ON THE CESARI-CAVALIERI INEQUALITY

BY
Tocgo NISHIURA

The present paper concerns the inequality proved by L. Cesari in 1951
[3], [4], [7] relating the Lebesgue area of a continuous surface S (as a con-
tinuous image of a simple closed Jordan region) and the generalized length
of the related sets of contours. Much research has followed this initial work
(see bibliography for some of the references). The inequality (successively
denoted as the Kilenberg inequality, the Cavalieri inequality, and finally the
Cesari-Cavalieri inequality, see [12]) is based on a detailed study of proper-
ties of Carathéodory ends and prime-ends of open plane sets. L. Cesari
and J. Cecconi applied this inequality to surface area theory and the calculus
of variations. R. E. Fullerton extended the notion of generalized length
and the inequality to mappings from any compact two-manifold with or
without boundary [14], [15].

In [7] the inequality was given only for mappings from simple closed Jordan
regions, while most of the area theory there was developed for mappings from
admissible plane sets (including among others all open sets and all finitely
connected Jordan regions). In [8] we showed the need of proving the Cesari-
Cavalieri inequality for mappings from all admissible sets. It is the purpose
of this paper to obtain this extension. To this end we shall use the familiar
process of invading the admissible sets with Jordan regions, and make use of
results of R. E. Fullerton in [14], [15]. This in turn requires a preliminary
and subtle analysis, which is new, of a monotone relationship of Carathéodory
ends and prime-ends for sets « C o, open relative to finitely connected
closed Jordan regions J < J’. We dedicate Section 2 to this task. In
Section 3 we then define generalized length for mappings from an admissible
plane set, and in Section 4 we prove the Cesari-Cavalieri inequality for
continuous mappings from admissible plane sets.

1. Preliminary discussion

We shall discuss below Carathéodory ends and prime-ends for certain
classes of sets. For clarity of exposition we shall proceed by steps. In 1.1,
simply connected open sets of the plane E; are considered. In 1.2, connected
sets which are open in a finitely connected Jordan region J and whose bound-
ary relative to J is connected are discussed. Finally, in 1.3, connected sets
open in a finitely connected Jordan region are considered.

If X is a subset of the plane, then X* X, X° will denote respectively the
boundary, closure, and interior of X.

1.1. Simply connected open sets in E, .
We summarize here some basic concepts as given in [7] and [16].
Received July 9, 1962.
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Let « be a bounded open set in the plane E, with a connected boundary.
Then « is a simply connected open set. An arc b is said to be an end-cut
of aif

bna* ={w and bCauiw,
where w is an end-point of b. An arc b is said to be a cross-cut of « if
bna*={wl,w2} and bCaU{’wl,’LD2},

where w; and w, are end-points of b. A point wo e ™ is said to be accessible
from « if there exists an end-cut b of @ such that b n o* = {w}. From [17,
p. 162] it follows that the set of all points of o™ accessible from a forms an
uncountable dense set in o*. For every cross-cut b of a, & — b is open and
the union of exactly two components «; and oy each of which is simply con-
nected.

We shall now define an equivalence relation on the set of all end-cuts of «
and call each equivalence class an end 7 of . Two end-cuts b and b of «
are said to be equivalent if

(1) b and b’ have the same end-point w € a™;

(2) eitherbnd n (V — w) # ¢ for every neighborhood V of w, or there
exist subarcs b; of b and by of b’ and a simple are ¢ such that

binbi={w}, c¢Ca cab={w), cnb;={wi},

and the open Jordan region J whose boundary is b, u b1 u ¢ is contained in a.

Let {n} denote the family of all ends n of &*. Let n; (+ = 1,2, 3, 4) be four
distinct ends, and b, (¢ = 1, 2, 3, 4) any four end-cuts in the respective
equivalence classes defined by the ends 5, (¢ = 1, 2, 3, 4). Suppose that
b; —{w;} are all mutually disjoint, where w; is the end-point b; n «*, and
suppose that b, and b; are connected by an arc ¢ so that b u ¢ U b; forms a
cross-cut andcnbs = ¢ = ¢cnd,. The cross-cut b U ¢ U b; separates « into
two components, and b, and b, may be in different components or in the same
component. This property is independent of the end-cuts we choose in the
respective equivalence classes 5; (¢ = 1, 2, 3, 4) and the arc ¢ above, and
hence this is a property of the ends #; (7 = 1, 2, 3, 4). If b, and b, lie in
different components of a« —(b; U ¢ U by), then we say that » , n; separates
n2, nain {n} (and then u,, 7. separates n:, 75 in {5}). Therefore the collec-
tion {n} can be cyclically ordered. If we denote by « any one of the ends
n of {n}, then, given any two distinct ends n; and 9, different from o, by the
open interval (m1 , m2) in {n} we mean the set of ends 5 € {5} such that n and «
separates n and 7 in {g}. By the closed interval [n;, n.] Wwe mean
(1, m2) U {m, ol

Let [nn, nn] (n = 1,2, ---) be a nested sequence of closed intervals of
{n} such that at most one end is contained in all intervals (x, , n») and
[ns1s Mnga] © (nn, mm) (n = 1,2, --+). The collection of all such nested
sequences of intervals can be partitioned into equivalence classes in the usual
way, and each equivalence class will be called a prime-end » of «*. Each end
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n € {n} is a prime-end w, but there may be prime-ends » which are not ends
n. The family {w} of all prime-ends w of &* can be cyclically ordered by
using the cyclic ordering on {#}.

Tor each 5 € {7} let w, be the accessible point determined by 5. Let w be a
fixed prime-end of o, Then E, is the set of all points w which have the
following property :

There is a sequence 7, (k = 1,2, - --) of ends of & such that n e [nn, ,1n,]
(k=1,2, ) and w,, —w,n; — © ask — o, where [n, , nn] (n = 1,2, --+)
is a sequence in the equivalence class determined by w.

The set B, does not depend upon the particular sequence [n, , 7] (n =
1, 2, --+) of w and is a subcontinuum of «* [16, p. 109], [7, (19.3)].
If w = 5 e{n}, then w, ¢ E, but E, —{w,} need not be empty.

Suppose o is an unbounded connected open set such that o* is compact,
connected, and nondegenerate. Then all the above discussion can be carried
out with obvious modifications.

1.2. Connected sets open in a Jordan region with connected boundary.

In the discussion to follow, we shall adopt the following notation. TLet X
be a subspace of the plane, and let A C X. Then B[A:X], I[4:X], and
C[A:X] will denote the boundary, interior, and closure of A in the space X.
I Jy, Jy, -, J,are simple closed Jordan regions, J; < Jo, J;n J; = 6,
154,17, =1, », we shall denote by J = (Jo, J1, -+, J,) the finitely
connected closed Jordan region J = Jo — (Jiu ---uJy). From now on,
by a Jordan region we shall mean a finitely connected closed Jordan region.

Let A be a connected subset of a Jordan region J = (Jo, J1, -+, J,) C E,
(0 £ v < ») such that A is open in J and B[A:.J] is connected and non-
degenerate. Clearly, A* D B[A:J],and A* has only a finite number of com-
ponents. A* and B[A:J] are related in two possible ways:

(a) B[A:J]is a component of A*.
(b) B[A:J]is not a component of A

Consider case (a). Denote B[A:J] by yv. Then A* — v is a union of
components of J* = U’ J7 . Since the components of A™ are compact and
finite in number, we can discuss the ends and prime-ends of v in exactly the
same way as before in 1.1. The collection of ends {5} and the collection of
prime-ends {w} of v with respect to A is again cyclically ordered, and the set
E,, associated with each w e {w} is formed in the same way.

Consider case (b). Denote B[4:J] by v again, and let M be the compo-
nent of A* which contains y. Then 4* — M is a union of components of
J*. Since the components of A* are compact and finite in number, we can
discuss, as in case (a), ends and prime-ends of M with respect to 4 — M.
M — ~ is a finite collection of open arcs contained in J* [6, (2.v)], and every
point of M — v is accessible from A — M. Let us denote by m; (¢ = 1,
2, -+, t) the finite number of open arcs of M — y. It can be shown that the
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end-points of the arcs m; are accessible from A — M. If {5} » is the collection
of ends of M with respect to A — M, then {7} is cyclically ordered, and to
each m; there corresponds an open interval u; = (n;, ) (1 = 1,2, --- , 1)
[6, §3]. Hence {5} is divided into 2¢ linearly ordered intervals, that is,
wi and o; (¢ = 1, 2,---, t) where o; denotes the ¢ closed intervals
of {mw — Uizu;. Let us suppose the indices are taken so that
(T.;<M7;<O'i+1 </.li+1(’&'= 1, ,t'— 1)

(1)  Suppose BlA:J] is of type (a). Then there exists a sequence of simple
closed curves I, (n = 1,2, ---) with the following properties:

(1) 1, < A for all n, and 1, are mutually disjoint;

(2) . separates v from L, , where m > n;

(3) limy.wl, = U E,, where the union is taken over all prime-ends w of v
with respect to A.

(ii) Suppose BlA:J] is of type (b). Then there exist ¢ sequences of arcs
2 (n=1,2---),(=1,2,---,t) with the following properties:

(1) 1 < A for all n and all 3, and 15 are all mutually disjoint;

(2) 17 4s a cross-cut in A — M with one of ils accessible points tn m;_1 and
the other inm; (v = 1,2, --- ;1). (We suppose moy = m;.)

(3) limy,, 1YY = Uver, Bo (¢ = 1,2, -+, 1), where o; also denotes the
collectron of prime-ends associated with the interval o; defined above;

(4) 17 separates 15 from 1§ in A, where m > n, ¢ #= j, k= 1,2, -
and from 1", where k < n < m.

Proof. The proofs of (i) and (ii) above are established by invading A
with Jordan regions J, such that J, C I/, J]C J,uC A (n=1,2,--+)
and Us— J, = 4.

1.3. Connected sets open in a Jordan region.

Let us consider a more general case than the one considered in 1.2 above.
Let o be a connected set open in J = (Jo, J1, -+, J,) (0= v < + o).
Then Bla:J] is compact but not necessarily connected. Let y be a non-
degenerate component of Bla:J], and let A (v, «) be the component of J — ¥
which contains . Then B[A(y, a):J] = v, and the discussion of 1.2 applies
for v and A (v, «).

An end-cut b of v with respect to A (v, «) is said to be admissible if b n «
has w as an accumulation point, where w is the accessible point of v from
A(v, a) determined by b.

An end 5 of v with respect to A(vy, «) is said to be admaissible if 5 has an
end-cut b, which is admissible. An interval of ends [#’, #”] of ¥ with respect
to A(y, a) is said to be an admissible arc if each end 7 € [v’, #”] is admissible.
A cyclic collection of ends {#} of v with respect to A(y, «) is said to be an
admassible cycle if each end 7 € {n} is admissible.

(i) TaEOREM. If 7 4s an admissible end of v with respect to A(y, o), then
every end-cut b, of 1 1s an admissible end-cut [14].
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(ii) TarorEM. Suppose v is a component of A*, where A = A(v, ).
Then every end n of v with respect to A(y, o) is admissible, and hence ¢ = {9}
s an admissible cycle [14].

(iii) THEOREM. Suppose v is not a component of A* where A = A(x, a),
and let o; (2 = 1,2, -+, t) be defined as in 1.2 above. If o; has an admisstble
end 7, then o; 1s an admussible arc [14].

(iv) Remark. 1In 1.2, (i) we can also suppose thatl, Ca(n =1,2,--+)
and in 1.2, (ii) we can suppose, for each ¢ such that o; is an admissible arc,
that 1" € a (n = 1,2, ---). Then for case (a), that is, v is a component
of A* where A = A(v, ), we have that l,, and [, (m > n) form an annular
region H,,, , and for all n large enough H,,, € A and J — H,, D v. If we
consider case (b), that is, v is not a component of A*, and o, is an admissible
are, then for all n large enough [$” and 15 (m > n) bound a simply connected
set HS) in J such that HY) < A, J — HY) D yu Upsn i u U, I8?, and
BlH: T = 1P ull) € a

(v) Let B be a component of J — @&, and b, an admissible end-cut of v with
respect to A(y, a). Then b, 0 B8 does not have w, as an accumulation point.

Proof. Let us consider case (b), that is, v is not a component of A*.
Suppose b, n B has w, as an accumulation point. Since b, is an admissible
end-cut, there exist m and n (m > n) such that if H'’ is the region defined in
1.3, Remark (iv), then H' n b, n 8 # ¢, BIH:J] = I u 1’ < «, and
BIHS) :J) separates J. Since it is assumed that w, is an accumulation point
of Bnb,, wehave Bnb,n (J — HS2) = ¢ This implies that 8 is separated,
a contradiction since 8 is a component of J — & Hence 8 n b, does not have
w, as an accumulation point.

In case (a), (v) is established in a similar manner.

2. A monotone relationship on ends

Let J’ and J be two Jordan regions, J' D J, and let o’ be a connected sub-
set of J and open in J’. Then J na'isopenin J,and J na’ = U «, where
a is a component of J n &’ and the union is taken over all such components
«. Yor each a and each nondegenerate component v of Bla:J], the discussion
of 1.3 applies. Hence for each « and v, a nondegenerate component of Bla:J],
we have either a finite number of admissible arcs o; or an admissible cycle ¢.
Blo': J’] need not be connected, but there does exist a nondegenerate compo-
nent v’ of Bla’:J’] which contains v. Let A’(y’, «’) be that component of
J’ — 4" which contains o/. A’(y’, o’) need not contain A(vy, a); hence every
end-cut b of v with respect to A(y, ) need not be an end-cut of v' with
respect to A’(v/, &’).

(i) LemMa. If ¢ = {n}y.« s an admissible cycle of v with respect to A (v, o),
then v = ', Ay, a) C A'(v, &), and the collection of all ends n of v' with
respect to A’ (', &) s the same as { and hence an admaissible cycle.
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Proof. v is a component of A*, where A = A(y, «). The components of
E, — A are of two kinds, those components V with ¥V* < v and those com-
ponents W with W* n~y = ¢. Clearly v’ n V = ¢, for otherwise vy would
separate o/. Consequently (v/ — v) n (yu U V) = 6, where U V is the
union of all components V with V* < y. Supposey’ — v # 8. Then there
exists a point wo ey’ such that wy ¢ yu U V. By 1.3, Remark (iv), there
exists a simple closed curve [, such that w, and v are separated by [, and
1, € a. Hence v’ would be disconnected, a contradiction. Therefore v' = v.
The remaining parts of the lemma now follow easily.

(ii) LemMa. Suppose o; = [v/, 2”] is an admassible arc of v with respect
to A(y, a). Suppose 1o € (v, 9”) and b,, s an end-cut of mo such that no
subend-cut is contained in A'(y', o’). Then either every end 4 € o; with n > o
has no end-cut b, with b, € A'(v’, &), or every end n € o; with n < no has no
end-cut b, with b, C A’(v, o).

Proof. Since o; is an admissible arc, we have that 7 is an admissible end,
and, by 1.3, Theorem (i), b,, is an admissible end-cut of ¥ with respect to
A(v, ). Hence a n by, has w,, as an accumulation point. Also, by hypoth-
esis, by, has no subend-cut which is contained in A’(v’, &’), and hence b,, n v’
has w,, as an accumulation point. Suppose the lemma is false. Then there
exist two ends n; and 52 in ¢; with 7, < ¢ < 52 and two corresponding end-cuts
by, and b,, such that

by, 0 by, N A(y,a) =90 and by, U by — {w, ,w,} € A'(y, ) n Ay, o).

From 1.3, Remark (iv), there is a simply connected region H), such that
by, N 7' has a nonempty intersection with I[H,:J] and both b, and b,, have
nonempty intersection with both 5 and 1”, the components of BIHS): J).
Therefore, there is a simply connected region B C J such that

B ciPuillPu by, U by,
and B contains a point of b,, nv’. B*ny’ = ¢ since
* T T
B* C 1 Ul U by U by, — {wy,, wy} © A'(Y, ).

Since wy, ¢ B, we have v’ n (J — B) # ¢. This implies 4’ is disconnected, a
contradiction. Hence Lemma (ii) is proved.

(iii) Remark. From Lemma (ii) above we see that at most one subare &;
of an admissible arc ¢; of v with respect to A(y, ) is contained in an admissible
arc ¢’ or an admissible cycle ¢ with respect to 4’(y/, @’). This subarc may
be degenerate. Clearly, the admissible arc ¢; depends on the pair (v, a).
Let (v1, o1) and (2, a2) be two distinet pairs, and let o; and a2 be two ad-
missible ares of v; and v, with respect to A (v1, au) and A (s, a2), respectively.
Suppose v1 U v2 € v, and suppose & and &, are subarcs of ¢; and ¢ , respec-
tively, which are contained in the same admissible arc o’ or admissible cycle
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¢’ of v’ with respect to A’(y’, &’). Then, from 1.3, (v) above, we see that
&1 and & are nonoverlapping in ¢’ or {’.

Let o: = [7', #”] be an admissible arc of ¥ with respect to A (v, a), and let
&: be the maximal collection of ends 7 € o; such that 5 is also an admissible
end of an admissible arc ¢’ or cycle ¢’ of v/ with respect to A’(v’, @’). Since
&; 1s a subinterval of ¢;, ¢; — &; will consist of the empty set, or of one proper
subinterval of a; , or of two proper subintervals of o;, or of ¢, itself. Denote
by \: any one of the nonempty intervals of o¢; — &;,and let A; = {w, 7 e\}.

(iv) LemMa. A; C E, for some prime-end o of the admissible arc o’ or cycle
¢ of ¥ with respect to A'(v', o).

Proof. We shall prove the lemma for the case \; = o, and ¢’ is an admissible
arc. The remaining cases are handled in a similar manner.

Let o; = [v, 9”], b1 = by , bs = by, wy = wy ,and w, = wy . Asin 1.2,
let m; and m;_; be the open arcs of M — v which correspond to the open ares
of ends u; and iy , where M is the component of A*, A = A(y, &), which
contains y. Since \; = o, v’ n A(y, «) is nonempty, and v’ n A(y, &) nm;
has w; as a limit point, and v n A(y, @) nm; has w; as a limit point.

For o; and A (v, a), there is, by 1.3, Remark (iv), a sequence of arcs 1Y c «
(n = 1,2, ---) with the properties: (a) I5” has only its end-points in 7,4
andm; (n = 1,2, -+ +); (b) limpow 18 = Uue; Bo = v; and (c) 15 separates,
in A(y, a), I from I{” (m > n > r). Consider now m;_y n A’(y’, «’) and
min A'(y, /). Each is a collection of open arcs S and S, and each
1$9 meets one of these arcs, say S.” and S.”. Hence the closure of
17 u S u S$ contains a cross-cut by for the arc ¢’ of 4 with respect to
A'(v', &'). Clearly, we may assume b’ n b — ' = gform #= n. Letus
denote one of the ends of 4’ with respect to A’(y/, «’) determined by b{”
as . Then the cross-cuts bl” (n > 1) form a collection of intervals [n7, , 7]
of ¢’ with the property that one of the following holds: [, , #.] is disjoint
from [n,, , nml, OF [nn , 7] contains [n., , 4m] properly, or [4, , n] is contained
in [, , nm] properly (m > n > 1). Consequently, by extracting a subsequence
if necessary, we may assume that either all the intervals [4, , n7] are nested
or the intervals are all mutually disjoint. Inthe latter case, we may suppose,
again extracting a subsequence if necessary, that

! ” ’ ” ’ n ! 4
[77” ) 77”] < ["7n+1 ) 77n+1] or [nn ) 7]1:,] > [nn+l ) 77;+1] for all n.

Let us now apply a Carathéodory transformation C to A’(y',«’). Thatis,
C maps A’(y", @) homeomorphically into the interior of the unit circle so
that the transform of any cross-cut of A’(y’, o) is a cross-cut of the unit
circle and that the end-points of such transforms of cross-cuts of A’(y", «')
are dense on the circumference. (See [7, Chapter VI] for a discussion of
Carathéodory transformations.) The problem now reduces to showing that
lim sUPraw C(b%7) is degenerate. Since b C A(y, @) and lim,.., b5 = v,
we have that lim sup... C(bS”) is contained in the circumference of the
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unit circle. Suppose Hm supn.. C(b”’) is nondegenerate. Then there
exists an end-cut b of v/ with respect to A’(y’, «’) such that C(b) has its
end-point in lim sup... C(b5”) and C(b) n C(bS”) 5 ¢ for an infinite number
of n. Hence b n b.” 5 ¢ for an infinite number of n. This implies that the
accessible point determined by bisiny. Clearly, b is not contained in A (v, a).
Therefore, the accessible point determined by b is either w; or w,, say w .
Consider v/ n m;y. SY™ (n = 1,2, ---) partition 4’ n m,_, into disjoint
classes which converge to w; . Consequently, the components of v/ n A (v, «)
which meet m,_; are partitioned into disjoint classes vn . Thereisa spherical
neighborhood U of w; such that lim sup,-. v is not contained in U. Other-
wise, there would be an end-cut b’ of ¥ with respect to A (v, ) which has w,
as an accessible point and b C A’(v’, «’); and this is impossible. Now there
is a subinterval b, of b such that w; is an end-point and by € U. Let n; and
ns be such that by nby # 6 5 b') nboand HS?,, contains a v, with v,, ¢ U.
Since 15 and 1) are contained in a, there exists an arc ¢ C « such that
152 u 152 u € is connected. Now (b u by u bS) U C) — {w} separates the
plane, and there exists a simple closed curve P in (b U b ubl)uC) — {wy)
which separates v, andy,and P ny’ = ¢. This cannot be since v’ Dy u 'yﬁ,a
and v/ is connected. Hence lim sup... C(b%?) is degenerate. This com-
pletes the proof of Lemma (iv).

3. Definition of generalized length

We first define generalized length for Jordan regions as given by R. E.
Fullerton [15]. Let (7, J) be a continuous mapping from a Jordan region
J C E;into E, , and let « be any set open in J. Then @ = U o, where
oy, are the components of « and the union is taken over all such components
oy, . With each o we have associated the collection {v}., of nondegenerate
components v; of Blag:J]. And, with each v;, we have either a finite col-
lection {0(”}y,.a; of admissible arcs ¢{” or an admissible cycle ¢*. Let
o® = [4, v”], and let P = [, na, -+, 7.] be a partition of +¢*; that is,
= << < =r1n". Let

S(PP; ) = 2050 | T(wy,,y) — T(wy) |,

where w,; is the accessible point of v; from A (yx, ax) determined by the end
n; and the absolute value sign denotes the Euclidean distance. Finally, let

Ao J) = sup (PP J),
(k)

where the supremum is taken over all partitions P{* of ¢(”. In a similar
way we define a number A(¢*; J). Hence for each v e {vi}a; We have a
number A(vx ; J) equal to A(¢® ; J) or 2 Mo$®; J), where the sum Y
ranges over {o\"},;.a, - If Blox:J] has no nondegenerate component, then
Mk 5 J) will be defined to be zero. The number

Z(Ol; T;J) = Zak Z‘Y}ck('y}cﬂ])
is called the generalized length of (7', Bla : J]) [15].
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IfJ, (w =1,2, ---, m) is a finite collection of disjoint Jordan regions,
(T, Us=, J,) is a continuous mapping, and « is open in U, J, , then we define

Wa; T, USa J,) = 20al(anJ,; T, J,).

(i) TeeEorEM. Let J', J1, Je, -+, Jm be Jordan regions such that
J'o Ul J,and J,ad, = 6forv = u. Let (T,J’) be a continuous mapping
wnto E, , and let o’ be a set open in J'. Then

W(o';T,J') 2 (o' n Uy J, 5 T, Uy J,).

Proof. We prove the theorem for the case m = 1. The case where m > 1
follows in a similar manner. Also, it is enough to prove the inequality for
the case where o is connected.

Let J; = J. By 2, Lemma (i), an admissible cycle ¢ of v with respect to
A(v, a), where a is a component of J n o’ and v is a nondegenerate compo-
nent of Bla:J], is also an admissible cycle for the larger Jordan region J’.
Hence M(¢; J) = N{; J’) for each admissible eycle ¢ of J.

Let o; be an admissible arc of ¥ with respect to A(y, «), and let &; be the
maximal subare of o; which is contained in an admissible arc ¢’ or eycle {’ of
v' with respect to A’(vy/, &’). If A, is defined as in Section 2, then by 2,
Lemma (iv), A; € E, for some prime-end w of ¢’ or {’. If T is not constant
on A;, then, by [7, 20.2, (iii)], N(¢’; J) = 4+ or A({";J) = +o. I T
is constant on A;, then N(o;; J) = N ; J). Hence, by 2, Remark (iii),
we have in any case that

Mo Tz 2Meis ) or NI T) 2 2 Mo J),

where the sums on the right-hand sides are extended over all admissible arcs
o; of J which have a subarce &; contained in ¢’ or {’ respectively.
Therefore, we have from the definition of generalized length that

a3 T,J') = (o nJ; T, J).

This concludes the proof of Theorem (i).

We now define generalized length for mappings from admissible sets. Let
us recall the definition of admissible set [7]. A set A C E, is called admissible
if

(a) A isan open setin K, ;

(b) A is the union of a finite number of disjoint Jordan regions;

(e¢) A is a set open in the type (b) above.

Let A be an admissible set, and B, (v = 1, 2, ---) a sequence of sets with
the following properties:

(1) B, is the union of a finite number of disjoint Jordan regions
(r=1,2,---);

(2) B clIBwu:dlcBucA (v=1,2,-+);

(3) U:’ozl Bu = A—
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Let a be a set openin A. Thena n B, is openin B, , andl(an B, ; T, B,)
is defined. By 3, Theorem (i), we have

Z(OtﬂBH.] ,T, By+1) = l(anBy;T, Bv) (V = 1:2’ ')

Hence, I(a; T, A) = lim,. I(a n B, ; T, B,) exists and is called the generalized
length of (T, Bla:A]). Since B, C I[B,1:4] (v = 1,2, ---), it is clear that
the limit is independent of the sequence B, (v = 1, 2, ---). Also, since
v B, = U;LI[B,:A] = A, if A is compact, then B, = A for all v suffi-
ciently large. Hence this new definition is clearly an extension of generalized
length for Jordan regions given earlier.
4, The Cesari-Cavalieri inequality

Let (T, A) be a continuous mapping from an admissible set A C E; into
E. , and let f be a continuous real-valued function defined on E,. Then fT
is a continuous real-valued function on A. Let ¢ be a real number, and let

DY(t;f) = lwed: fT(w) > &, D (t;f) = {wed:fT(w) < 8,
Ct; f) ={wed : fT(w) = 4.

Sinece D™ (t; f) = D*(—t; —f), we need only consider D™(t) = D (¢; f).
D7 (t) is open in A. Hence I(D (¢); T, A) is defined (Section 3). Let

W T, A, ) = UD(4); T, 4).
(1) Lemma. U(t; T, A, f) is a measurable function of ¢.

Proof. Let Uj; J, be any finite union of disjoint Jordan regions contained
in A. Then by [15], (U= J, a D™ (¢); T, Uy, J,) is a measurable function
of ¢. Since I(¢; T, A, f) is a limit of such measurable functions, it is also a
measurable function of ¢.

(i) LemMA. lminf..ol(r; T, A, 1) = U(t; T, 4, f).

Proof. Let U J, be as in the proof of Lemma (i) above. Then by
{15], we have

WUy JnD (1); T, U J,) < liminf,., o (U} J, n D7(@); T, UYy J,)
< lim inf,.. o l(7; T, 4, f).
Since U J, is arbitrary,
(T, A, f) < liminf o U(7; T, 4, 1),

and Lemma (ii) is proved.

It should be noted that, by [7, 20.3, Lemma (iv)], Lemma (ii) above also
implies the measurability of I(¢; T, 4, f).

We are now able to establish the Cesari-Cavalieri inequality.
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(iii) TurorEM. Let (T, A) be a continuous mapping of an admissible set
A C E; into E, , and let f be a real-valued Lipschitzian function of Lipschitz
constant K > 0 defined on E,,. Then

+o0

KL, 4) = [ U1, 4,0 do

where L(T, A) is the Lebesgue area of (T, A).

Proof. Let B, (v = 1,2, ---) be a sequence of sets which satisfy condi-
tions (1), (2), and (3) of Section 3. Then from [15] we have for each »,
+o0

KL(T, B,) ;f «B,n D-(); T, B,) dt.

—00

Hence by [7, 5.14, (iv)] and the theorem of Beppo Levi,

+o0
KI(T, A) = lim KL(T, B,) = lim I(B,nD (t); T, B,) dt

V>0 V>0 v—oo

o0 4w
=f lim I(B, n D™(); T, B,) dt =f UL T, A, f) dt.

0 v—>00

Thereby, Theorem (iii) is proved.
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