PROOF OF A CONJECTURE OF G. PÓLYA CONCERNING GAP SERIES ${ }^{1}$

BY
W. H. J. Fuchs

1. Statement and proof of Theorem 1

Let $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots\right\}$ be an increasing sequence of nonnegative integers satisfying the gap condition

$$
\begin{equation*}
\lambda_{n} / n \rightarrow \infty . \tag{1}
\end{equation*}
$$

Let
(2)

$$
f(z)=\sum c_{\lambda} z^{\lambda}
$$

be an entire function of finite order; put

$$
M(r, f)=\sup _{\theta}\left|f\left(r e^{i \theta}\right)\right|, \quad L(r, f)=\inf _{\theta}\left|f\left(r e^{i \theta}\right)\right| \quad(\theta \text { real })
$$

In a famous paper [3] G. Pólya conjectured that under the above conditions on Λ and $f(z)$

$$
\varlimsup \frac{\log L(r, f)}{\log M(r, f)}=1
$$

I shall prove in this note that the conjecture is correct:
Theorem 1. If the entire function (2) is of finite order, and if the sequence of exponents λ satisfies (1), then, given $\varepsilon>0$

$$
\log L(r, f)>(1-\varepsilon) \log M(r, f)
$$

holds outside a set of logarithmic density 0.
The proof is based on the following result of T. Kövari which improves previous theorems by G. Pólya [3], P. Turán [4], and others.

Theorem A [2, Theorem 1, p. 326]. Let

$$
M(r, \gamma, \delta, f)=\sup _{\gamma \leqq \theta \leqq \gamma+\delta}\left|f\left(r e^{i \theta}\right)\right|
$$

If $f(z)$ is an entire function of finite order given by (2), and if the exponents λ satisfy (1), then, given $\delta>0$, and $\eta>0$,

$$
\begin{equation*}
\log M(r, \gamma, \delta, f)>(1-\eta) \log M(r, f) \tag{3}
\end{equation*}
$$

holds, uniformly in γ, outside a set of r of logarithmic density 0 .
Another tool in the proof of Theorem 1 is the following lemma which is an adaptation of Lemma 1 of [1].
${ }^{1}$ Research supported by a grant from the National Science Foundation.

Lemma 1. Let $h(z)$ be a meromorphic function of finite order ρ. Let $T(r, h)$ be the Nevanlinna characteristic function of $h(z)$. Given $\zeta>0$ and $\delta, 0<\delta<\frac{1}{2}$, there is a constant $K(\rho, \zeta)$ such that for all r in a set of lower logarithmic density $>1-\zeta$ and for every interval J of length δ

$$
\begin{equation*}
r \int_{J}\left|\frac{h^{\prime}\left(r e^{i \theta}\right)}{h\left(r e^{i \theta}\right)}\right| d \theta<K(\rho, \zeta)\left(\delta \log \frac{1}{\delta}\right) T(r, h) \tag{4}
\end{equation*}
$$

The proof of Lemma 1 is given in $\S 2$.
Proof of Theorem 1. Choose $\eta, \frac{1}{2} \varepsilon>\eta>0$, and $\zeta>0$. Determine δ, $\frac{1}{2}>\delta>0$, so that (with the notation of Lemma 1)

$$
\begin{equation*}
K(\rho, \zeta) \delta \log (1 / \delta)<\frac{1}{2} \varepsilon \tag{5}
\end{equation*}
$$

By Theorem A and Lemma 1, (3) and (4) hold simultaneously for all r in a set E of lower logarithmic density $>1-\zeta$. Let $r \in E$. Then, given ϕ, there is a real ψ such that $|\phi-\psi|<\delta$ and

$$
\log \left|f\left(r e^{i \psi}\right)\right|>(1-\eta) \log M(r, f)
$$

Now

$$
\begin{aligned}
\log \left|f\left(r e^{i \phi}\right)\right| & =\log \left|f\left(r e^{i \psi}\right)\right|+\int_{\psi}^{\phi} \frac{d}{d \theta} \log \left|f\left(r e^{i \theta}\right)\right| d \theta \\
& \geqq(1-\eta) \log M(r, f)-r \int_{\psi}^{\phi}\left|\frac{f^{\prime}\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right||d \theta|
\end{aligned}
$$

since

$$
\left|\frac{d}{d \theta} \log \right| f\left(r e^{i \theta}\right)\left|\left|=\left|R \frac{d}{d \theta} \log f\left(r e^{i \theta}\right)\right| \leqq\left|\frac{d}{d \theta} \log f\left(r e^{i \theta}\right)\right|=r\right| \frac{f^{\prime}\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right| .
$$

Hence, by (4)

$$
\log \left|f\left(r e^{i \phi}\right)\right|>(1-\eta) \log M(r, f)-K(\rho, \zeta)(\delta \log (1 / \delta)) T(r, f)
$$

But

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta \leqq \log M(r, f)
$$

so that, by (5),

$$
\begin{aligned}
\log \left|f\left(r e^{i \phi}\right)\right| & >(1-\eta-K(\rho, \zeta) \delta \log (1 / \delta)) \log M(r, f) \\
& >(1-\varepsilon) \log M(r, f)
\end{aligned}
$$

i.e.,

$$
\log L(r, f)>(1-\varepsilon) \log M(r, f)
$$

for all r in a set of lower logarithmic density $>1-\zeta$. Since ζ can be chosen arbitrarily small, Theorem 1 is proved.

2. Proof of Lemma 1

Lemma 2. If $T(u)$ is a positive, increasing, unbounded function such that

$$
\begin{equation*}
\overline{\lim } \log T(u) / \log u=\rho<\infty \quad(u \rightarrow \infty) \tag{6}
\end{equation*}
$$

and if

$$
b>2 \rho
$$

then

$$
\begin{equation*}
e^{b} T(u / e) \geqq T(u) \tag{7}
\end{equation*}
$$

for all u outside a set G of upper logarithmic density

$$
D \leqq 2 \rho / b
$$

Proof. Put

$$
\phi(x)=\log T\left(e^{x}\right)
$$

Then $\phi(x) \geqq 0$ for $x \geqq x_{0}$, say. Let E be the set of x in $x_{0} \leqq x \leqq \log U$ for which

$$
b+\phi(x-1)<\phi(x)
$$

Let g be the largest integer such that it is possible to place g nonoverlapping intervals of length 1 on the interval $x_{0} \leqq x \leqq \log U$ so that their right-hand endpoints are in E. Then

$$
\phi(\log U) \geqq g b
$$

Hence

$$
g \leqq \phi(\log U) / b=\log T(U) / b
$$

Let $I_{j}: \alpha_{j}<x \leqq \alpha_{j}+1(j=1,2, \cdots, g)$ be a maximal set of intervals of the kind just described. Then no point of E can lie outside the union of the intervals

$$
x_{0} \leqq x<x_{0}+1, \quad \alpha_{j}<x \leqq \alpha_{j}+2 \quad(j=1,2, \cdots, g),
$$

and therefore the measure of E satisfies

$$
\begin{equation*}
m E \leqq 2 g+1 \leqq 2(\log T(U) / b)+1 \tag{8}
\end{equation*}
$$

Given $\varepsilon>0$ we have for $U>U_{0}(\varepsilon)$

$$
m E<(2(\rho+\varepsilon) / b) \log U
$$

by (6) and (8). Under the mapping $u=e^{x}$ the set E is mapped into the set C of $u, e^{x_{0}}<u<U$ for which (7) is not satisfied. And

$$
\begin{equation*}
m E=\int_{E} d x=\int_{C} \frac{d t}{t}<\frac{2(\rho+\varepsilon)}{b} \log U \tag{9}
\end{equation*}
$$

for $U>U_{0}(\varepsilon)$. The conclusion of the lemma now follows from (9) on letting $\varepsilon \rightarrow 0$.

Lemma 3. Let $h(z)$ be meromorphic in $|t| \leqq R$, and let $c_{1}, c_{2}, \cdots, c_{m}$ be the set of all zeros and all poles of $h(z)$ in $|t| \leqq R$. Then for $r<R$

$$
\begin{equation*}
r\left|\frac{h^{\prime}\left(r e^{i \theta}\right)}{h\left(r e^{i \theta}\right)}\right| \leqq \frac{4 R r}{(R-r)^{2}} T(R, h)+\sum_{k=1}^{m} \frac{2 R}{\left|r e^{i \theta}-c_{k}\right|} . \tag{10}
\end{equation*}
$$

This lemma is an immediate consequence of the differentiated PoissonJensen formula (see [1, §3]).

Lemma 4 (Special case of Cartan's Lemma). Let $\kappa>0$. Let c_{1}, \cdots, c_{m} be m complex numbers. If $r<R$ lies outside an exceptional set F of intervals of total length

$$
m F \leqq \kappa R
$$

then there are at most $(j-1)$ of the numbers $\left|c_{k}\right|$ at a distance $<j_{\kappa} R / 2 m$ from $r(j=1,2,3, \cdots, m)$.

We suppose now that r lies outside the exceptional set $F=F(R)$ of Lemma 4 and estimate

$$
S=r \int_{J}\left|\frac{h^{\prime}\left(r e^{i \theta}\right)}{h\left(r e^{i \theta}\right)}\right| d \theta
$$

where J is any interval of length δ. By (10)

$$
\begin{equation*}
S<\frac{4 R r}{(R-r)^{2}} \delta T(R, h)+\sum_{k=1}^{m} \int_{J} \frac{2 R d \theta}{\left|r e^{i \theta}-c_{k}\right|} \tag{11}
\end{equation*}
$$

We divide the c 's into two classes:
(I) those c for which $|r-|c||<\frac{1}{2} \delta r$,
(II) the others.

It is easy to see that

$$
r \int_{J} \frac{d \theta}{\left|r e^{i \theta}-c\right|}
$$

attains its largest possible value for given r and c, if J has its midpoint at $\theta=\arg c$. Then

$$
H=\sup _{J} r \int_{J} \frac{d \theta}{\left|r e^{i \theta}-c\right|}=2 r \int_{0}^{\delta / 2} \frac{d \theta}{\left|r e^{i \theta}-|c|\right|}
$$

If $c \in$ (II), i.e., $|r-|c|| \geqq \frac{1}{2} \delta r$, we use the estimate

$$
\left|\mathrm{re}^{i \theta}-|c|\right| \geqq|r-|c|| ;
$$

$$
\begin{equation*}
H \leqq \delta r /|r-|c|| \quad(c \in(\mathrm{II})) \tag{12}
\end{equation*}
$$

If $c \in(\mathrm{I})$, let $\gamma=|r-|c|| / r<\frac{1}{2} \delta$. Then

$$
\begin{aligned}
H & =2 r \int_{0}^{\gamma}+2 r \int_{\gamma}^{\delta / 2} \frac{d \theta}{\left|r e^{i \theta}-|c|\right|} \\
& \leqq \frac{2 \gamma r}{|r-|c||}+2 r \int_{\gamma}^{\delta / 2} \frac{d \theta}{\left|\operatorname{Im}\left(r e^{i \theta}-|c|\right)\right|}
\end{aligned}
$$

$$
\begin{align*}
& \leqq 2+2 r \int_{\gamma}^{\delta / 2} \frac{d \theta}{r \sin \theta} \leqq 2+\pi \int_{\gamma}^{\delta / 2} \frac{d \theta}{\theta} \\
& \leqq 2+\pi \log \frac{\frac{1}{2} \delta r}{|r-|c||} \tag{I}
\end{align*}
$$

Since r is outside F, we deduce from Lemma 4 that the class (I) cannot contain more than M elements, where M is the largest integer such that

$$
\begin{equation*}
\frac{1}{2} \delta r \geqq M \kappa R / 2 m, \quad \text { i.e., } \quad M \leqq \delta r m / \kappa R=M_{0} \tag{14}
\end{equation*}
$$

A second application of Lemma 4 now shows that

$$
\begin{align*}
\sum_{c \in(\mathrm{I})} \log \frac{\delta r / 2}{|r-|c||} & \leqq \sum_{j=1}^{M} \log \frac{\delta r m}{\kappa R j} \tag{15}\\
& =\sum_{j=1}^{M} \log \frac{M_{0}}{j}<\sum \int_{j-1}^{j} \log \frac{M_{0}}{x} d x<\int_{0}^{M_{0}} \log \frac{M_{0}}{x} d x=M_{0}
\end{align*}
$$

Again by Lemma 4, there are at most $\left[M_{0}\right] c$'s in class (II) with $|r-|c||=M_{0} \kappa R / 2 m=\frac{1}{2} \delta r$. There are at most $\left[M_{0}\right]+1 c$'s in class (II) with $|r-|c|| \leqq\left(M_{0}+1\right) \kappa R / 2 m, \cdots$. Hence

$$
\begin{align*}
\sum_{c \in(\mathrm{II})} \frac{\frac{1}{2} \delta r}{|r-|c||} & <\left[M_{0}\right]+\sum_{j=\left[M_{0}\right]+1}^{m} \frac{\frac{1}{2} \delta r}{(\kappa R j / 2 m)} \\
& <M_{0}+\frac{\delta r m}{\kappa R} \sum_{\left[M_{0}\right]+1}^{m} \frac{1}{j} \\
& <M_{0}+M_{0}\left\{\int_{\left[M_{0}\right]+1}^{m} \frac{d x}{x}+\frac{1}{\left[M_{0}\right]+1}\right\} \\
& <M_{0}+M_{0}\left(\log \frac{m}{M_{0}}+\frac{1}{M_{0}}\right) \\
& <M_{0}+M_{0} \log \frac{m}{M_{0}}+1 \tag{16}
\end{align*}
$$

Using (13) and (15), (12) and (16) in (11) we find that for $r<R, r \notin F$.

$$
\begin{aligned}
S<\frac{4 R r}{(R-r)^{2}} \delta T(R, h)+\frac{4 R M_{0}}{r} & +\frac{2 \pi R M_{0}}{r} \\
& +\frac{2 R}{r} M_{0}+\frac{2 R}{r} M_{0} \log \frac{m}{M_{0}}+\frac{2 R}{r}
\end{aligned}
$$

or, substituting from (14) for M_{0},

$$
\begin{equation*}
S<\frac{4 R r}{(R-r)^{2}} \delta T(R, h)+\left\{(6+2 \pi)+2 \log \frac{\kappa R}{\delta r}\right\} \frac{\delta m}{\kappa}+\frac{2 R}{r} \tag{17}
\end{equation*}
$$

In order to deduce Lemma 1 from (17) we must now describe in more detail the choice of r and R. Let

$$
a=e^{1 / 4}, \quad b=(2 \rho+1) / \kappa
$$

and consider the intervals

$$
A_{n}: a^{n}<r \leqq a^{n+1} \quad(n=0,1,2, \cdots)
$$

The characteristic function $T(u, h)$ satisfies all conditions imposed on $T(u)$ in Lemma 2 . We shall call an interval A_{n} unsuitable, if the whole interval

$$
a^{n+3} \leqq R^{\prime} \leqq a^{n+4}=e a^{n}
$$

is contained in the exceptional set G of Lemma 2 (for our choice of b and $T(u)$). If A_{n} is suitable (i.e., not unsuitable), then we can find an R^{\prime},

$$
a^{n+3} \leqq R^{\prime} \leqq a^{n+4}
$$

such that

$$
e^{b} T\left(R^{\prime} / e, h\right)>T\left(R^{\prime}, h\right)
$$

and a fortiori, since $R^{\prime} / e \leqq a^{n} \leqq r$, and $T(u, h)$ is increasing,

$$
\begin{equation*}
e^{(2 \rho+1) / k} T(r, h)=e^{b} T(r, h)>T\left(R^{\prime}, h\right)>T\left(a^{n+2}, h\right)=T(R, h) \tag{18}
\end{equation*}
$$

where we have chosen

$$
R=a^{n+2}
$$

By a well-known argument using Nevanlinna's first fundamental theorem

$$
\begin{align*}
m=n(R, h)+n(R, 1 / h) & \leqq \frac{1}{\log \left(R^{\prime} / R\right)} \int_{R}^{R^{\prime}} \frac{n(u, h)+n(u, 1 / h)}{u} d u \\
& \leqq(1 / \log a)\left(N\left(R^{\prime}, h\right)+N\left(R^{\prime}, 1 / h\right)\right) \\
& \leqq 4\left(T\left(R^{\prime}, h\right)+T\left(R^{\prime}, 1 / h\right)\right) \\
& \leqq 8 T\left(R^{\prime}, h\right)+O(1) \tag{19}
\end{align*}
$$

Using (18) and (19) in (17) gives

$$
\begin{align*}
r \int_{J}\left|\frac{h^{\prime}\left(r e^{i \theta}\right)}{h\left(r e^{i \theta}\right)}\right| d \theta & <\left\{A_{1}(\kappa, \rho) \delta+A_{2}(\kappa, \rho) \delta \log (1 / \delta)\right\} T(r, h)+A_{3}(\kappa, \rho) \tag{20}\\
& <A_{4}(\kappa, \rho) \delta \log (1 / \delta) T(r, h) \quad\left(r>r_{0}=r_{0}(\kappa, \rho, \delta, h)\right)
\end{align*}
$$

for all r in a suitable interval A_{n} except those which lie inside an exceptional set F_{n} of measure $<\kappa R=\kappa a^{n+2}$. The logarithmic length of F_{n} is at most $\kappa a^{n+2} \cdot\left(1 / a^{n}\right)=\kappa a^{2}$, so that the total logarithmic length L_{1} of the exceptional sets $F_{n}(0 \leqq n \leqq N)$ satisfies

$$
L_{1}<\kappa a^{2}(N+1)
$$

An interval A_{n} (logarithmic length $=\log a$) is unsuitable only if the interval A_{n+3} is contained in the exceptional set G of Lemma 2. The total logarithmic length L_{2} of the unsuitable intervals $A_{n}(n \leqq N)$ is therefore
less than the logarithmic length of the portion of G in $r \leqq a^{N+4}$, so that by Lemma 2

$$
L_{2}<((2 \rho+1) / b) \cdot(N+4) \log a \quad\left(N>N_{0}\right)
$$

With our value for b

$$
L_{2}<\kappa(N+4) \log a .
$$

Hence (20) holds in $r_{0} \leqq r \leqq a^{N+1}$ outside a set of total logarithmic length less than

$$
L_{1}+L_{2}<\kappa\left(a^{2}+\log a\right) N+\kappa a^{2}+4 \kappa \log a .
$$

The upper logarithmic density of the exceptional set in which (20) is not valid is therefore

$$
\begin{gathered}
D \leqq \lim _{N \rightarrow \infty}\left(1 / \log \left(a^{N}\right)\right)\left(\kappa\left(a^{2}+\log a\right) N+\kappa a^{2}+4 \kappa \log a\right) ; \\
D \leqq \kappa\left(a^{2}+\log a\right) / \log a .
\end{gathered}
$$

Lemma 2 follows, if we determine κ from the equation

$$
\zeta=\kappa\left(a^{2}+\log a\right) / \log a .
$$

References

1. W. H. J. Fuchs, A theorem on the Nevanlinna deficiencies of meromorphic functions of finite order, Ann. of Math. (2), vol. 68 (1958), pp. 203-209.
2. T. Kövari, On theorems of G. Pólya and P. Turá, J. Analyse Math., vol. 6 (1958), pp. 323-332.
3. G. Pólya, Untersuchungen über Lücken und Singularitäten von Potenzreihen, Math. Zeitschrift, vol. 29 (1929), pp. 549-640.
4. P. Turán, Über lakunäre Potenzreihen, Rev. Math. Pures Appl., vol. 1 (1956), no. 3, pp. 27-32.

Cornell University
Ithaca, New York

