(tb), g()),

To check this, fix x H and w e f2, and write

Kw(z) K(z, w) ?’(fr0(z),

Then

(, Kw), (x, ,(Co)) "(w).

Thus the kernel function K above does have the desired reproducing property.
In general, if T Bn (fl) and if , is a holomorphic cross-section of Er, then it is

often more desirable for us to consider the kernel

on f2, instead of the kernel

K(z, w) (V(ff)), ())

on . K(z, w) (’(z), ,(w))

Definition 11. Suppose K1 and K2 are two reproducing kernels on f2. If there
exists a constant C > 0 such that CK2 K1 is still a reproducing kernel, then we
write K -< K2.

By Theorem 9, two reproducing kernels K1 and K2 satisfy K -< K2 if and only if
there exists a constant C > 0 such that

n < C (K2(zi, zj))nxn(Kl(Zi’ZJ)) xn

as matrices for all n > 1 and all {Zl Zn in ft.

Definition 12. Suppose K and K2 are two reproducing kernels on f2. If K1 -< K2
and K2 -< K, then we write K1 K2.

The following result provides us with a class of reproducing kernels dominated by
a given one.
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PROPOSITION 13. Suppose K is the reproducing kernel ofa Hilbert space H of
holomorphicfunctions in f2. Let p be any holomophicfunction in . Then

tp(z)K (z, w) o(w) -< K (z, w)

ifand only if t# is a bounded (pointwise) multiplier on H.

Proof. First assume that the operator of multiplication by o, denoted M, is
bounded on H. Consider the operator T M on H. It is easy to see that

TKz tp(z) Kz, z

and hence

for all n >_ 1, {Zl Zn} C f2, and {Cl Cn} C C. Here we use Kz to denote
the function Kx(w) =’ K (w, X), w f2. Applying 2 to both sides of the above
identity, we obtain

Ci"(Zi)(tg(zj)K(zj, zi) IlZl12 ci"g(zj, zi).
i=1 j=l i=1 j=l

By Theorem 9 the function

T 2K (z, w) (z)K(z, w) (w)

is a reproducing kernel, so that

(z)K(z, w) (w) K(z, w).

Conversely, if

(z)K (z, w) (w) K (z, w),

then there exists a constant C > 0 such that

CK (z, w) (z)K (z, w) (w)

is a reproducing kernel. By Theorem 9, we have

Ci(Zi)(Zj)K(Zj, Zi) C CiK(Zj, Zi)
i=l j=l i=1 j=l

for all n 1, {z zn} C , and {Cl cn} C C. It follows that

extends to bounded operator on H. A simple calculation then shows that T* must the
operator of multiplication by .
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In the special case g2 D (the open unit disk in C) and Ilgollo 1, the above
result can be found in [3].

Recall that to every holomorphic cross-section , in Er, T Bn (f2), there corre-
sponds a reproducing kernel

K(z, w) (?’(z), ,(w)), z,wf2.

For two holomorphic cross-sections ’l and )’2 in Er and Er, respectively, we write

’l -< ’2 if K -< Kr,_. Similarly, we write , ’2 if K, Kn.

PROPOSITION 14. Suppose , is a holomorphic function from f2 into a Hilbert
space. Let P be a bounded positive operator on H. Define

K (z, w) (, (z), ’ (w)), z, w

and

K2(Z, w) (P’(Z), ?’(w)),

Then K2 -< K. If P is also invertible, then K Kz.

Z,Wf2.

Proof. We already know that K is a reproducing kernel. It is easy to see that
K2 is also a reproducing kernel. In fact, for any sequence {Cl cn} in C and
{z zn in f2 we have

ci K2(zi zj P ci ’ (zi cj ’ (zj >_ O.
i=l j=l i--1 j--1

To show that K2 -< K, let Q P I P. Then Q1 is a positive operator and so

K(z, w) IlellK(z, w) K2(z, w) (al’(z), ,(w))

is a reproducing kernel.
If P is also invertible, then by the spectral theorem there exists a number C > 0

such that Q2 CP I is a positive operator. This implies that

K(z, w) (Q2?’(z), ?’(w)) CK2(z, w) Kl(Z, w)

is a reproducing kernel. Thus K -< K2 and hence K K2. I--I

We will see later that if ?’ spans the whole space H, then the converse of Proposi-
tion 14 is also true.
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4. Unitary equivalence

In this section we give another proof of the main theorem in [1], which states
that two operators in Bn() are unitarily equivalent if and only if their associated
Hermitian bundles are equivalent. Our proof here does not use as much complex
geometry, and it can be modified to obtain results about the similarity problem for
operators in Bn f2

Let E1 and E2 be two Hermitian holomorphic vector bundles over f2. First recall
that E1 and E2 are said to be equivalent if there exists a bundle map F from E1 onto

E2 such that for every z f2 the function F maps the fibre of E1 at z unitarily onto
the fibre of E2 at z.

Also recall that if T1 and T2 are bounded linear operators on Hilbert spaces H1
and H2, respectively, then T and T2 are unitarily equivalent if there exists a unitary
transformation U: H --+ H2 such that UT1 T2U, or T1 U* T2U.

THEOREM 15. Suppose S and T are operators in Bn(f2) for some n >_ 1. Then
thefollowing conditions are equivalent:

(1) The operators S and T are unitarily equivalent.
(2) The Hermitian bundles Es and Er are equivalent.
(3) There exist spanning holomorphic cross-sections ?’s and ?’r in Es and Er,

respectively, such that r’s(z)II r’ (z)II for all z .
Proof First assume S and T are unitarily equivalent. Without loss of generality

we may assume S and T both act on the same Hilbert space H. Let U" H ---> H be
a unitary transformation with US TU. If Sx .x for some Z 6 f2 and x H,
then

T(Ux) U (Sx) LUx.

Thus U maps the fibre of Es at ) unitarily onto the fibre of Er at L, and so Es and
Er are equivalent as Hermitian bundles. This proves that (1) implies (2).

Next assume that Es and Er are equivalent as Hermitian bundles. Then there
exists a bundle map F from Es onto Er such that F maps ker(.l S) unitarily onto
ker(.l T) for every . 6 f2. Now fix a global holomorphic frame ’1, ’n for
Es. It is clear that the functions F’I F’n form a global holomorphic frame for
Er. By Theorem 7, there exist holomorphic functions Ol on from f2 into C such
that the functions

and

s(z) o(z)(z) +... + o(z)(z)

’r(z) tp (z)F,l (Z) +... + On(Z)F)’n(Z)
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are spanning holomorphic cross-sections for Es and Er, respectively. From the
linearity of F on every fibre we obtain ’r(z) F?’s(z), z f2. Since F is also
isometric on every fibre, we have IIr’s(z)ll IIr’(z)ll for every z f2. This proves
that (2) implies (3).

Finally assume that ’s and ?’r are spanning holomorphic cross-sections in Es and
Er, respectively, such that IIr’s(z)ll IIr’r(z)ll for all z f2. Define a function

Ks" x --+ C

by

Ks(Z, w) (’s(z), ?’s(W)), z, w

Define a function Kr similarly. Then Ks(z, w) and Kr(z, w) are both holomorphic
in z and anti-holomorphic in w, and Ks(z, z) Kr(z, z) for all z . By a well-
known uniqueness theorem in the theory of several complex variables (see Exercise 3
on page 326 of [5], for example), we must have Ks(z, w) Kr(z, w) for all z and
w in f2. It follows that the mapping U defined by

extends to a unitary transformation on H. Since t’s spans H and

TUgs(z) T?’r(z) zI’r(z) US’s(z)

for every z f2, we conclude that TU US, which proves that (3) implies (1).

S. Similarity in Bn (f2)

In this section we consider the problem ofwhen two operators in Bn (f2) are similar.
We will also consider the companion problem of when two operators in Bn (f2) are
quasi-similar.

Suppose H1 and H2 are Hilbert spaces and suppose Ti and T2 are bounded linear
operators on H1 and H2, respectively. Then T1 is said to be similar to T2 if there exists
a bounded invertible operator A: H1 H2 such that A T1 T2A. When T1 and T2
are similar, we then write T1 T2. Also recall that T1 is quasi-similar to T2 if there
exist bounded linear operators A: H1 H2 and B: H2 Hi, both one-to-one and
having dense range, such that AT1 T2A and T1B B T2.

THEOREM 16. Suppose S and T are operators in Bn(f2) for some n > 1. Then
S T if and only if there exist spanning holomorphic cross-sections ?’s and ?’r in

Es and Er, respectively, such that ’s ’r.
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Proof. Suppose S and T are similar. Without loss of generality we may assume
that S and T act on the same Hilbert space H. Thus there exists an invertible operator
A on H such that AS TA. This intertwining relation of S and T then implies that
A maps ker()l S) into ker(;l T); this is also onto by a dimension count. Choose
a spanning holomorphic cross-section Fs in Es. Then it is easy to see that ’r AFs
is a spanning holomorphic cross-section of Er. Since

(Fr(z), Fr(w)) (A*AFs(z), Fs(w))

and A*A is an invertible positive operator, we have ?’s Fr in view ofProposition 14.
On the other hand, if there exist spanning holomorphic cross-sections Fs and

in Es and Er, respectively, such that Fs ?’r. Then there exists a constant C > 0
such that

C-1 c?’r (z) _< c’s(z) c?’r (z)
k=l k---1 k=l

for all n >_ 1, {c Cn in C, and {z z in f. It follows that the operator A
defined by

/c,r(z) , c?’s(z)A
k=l kl

extends to a bounded invertible linear operator on H. Since

ATFr(z) zAFr(z) zFs(z) SFs(z) SAFr(z)

for every z 6 f2, and since Fr spans H, we conclude that AT SA, and hence S
and T are similar.

THEOREM 17. Suppose S and T are operators in Bn(g2). Then S and T are
quasi-similar if and only if there exist spanning holomorphic cross-sections F1 and
F2 in Es, and 171 and 172 in Er, such that ’1 -< 171 and 172 "< F2.

Proof The proof is similar to that of Theorem 16. We leave the details to the
interested reader. []

6. The commutant of an operator in Bn (2)

Let T be a bounded linear operator on a Hilbert space H. Then the commutant
of T, denoted (T)’, is the algebra of all bounded linear operators S on H such that
ST=TS.

THEOREM 18. Let T be an operator in Bn () and let Fo be a spanning holomor-
phic cross-section of Er. Then the commutant of T, (T)’, can be identified with the
set ofall holomorphic cross-sections F in Er with the property F "< Fo.
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Proof. First assume A is a bounded linear operator on H which commutes with
T. Define ?," f2 ---> H by

?’ (z) Ayo(z), z

Then ?’ is a holomorphic cross-section in Er. In fact, for every z ,
Ty(z) TAyo(z) AT?’o(z) zAyo(z) z?’(z).

Thus y(z) lies in the fibre over z in the bundle Er. Let C IIA*AII. Then according
to Proposition 14 the function CK0 K, is still a reproducing kernel. Thus y -< Y0.

Next assume that y is a holomorphic cross-section in Er with y -< ?’0. Then the
operator A defined by

extends to a bounded linear operator on H. Furthermore, for every z

ATyo(z) zA?’o(z) zy(z) Ty(z) TAyo(z).

Since Y0 is spanning, we conclude that AT TA, and so A is in the commutant
algebra of T. i--!

Note that in the case n 1, if we represent T as the adjoint of multiplication by z
on a certain Hilbert space H ofholomorphic functions in f, then (T)’ consists exactly
of those multiplication operators M0, where 99 is a holomorphic mulitiplier of H. By
the closed graph theorem, such a 99 is necessarily bounded on f2. Therefore, the
commutant of every operator in B1 (f2) is isomorphic to a weakly closed subalgebra
of H(f2).

Also, Theorem 18 can be generalized as follows. Suppose S and T are operators
in Bn(2). An operator A on H is said to intertwine S and T if AS TA. Fix a
spanning holomorphic cross-section Ys for Es. Then an operator A on H intertwines
S and T if and only if there exists a holomorphic cross-section Yr in Er such that
YT Ays -< Ys.

7. Pull-back bundles of a Grassmannian

For a separable Hilbert space H and a positive integer n let Gr(n, H) denote the
Grasmann manifold consisting of all n-dimensional subspaces of H. We will be
interested in functions from a domain in C into Gr(n, H).

Let f2 be a domain in C and let f: fl Gr(n, H) be a function. We say that f is
holomorphic if for every point z0 e 2 there exists a neighborhood V of z0 in f2 and
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n holomorphic functions ’1, ’,, from V into H such that

f (z) Span{t’l (z) Yn (z)

for all z V.
Suppose f: f2 - Gr(n, H) is a holomorphic function. Then f induces a natural

Hermitian holomorphic bundle Ef as follows:

Ef {(x, z) H x f2: x f(z)}.

The associated projection zr" EI - f2 is of course given by zr (x, z) z. The bundle

Ef will be called the pull-back bundle of the Grassmannian Gr(n, H) induced by f.
It is clear that the fibre of Ef at z is just f(z).

For every operator T Bn(2) the associated bundle Er is a pull-back of the
Grassmannian Gr(n, H). In fact, if we define

f: f2 -- Gr(n, H)

by

f(z) ker(zl T), z

then f is holomorphic and Er El.
Let X be a subspace of H and A be an operator on H. In the definition below we

will use AX to denote the set {Ax: x X}.

Definition 19. Let f and g be two holomorphic functions from f2 into Gr(n, H).
We say that f and g are congruent if there exists a unitary operator U on H such that
f(z) Ug(z) for every z f2. And we say that f and g are similar if there exists a
bounded invertible operator A on H such that f(z) Ag(z) for every z

THEOREM 20. Suppose is a domain in C and

f, g: fl Gr(n, H)

are holomorphicfunctions such that

H Span{f(z): z 6 f2} Span{g(z): z 6 2}.

Then thefollowing conditions are equivalent:

(1) f and g are congruent.
(2) Ef and Eg are equivalent.
(3) There exist spanning holomorphic cross-sections t’f and ,g in Ef and Eg,

respectively, such that r’f (z)II r’g (z)II for all z 2.

Proof. The proof is similar to that of Theorem 15. We omit the details.
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The equivalence of (1) and (2) above is the rigidity theorem in [1],in the special
case f2 C C. Our method here only works for fl C C.

One consequence of the (proof of the) theorem above is that for pull-back bun-
dles induced by maps into a Grassmannian, local equivalence of Ef and Eg implies
(global) equivalence. As was remarked in 1 ], this is not true for general Hermitian
holomorphic bundles.

THEOREM 21. Suppose f2 is a plane domain and

fi g: f2 Gr(n, H)

are holomorphic with

H Span{f(z): z e f2} Span{g(z): z 6 }.

Then f andg are similar ifandonly ifthere exist spanning holomorphic cross-sections

yf and yg in Ef and Eg, respectively, such that Ys Yg.

Proof Again the proof is similar to that of Theorem 16. We omit the
details, r-!
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