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Introduction

As defined here, the three classes of Markov processes mentioned in the
title of this paper have in common the fact that the basic state space is a
subset of the reals, and the random trajectories do not jump over points in
the state space. They are also regular in that a process starting at any point.
in the state space (with the possible exception of the left and right end points),
can, with positive probability, reach any other point in the state space.

In the discrete-parameter case, any such process has a discrete state space
and is a random walk. In the continuous-parameter case, if the state space
is an interval, the path functions are continuous, and the process is a diffusion
process; if the state space is discrete, the process is a birth and death process.
We include both possibilities by allowing the state space to be any closed
(except possibly at end points) subset of the reals.
These processes are all very similar in their analytic and probabilistic

structure. When put in their "natural scale", they are determined by a
speed mesure m(dx) nd killing mesure/c (dx) (nd time unit 0 in the
case of random walks).

It is fairly obvious that in some sense the processes depend continuously
on m(dx) and/c(dx). The purpose of this paper is to investigate some of the
probabilistic aspects of this continuity. In order to do so, we use a method
of It6 and McKean [1] to construct all these processes on a single probability
space. This construction involves the use of "local time" for Brownian
motion, whose existence and continuity properties were obtained by Trotter
[9]. The construction shows that all the processes have local times. If the
state space is discrete, the local time is simply the (normalized) occupation
time.

In Section 1 we summarize the construction in the continuous-parameter
case, and in Section 3 we extend it to the discrete-parameter or raudom-walk
case.

In Section 2 we consider a sequence X(x, ;t), n >= 0, of continuous-
pmmeter processes with measures m(dx) and ]c(dx) and initiul state x.
We suppose that m(dx), (dx), nd x converge suitably to mo(dx), ]co(dx),
and x0 respectively, nd that certain other conditions re stisfied. It then
follows that several classes of functionals of the X(x ;t) process converge
with probability 1 to the corresponding functional of the Xo(xo;t) process.
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In particular the local times converge (essentially uniformly, in all states and
all bounded time intervals), and hence so do such other funetionals as occupa-
tion times which can be defined in terms of local times. The path functions
also converge. In nice eases this convergence is uniform in bounded time
intervals. In general, however, we are led to convergence in a weaker sense
(similar to the Jl-eonvergenee of Skorokhod [7]).
In Section 4 we replace the Xn(xn t), n 1, by random walks W(x, t)

and consider the same problems. In general we get convergence in prob-
ability, but under a slight further condition we get convergence with prob-
ability 1 as before. Perhaps the most interesting results concern the uni-
formity of the convergence of the local time (normalized occupation time)
of the random walks to the local time of the limiting diffusion process (see
Examples 1 and 2 at the end of Section 4).
The results on convergence with probability 1 and convergence in prob-

ability depend of course on the specific construction used. They yield as
immediate corollaries, however, statements concerning convergence in dis-
tribution which do not depend on the construction. This method of obtaining
weak convergence of functionals has been used by Skorokhod [7], Knight [3],
and It6 and McKean [1].

In Section 5 we consider a single process X(x; t) with killing measure
tc (dx) 0 and speed measure rn (dx) x I+L(x), where B + 1 > 0 and
L(x) is suitably slowly varying as Ix I--* . The asymptotic behavior of
X(x; t) is investigated by reducing the problem to one involving a sequence
of processes such that the results of Sections 2 and 4 are applicable.
Some specific limit theorems for birth and death processes were obtained

by Karlin and McGregor [2], who used purely analytic methods such as their
representation theorem and the Darling-Kac theorem connecting occupation
time laws with the Mittag-Lettter distribution. The original motivation of
this paper came from trying to understand and extend these results. The
material in Section 5 is closely related to [2] and also to some work by Lamperti
[4] and [5].
Knight [3] has given a different construction in which the paths of simple

random walks converge uniformly in bounded time intervals to those of
Brownian motion. He also obtained convergence of the local times (uni-
formly in time, but not in space) and extended his results to somewhat more
general random walks and diffusion processes.

This paper is closely related to the author’s Stanford Ph.D. thesis. I wish
to thank Professor Karlin for his encouragement and guidance of my work on
that thesis. I also wish to thank Professors K. It6 and D. Ray for several
helpful discussions concerning the theory of diffusion processes.

1. Construction of the continuous-parameter processes
In this section we use the method of It6 and McKean of obtaining diffusion

processes from Brownian motion. Let Y(t) be a Brownian motion process
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with continuous paths, Y(0) --0, and infinitesimal generator d2/dx (this
normalization is slightly more convenient than is 1/2 d/dx2).

Of course Y(t) Y(t, o) is defined on some probability space (ft, 63, P).
For simplicity in notation we suppress the dependence on o. All other
processes considered in this paper will be defined in terms of Brownian motion
and hence will have the same probability space. We assume that this space
is chosen so that there is an exponentially distributed random variable in-
dependent of Y(t), _>_ 0. Given any finite or countably infinite number of
statements, each of which is true with probability 1, we can remove from ft
a subset of probability 0 such that on the remaining space the statements hold
everywhere.
The present construction is based on the following theorem of Trotter [9].

The corollary is an immediate consequence of the theorem (see [1] or [8]).
Here we let M denote Lebesgue measure.

THEOREM (Trotter).
continuous in and y, such that for every Borel set A c (-
t>=O,

With probability 1, there is a function L(t, y) jointly
and all

MIIO <= <- tandY(-)eA} JAL(t,y) dy.

COROLLARY. For each fixed y e (-, ),

inf [tlL(t y) > 0] inf [t Y(t) y]

with probability 1. Also, with probability 1, L(t, y) -- as ---. uniformly
for y in bounded sets.

We may assume that the statement of the theorem, the second statement of
the corollary and the first statement of the corollary with y 0 all hold
everywhere. It follows that L(t, y) >= 0; if tl -< t, then L(tl, y) <- L(t., y)
and if Y(t) (a, b) for tl < < t, then L(tl, y) L(t, y) for a _-< y -_< b.

Let re(x),-- x , be a right-continuous, nondecreasing non-
constant extended real-vMued function. We call x a point of increase of
re(x) if m(x.) > re(x1) whenever x < x < x2. Let E be the closed set of
points of increase of re(x). Now re(x) defines a measure on (- , in the
usual way. This measure has support in E. Let

a=inf[xlxeE] and b= sup[xlxeE].

Let B be the subset of /a, b/ such that a eB if and only if a > - and
re(a-) -, and b e B if and only if b < -- and n(b) --.

For x e E and >= 0 we define successively

r(x; B) inf [t Y(t) + x B];

S(z;B) L(t,y-z) m(dy) if 0 =< <r(x;B),



LIMIT THEOREMS FOR SOME MARKOV PROCESSES 641

S(x;.B) if >= r(x;B);

--I(x; t) sup [ S(x; r) <= t]; Z(x; t) Y(S-(x; t) + x;

Lz(x; t, y) L(-i(x; t), y x), y

If E1 E is a Borel set, we define

t(x; El) inf [t Z(x; t) e El].

We now summarize the elementary properties of the random variables so
defined, referring the reader to [1] and [8] for more details.

For each fixed x e E the random function S(x; t) is nondecreasing in t,
is continuous in except possibly at r(x; B), is strictly positive for
> 0, and approaches as --> . It is an additive functional of the process

Y(t). The function s-l(x; t) is a right-continuous, nondecreasing function
with S-1 (x; 0) 0. It is strictly increasing in for 0 =< < S(x; r(x; B)
and equals r(x; B) for >= S(x; r(x; B)--). The process Z(x; t) takes on
values from the set E. As a function of t, Z(x; t) is continuous from the right
and has limits from the left. The process Z(x; t) is a strong Markov process
with state space E, initial state x, and stationary transition probabilities.
The function Lz(x; t, y), 0 and y eE, is jointly continuous in and y.
For each Borel set A E and 0 -< S(x; r(x, B)- (see [1] or [8])

MlrlO <= r -< tandZ(x;r) eA} fALz(x;t,y) m(dy).

For each fixed x E, with probability 1 the set of times when S(x; t) is
increasing in coincides with the set of times =< r(x; B) when Y(t) x e E.
We now use strongly, for the first time, the fact that Y(t) is actually con-

tinuous. Let x e E be fixed as before. With probability 1, if 0 -< h < t3,
Z(x; tl) yl, Z(x; t3) y3, y. eE, and either yl < y2 < y3 or yl > y2 > y,
then there is a t2 (tl, t) such that Z(x;t2) y. Thus if E is an interval,
then Z(x; t) is a diffusion process in the usual sease of having continuous
paths; and if E is discrete, then Z(x;t) is a birth and death process.

Let ]c(x), - < x < , be a right-continuous, nondecreasing, possibly
constant, extended real-valued function whose points of increase are contained
in E, which is finite for a < x < b, and which has no infinite jumps in B.
Let C be the subset of {a, b} such that a C if and only if a > - and
/c(a--) -,andbeCifandonlyifb < + andk(b) +
Let A be an abstract point, and set E E u {A}. Let e(A) be a random

variable independent of the process Y(t), hence also of Z(x; t), and having an
exponential distribution with mean 1 (such a random variable exists by an
earlier assumption).

Set t(A; A) 0, and for x eE set

t(x; A) --inf Lz(x; t, y) lc(dy) >= e(A
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(Here, if Lz(x; t, y) 0 and ]c(dy) o, we define Lz(x; t, y)k.(dy) to be
zero in the integrand.) For x e E and y e E, we set

X(x; t) Z(x; t), Lx(x; t, y) L(x; t, y) if < t(x; A),

A, =Lz(x;t(x;/),y) if t>- t(x;A).

The process X(x; t) is a strong Markov process with state space - C,
initial state x, and stationary transition probabilities. The measures m(dx)
nd k(dx) are called the speed and killing measures of the process.
If k (dx) 0 (i.e., if k (x) is constant) the process is called conservative.
If E is an interval, X(x; t) is a diffusion process in the usual sense; and if E
is discrete, X(x; t) is a birth and death process (except that we allow the
possibility of killing from all points of E).

2. Convergence of continuous-parameter processes
In this section we first give a definition of convergence of path functions.

We then consider a sequence of processes constructed as in Section 1. In
Theorem 1 we obtain convergence of several types of functionals of the
processes under certain conditions preceding the statement of this theorem.

Set R (-, ),R’= Ru {}, and let K denote the space of all
functions x(t), >= 0, :whose values lie in R’, which are such that x(t) A

entails x(t’) A for -->_ t, and which at every point < inf [ x(r) A]
are continuous from the right and (for 0) have limits from the left.

Let p be a pseudo metric on K (we allow p(x, y) 0 for x y) such that
if x e R for n >_- 0 and x, x0-- 0, then p(x,, Xo) -- O.

In terms of p we define J-convergence in K" A sequence x,(t) is said to
be J-convergent to xo(t) if there is a sequence of continuous one-to-one
mappings n($) of [0, oo] onto itself such that for each N 0

sup0__<t=<v n(g) ---> 0 and sup0__<=< p(x,(t), Xo(,(t)) -- 0

as n -- . As a special case, if Xo(t) is continuous, then x,(t) is J-convergent
to x0(t) if and only if for each N > 0

sup0__<__< p x, Xo ---+ 0 as n - .Let f,, n _>_ 0, be a sequence of real-valued (Borel-measurable) functionals
on K. We say that the sequence {f,} is J-continuous at a point xo(t) in K
if f(Xn(t)) --* fo(Xo(t) whenever x,(t) is J-convergent to xo(t).

Given a stochastic process X(t) whose paths are in K, let F(X(t)) be the
collection of all such sequences of functionals which are continuous almost
everywhere with respect to the measure on K induced by the process X(t).

If Xn(t), n -O, are stochastic processes whose paths lie in K, we say
that X,(t) is weakly convergent to X0(t) if the distribution of f,(X, (t))
converges to the distribution of fo(Xo(t) for all sequences f, e F(Xo(t) ).

Let Xn(X ;t) be regular diffusion processes as constructed in Section 1.
We use the subscript n to denote relationship to the nt such process.
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For n => 0, let b(x), -- < x < , be a finite, right-continuous, non-
decreasing function whose set of points of increase is contained in E. Let

v(x ;t) f Lx(x t, y) b(dy).

The random function Vx(x, ;t) is an additive functional on the process
X=(x ;t). As a special case, if b(dx)= v,(X)mn(dx) (i.e., if b(dx) is
absolutely continuous with respect to m(dx), then

v(x ;t) f0 ,(X(x ;)) d.

As a further specialization, if Vn(X) is the characteristic function of a Borel
set, then Vx,(x t) is the time spent in that set until time t.
The convergence theorem will depend on the following conditions (unless

otherwise specified, continuity and convergence refer to the usual metric

(i)
(ii)
(iii)
(iv)

(v)
(vi)
(vii)

(viii)

(ix)

m,(x) -- too(X) at all points of continuity of m0(x)
kn(X) --- ]Co(X) at all points of continuity of/c0(x);
x e E C for n _>_ 0, and x -+ x0
the sets E, n >__ 0, are such that whenever y e E for n >= 1,
y -- y0, and ao y0 b0, then yo e Eo
ifa0eBonC0,thenp(a0,A) =0;
ifboeB0nCo,thenp(bo,A) =0;
if a0 > , ao eBo u Co and liminf inf Ix x eE] < ao, then
p(ao, y) 0 for y <: ao
if bo , b0eBouCo, and limsupsup [xlxeE.]> b0, then
p(bo,y) =0fory> bo;
b(x) -- bo(x) at all points of continuity of bo(x).

Perhaps a brief discussion of these conditions is in order. Conditions (i),
(ii), and (iii) are obviously natural ones. Condition (iv) is necessary to
have J-convergence of the path functions and could probably be eliminated
by changing the definition of J-convergence somewhat. It is vacuous if Eo
is an interval. Conditions (v) and (vi) are necessary because whenX(x t)
approaches a point in B0 n Co, it can not be determined merely from (i)-(iii)
whether X,(Xn t) stays near B0 n Co or jumps to A. Conditions (vii) and
(viii), which are similar to (iv), may be relevant in applying Theorem 1 to
processes which have been converted from their original to their natural
scale. Condition (ix) concerns not the processes themselves, but only the
functionals Vx(x t).

THEOREM 1. Suppose conditions (i)-(ix) above are satisfied.
probability 1, as n --(1) Xn X, t) is J-convergent to Xo Xo t)

Then, with
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(2) for any > 0 and M > 0 there exist no > 0 and > 0 such that

Lx,(x, t, y,) Lxo(Xo t, yo) <
uniformly for n >= no, <- M, y, E, yo e Eo and

(3) Vx(x, ;t) -- Vxo(Xo ;t) for all >- 0;
(4) sup[-lVx(x,; T) -< t]--sup[T[ Vxo(Xo ) <= t] at all points of

continuity of the latter function.
Remark. It follows from (1) and (2) that for every M > 0
(2’) lim_, supo_<t_< supnE0 Lx(x, t, y) L:o(Xo t, y) O.

COROLLARY 1. As n --(5) X, x, t) is weakly convergent to Xo Xo t)
(6) Vx(x, ;t) converges in distribution to Vxo(Xo ;t) for all >= 0;
(7) sup r Vx(x -) _-< t] converges in distribution to

sup[r Vx0(x0 ’) _-< t] for all > O.

Proof. The function So(xo;t) is nondecreasing in t, strictly positive
for > 0, continuous for ’o(X0 ;B0), approaches as -- , and equals
oo for __> r0(x0 ;B0). With probability 1, for n > 0 the set of times when
S,(Xn ;t) is increasing in coincides with the set of times =< -(x ;B,)
when Y(t) q- x e E. It follows from conditions (i) and (iii) and the first
statement of the corollary to Trotter’s theorem that, with probability 1,
S(x ;t) -- So(Xo ;t) for ’(x0 ;B0). We may assume that the last
two statements hold everywhere.

Let Y(t) be a fixed Brownian motion path. Let y eE for n _-> 0 and
y -- y0 Since L(t, y) is jointly continuous in and y, we see that as n -L(S-I(x, t, y, x,) L(S-I(x, ;t), y0 x0) --0

uniformly for in bounded sets. Since L(t.-l(x0 ;t), yo xo) is continuous
intfory0eE0, -1S (x ;t) -- Sl(Xo ;t) at all points of continuity of s-i(x0 ;t),
and these functions are all nondecreasing in t, it follows that

L(S-(x, ;t), yo Xo) L(ST(Xo ;t), yo x0)

uniformly for in bounded sets. Therefore

Lz(x t, y) L(S-I(x, ;t), y x)

--> L(-l(x0 ;t), yo Xo) Lzo(Xo t, yo)

uniformly for in bounded sets.
The last statement is equivalent to conclusion (2) if all processes are con-

servative. In order to verify conclusion (2) in general, we have to investigate
convergence of t,(x, A) to to(xo ;A).
There are several cases that must be distinguished. By condition (’ii)

L(x, t, y) lc,(dy) Lzo(Xo t, y) lco(dy)
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fort < to(xo Co). Thus ifto(xo;A) to(xo Co) -t-, then

tn(Xn ;A) -- to(Xo A).

Now Zo(xo t) is a strong Markov process. Hence, with probability 1, if
to(xo A) < to(xo ;Co), then

I Lzo(Xo t, y) ko(dy) > e(A)

for > to(xo A), and t(xn A) -- to(xo A).
With probability 1, if

to(xo Co n Bo) < and to(xo A) >__ to(Xo Co n Bo),

then

Lzo(zo t, y) ko(d) + and

for > o(zo Co n Bo); hence

o(Zo; zX) o(zo; ConBo) and

Lz(x, t, y) kn(dy) ---> +

t(x ;a) - to(xo ;).

We may assume that the statements of the above two paragraphs hold
everywhere. In any of the cases discussed above, we now have that

t(x ;/) to(xo ;/),

and conclusion (2) holds.
In the remaining case t0(x0; Co Bo) < to(xo; Co Bo) and

to(xo A) => to(Xo Co Bo). Except for a set of probability zero (which we
remove from t), to(Xo A) - . It is not necessarily true in this case that
t,(x, ;A) - + . It is true, though, that

lim infn t(x A) t0(x0 Co a B0).

Since Lzo(Xo t, y) is constant for >-->= to(xo B0), conclusion (2) still holds.
We have now verified that (2) holds in all possible cases. Condition (ix)

now implies that (3) holds, and hence also (4) and (6). Since X(x t)
is a strong Markov process, it is clear that at any fixed > 0,
sup [ Vxo (x0 r) -< s] is continuous at s with probability 1. Therefore
(7) is a consequence of (4).

Since (5) follows immediately from (1), the proof of Theorem 1 and
Corollary 1 will be complete as soon as we prove (1).

It is easy to show that, with probability 1, if to(xo A) < , then S-(Xo t)
is continuous at t0(x0; A), and hence Z0(x0; t) is continuous at

to(xo A). We assume that this statement holds everywhere on
In order to verify that (1) holds, we have to construct suitable mappings

n(t). Choose N > 0 and e > 0. Let ltk) 1 __< k _-< ml} be the set of all



646 CHARLES STONE

times tk)
e [0, N] such that tk) < to(xo A) and

-(xo t)) -(x0 tg)-) _-> ,
i.e., S-(xo;t) has a ump of at least eatt t). (Wesetm 0if this
set is empty. Ift0(x0;A) < ,wesetm m+ landt) to(xo;A).
If to(xo A) , we set m m. We can assume that t) < t1) < (

tm) where we set t) 0. Forn > lsett) 0and

t( n(Xn (sl(x0 tk) + l(xo t)- ))), 1 m,

and if m mi + 1, set t) t(x A).
It follows from the convergence of Sn(X t) to So(Xo t) that t) t)

for 0 k m, and it follows from the convergence of t(x A) to t0(x0 A)
that if m m 1, then t) t). Thus there is an n0 > 0 such that if
n no, then t) < t) < < t).
We construct functions hn(t, N, ) as follows" h(t, N, )

for i n < n0 and 0;if n n0, thenh(t), N, ) t) and h(t, N, )
is extended to all of t 0 by linear interpolation

(Xn(t, N, ) + tm) tm) for t)).
The functions h,(t, N, e) so defined are continuous one-to-one mappings of
[0, onto itself. Furthermore

supo, n(t, N, 8) t[ 0 as n .
We can choose N(n) and e(n) so thut N(n) and e(n) 0 as n

and for euch fixed N > 0

supotu h.(t, N(n), e(n) o s n

For n > 0 set h.(t) h.(t, N(n), e(n)). Then each h.(t) is a continuous
one-to-one mapping of [0, onto itself. For each N > 0

Supo .(t) t[ 0 as n .
In order to prove (5) we need to show that for every N > 0

supo o(X.(x. t), Xo(xo .(t))) 0 as n .
If to (xo A) < , then h, (t.(x. A) to (Xo A) for n sufficiently large.

If to(xo;A) , then lira inf. t.(x,;A) to(xo;BonCo). Any point
in Bo n Co is n accumulation point of Eo hence if so to(xo Bo n Co) <
then Xo(xo t) Xo(xo So) as so. Thus by conditions (v) and (vi),
in either case it suffices to show that

supo o(Z.(x. t), Zo(xo .(t))) 0 as n .
Alternatively, it suffices to show that if t, to < , then

o(Z,(x, ;t,), Zo(xo Xn(t,))) 0 aS n .
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That this is indeed the case now follows from the construction of M(t)
and conditions (iii), (iv), (vii), and (viii). The details are left to the reader.

3. Construction of random walks

In this section we shall construct regular random walks in terms of birth
and death processes, and hence in terms of Brownian motion. In the follow-
ing section this construction will yield limit theorems for random walks
similar to those of Section 2.

Let Z(x; t) and X(x; t) be processes constructed as in Section 1. We
change notation slightly and let E’ (instead of E) denote the state space of
Z(x; t). We suppose that E’ is the closure of a set of the form

where a: is a strictly increasing sequence and i.- i >-2. Then Z(x; t)
is a birth and death process, and X(x; t) is a birth and death process with killing
allowed. Let m[a} m(a) m(a- and lc{a} lc(a) lc(a- ).
We shall relate the transition rates of X(x; t) to a, m{a}, and

Given a_, a, a+l all in E, let Y(t) be the process obtained from Y(t)
by making a_l a and a+- ai absorbing barriers. Let p(t, y) be the
density with respect to Lebesgue measure of the distribution of Y(t). Then
(see McKean [6]),

o) fo o)

where v (x) and v: (x) satisfy

dv/dx Ov O, dv/dx= Ova. O,

)1(Oi--1- Oi) Y2(O/i+1- ai) 0 and vl(x)v2(x) v(x)v2(x) 1.

These equations have the solution

v(x) x ai_l -k ai and vs(x) (a+1- ai- x)/(ai+- a_1).

It is easily shown that LyI(0; oo, 0) has an exponential distribution with
mean

(. (+ o/i)
E[Ly1(0; ,0)] / p(t,O) dt v(0)v.(0)

J0 o/i+1 o/i-1

and
PLY,() a+- a] (oei- a_,)/(a+,- a_).

It *ollows rom the construction in Section 1 that the waiting time for
Z (x; t) in state a is exponentially distributed with mean

"*l} (- -)(+,- )/(+,- ).

Upon leaving a, Z(,; t) enters states ai_, and a+a with respective prob-
abilities
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X (x; t) will go directly from a to A if and only if the waiting time for Z (x; t)
in ai exceeds e’ (A)m{a}/k{a}, where e’ (A) is a random variable independent
of Z (x; t) and exponentially distributed with mean 1.
On the other hand, the transition rates of X (x; t), as t-- 0, are defined as

follows:
P{X (a ;t) a-l} A- o (t);
P{X(a ;t) a+} $ + o(t);
P{X(a ;t) A} -; t-4- o(t);
P{X(a ;t) a} 1 ( A-’ + 6)t + o(t);
P{X(;t)--,.} --o(t) for j-il>l-

The waiting time of X (x; t) in state a has an exponential distribution
with mean ( 5’ + ti)-1. Upon leaving i, X (x; t) enters states _1,
a+i, and A with respective probabilities

i(i - ’[i - i)--1, i(i - i - i)--1, and -( + - + )-.
From the probability interpretation of the two sets of parameters, we may

relate them as follows:

=0,

Given a, m{a}, and k{a}, these equations uniquely determine /, 3’, and
6. Conversely, given the /, /, and 6 satisfying the equalities and in-
equalities to their left, and given a chosen in strictly increasing order for
two values of i (say i’ and i’ + 1 with i < i’ < i), these equations uniquely
determine a, m{a}, and

Suppose that the transition rates satisfy the following property" For
some 0 > 0

w ( A-" + 6)0 -< 1, il- 1 < i < i2-- 1.

Then a unique birth and death process X (x; t) is defined.
We shall use this X(x; t) to construct a random walk W(x; t).

To 0. We define Tj+ Tj+x(x) and t+x Tj+I- T by induction:
Let

T’+I inf [t > T. and X (x; t) X (x; T.)],

where the infimum of an empty set is + .
If 0 < w < 1, let 0i be the unique solution of 1 w exp(-wi 0i/0).

Let S0=0. We define Sj+ands.+l S+1- S. in terms of T: Ifiis
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the unique integer such that ai X (x; T-), we set

s.+l= 0 if wi= 1,

=mO if 0 <w< 1 and (m- 1)0-< t-<m0i,

+ if wi=0 or X(x;T-) A.

0-1Given X (x; Tj) a, si+ is geometrically distributed with mean
--1w Ifw=0 orw= 1, thisis obvious. Suppose that0<w< 1 and
m > 1. Then

( + + )e-(++) dtP{ss+ mO}
(-)

e-(-)/ (1 e-/)
(1 w)-*w,

which corresponds to a geometric distribution with mean we. We see
therefore that E{ss+[X (x; Ts)} E(ts+X (x; Ts)} 0.

Let
W (x; t) X (x; Ts), Ss < Ss+.

Then W (x; Ss) X (x; Ts). W (x; t) is a rndom wlk whose jumps occur
at integral multiples of 0 and whose state space is E. Let pC
and r 0. We have

p{w( ;o) -1} r
PiW( ;0) +,} p,
PIw(=;o)=i =q;
P{w(,;o)= =- (p+q+r)=-w,;
p{w(a;0) =as} =o for j-il> 1.

The parameters of the random walks are related as follows"

0 < r 0((ai- c_l)m{ai} )-1, il < i < i.-[- 1,
o < p 0((+- )m(l)- i- < i < i
0 ri, i> ,
0 pi, i2 ,
0 N qi 0{ai} (m{ai})-, i1- 1 < i < i2 + 1,
0= ql, i> -- and pi

0 qi:, i2 < + and p
1 p+q+r, ix-- 1 <i<i2+ 1.

For x e E let

0,

Lw(x;t, ai) (m{a.})-lM[rl0_-< r_-< and W(x;

We shall need the functions Sw(X; t) defined as follows" Let j be such
that T.-<t< T+I. If X(x;t) =a and if w=O or wi= 1, set
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S,(X; t) S ;ifX(x; t) ai,O < w < 1, and (m 1)0i -< T. < m0,
set sw(x; t) S(m 1); and finally, if X(x; t) A, set sw(x; t)
inf It W(x; t) zX].

4. Convergence of a sequence of random walks
Let W,(x, ;t), n >= 1, be random walks constructed from birth and death

processes X,(x, t) in the manner of Section 3, and let Xo(xo ;t) be a regular
diffusion process. Set

v(x ;t) I Lw(x, t, y) bn(dy)
otiE

E,(N) lai aie E, n [-N, N] n [a0 1, b0 -t- 1]},

d(N, ) 2:=1 2ai/n(tr)exp [--(1/(ai+l- a) -t- 1/(a,- a_l))]

(here if i i > oo, we replace 1/(a a_) in the summand by O, and if
i is < -k , we replace 1/(a,+ ai) in the summand by 0).

THEOREM 2. Suppose that conditions (i)-(ix) preceding Theorem 1 are

satisfied and that 0,---> 0 as n---> . Let X,(x ;t), n >= 1, be replaced by
W,(x ;t) in the statements of Theorem 1 and Corollary 1. Then Corollary 1
is valid. The statements of Theorem 1 hold in probability (for interpretation
see below). If 0, < , then (1) holds with probability 1. If Eo is an
interval and d(N, ) < for each N > 0 and fl > O, then Theorem 1 is valid
as stated (i.e., (1)-(4) hold with probability 1).

Proof. It is well known that inequalities such as the Kolmogorov inequality
can be sharpened considerably when the random variables are identically
distributed and have a nice distribution such as exponential or geometric.
The folloving lemma, an example of such sharpening, will enable us to obtain
very simply the uniform convergence of the local times of W,(x ;t) under
the above condition on d(N, ).

IEMMA 1. For every e > 0 and M > 0 there is a > 0 with the following
property" If X, X,... are independently, identically distributed random
variables with mean EXI and such that either X has an exponential dis-
tribution or cX has a geometric distribution for some c > O, then

P{. IX1 - - Xk kEX -> e and <- M/} < 2e-/,
and

P{ X - - X kEX] >= e and XI - + X <- M} < 2e-/.

integer.
In proving the second result we may assume that M/ is a positive
Then
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<- P{ k IX1 + + Xk ]cEX1 and /c __< 2M/t}

+ P{X, + + X./, =< M}
P{} X+ +X--}EX[ and l 2M/}

+ P{] X + + XM/, (2M/) M}.

It is now clear that the second conclusion follows from the first.
--1In proving the first conclusion we can assume that M 1 and that n,

where n is a positive integer. It now suffices to prove the following statement.
For every > 0 there is a positive 0 < 1 with the following property"

If X, X:,... are independent, identically distributed random variables
with EX1 n-1 and such that either X has an exponential distribution or
cX, has a geometric distribution for some c > 0, then

P{IX+ +X--k/n[ a} 2 for n.
In proving this statement we cn ssume ].
Suppose first that the X’s hve geometric distribution with mean n-1.

This distribution hs density ne-nx. Thus

EeEx . ne e dx 1/(1 ).

Hence

P{X + + X- lc/n e-enE[een(X+’’’+X-/n)]

where (exp(--- v))/(1- ) < 1. Similarly,

PX + + X- /n 5 -} 5 e-E[e-(+’’’+)]
e-n+/(1 + ) e-+/( + )= (e-+/(1 + )) ,

wherefl= (exp(-v+ v))/(l+) < 1. This completes the proof in
the exponential case.

Suppose now that Y cX has a geometric distribution with mean p-i.
Then p( Y m} p (1 p) -1 and

" := p (1 p)-e’ pe/ ( e" ( p) ).

Hence

P(X + + x /n }

P{Y + + Y /p n/p} 5 e-E[e(+’’’+-)]

( ) 1 )

Here we have used implicitly the inequality
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This inequality is easily demonstrated by differentiating with respect to e.
Now

51 1 (P) Pe-2-+’/(1 e (1 p) ),
and

lim+0 1 (p) (e’+ (1 ) )-1 < for =< 1/2.

Thus showing that fll is bounded away from 1 uniformly for 0 < p _-< 1
is now equivalent to showing that

or equivalently that

--+ (1 0 < p < 1,pe < 1 e’ p

1 e-’- > p-l_ (pe,)-i for 0 < p =< 1.

Let f(p) p-1 (pe’) -1 Then f(0q-) < 1 e It suffices to
show that f (p) is monotonically decreasing for 0 < p _-< 1. To do this we
need only observe that f’(0+) v2/2 and (p2f,(p)),__ s2pe-, < 0
for 0 p _-< 1.
in p.

Similarly,

where

This proves that 1 is bounded away from zero uniformly

P{X1 q- -+- Xk l/n -< } <= ,
The argument that 2 is bounded away from 1 uniformly in p is similar to
that for 1 and will be omitted. This completes the proof of Lemma 1.
Let X (x; t) and W (x; t) be any pair of processes of Section 3. Let

Rk---- (X(x;0),... ,X(x;T)) (W(x;0),... ,W(x;Sk)).

Conditioned on Rk, tl, t+l are mutually independent random variables
with mean Eltj[R} =EItj[X(T)I. A similar statement holds for
81 8/

LEMMA 2. E (s+l t+I)21X (T’)} _-< 1402. For every > 0 and

P{max[]S- T S.-< or T=< t- - 0]__> } _-< 14-20t.

Proof. Let ai X (T.). If wi 0, then s+l t’+l + in this sense
sj+l t.+l 0 and E{ (s+l t+I)21X(T’)} 0. Recall the identity

(1 w) -1 -2mw w (2--w). If w 1, then

E{ (sj+l t+I)2[X(T)} < E{

-El s;+ X(T)} + 2(E{t+l X(T.)})2 602 q_ 802 1402.

Suppose0 <w_-< 1/2. Then

1Oi --O,w71 log (i w) 0(1 q- 1/2w q- w q- ...).
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Hence 0 < 0 =< 20 log 2 < 0V2 and
1o- o 0(w + w + ...) wo(1/2 + w+...) <w0.

Thus if s+x toO, then (s+x t+x) =< 0 + m (0- 0) < 02 (2 A- m w).
Therefore

E{ (s+x t+x)2 X (T.)} < 022==1 (2 "t- m wi)wi(1 wi) m-1

=< 202+ 02(2 -w) < 40 < 140.
This proves the first statement of Lemma 2.
we have

and hence

Consequently

By Kolmogorov’s inequality,

P{maxl__<._<_ S T.[ -> e R_x =< 14e-202k,

P{maxx=<.__< S.- Tel-> el =< 14e-202k.

P{maxx<__<_[tm S- Ti >= e} <- 14e-20t.

Since S[t/o >= O[t/O] > 0 and S[t/o+x > t, the second statement of Lemma
2 now follows.
We now return to the processes W (x t) and X (x t). Henceforth we

suppose that conditions (i)-(ix) are satisfied and that 0 -- 0 as n -- .It follows from Lemma 2 that there exists a (random) sequence g (t) of
continuous one-to-one mappings of [0, onto itself such that for each
e > 0andN > 0, as n---+

and
P{sup0=<t=<N g-(t) el 0,

sup0_<_t=<N p (W (x t), X (x t (t)) --, 0

(the second relation holding everywhere on ft). By Theorem 1, there exists
a sequence u, (t) of continuous one-to-one mappings of [0, onto itself such
that for each N > 0, as n --sup0__<t=< ]u, (t) 0,

and, with probability 1,

sup0_<t_< o (X, (Xn t) Xo (2go Pn (t) -’-) O.

Let X (t) (t (t)). Each X (t) is a continuous one-to-one mapping of
[0, onto itself. Also for each e > 0 and N > 0 as n -- m

P{supo<=t_<_r IX. (t) e} -+ O,
and

P{supo_<_t_<_v p (W, (x, t), Xo (Xo X. (t)) => e} ---> O.

In this sense Wn(x ;t) is J-convergent to X0(x0 ;t) in probability. As a
consequence W (xn ;t) is weakly convergent to X0 (x0 ;t).

If 0 < , then by Lemma 2 we may further assume that, with
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probability 1, as n --
and hence that

and

sup0__<t__<N t, (t) l-- 0,

sup0_<_t__<N X(t) t[---- 0

SUpoNt__<v p(Wn(xn ;t),Xo(xo )n(t))) --- O.

Thus if n 0 < , then with probability 1, W (x ;t) is J-convergent to
X0 (x0 t).

In order to investigate convergence of the local times we first set

T(x;M) =inf[t]t= M or iyE Lx(X,;t,y) M],

and let N (x ;t, ai) denote the number of visits of Xn (xn ;t) to ai by time
t. The expected increase of Lx (Xn t, a) per visit to a is

i (/’{ O/i} (i -- /i "Jr- i))--1 (1/(o ai_) nt- 1/(a+ a) + lc{a} )-.
(As before, we replace 1/(a a_) by 0, if i i > and 1/
by0ifi=i:<-t-.)

Choose e > 0. By Lemma 1 there is a > 0 depending only on M and
e such that for a e E
P{t -<_ T(xn ;M) Lxn(Xn t, a) Nn(x, t, a) >= e}

__<__ 2e-/ =< 2 exp [-(1/(a+,- ai) + 1/(ai- ai-))].

Recall the definition of s(x; t) given at the end of Section3. It now follows
from Lemma 1 that for a e En
P{I -< T(xn ;M) Lx(X ;t, a) L,(Xn ;s(x ;t), ai)

_<_ 4 exp [-- (1/(a+- a) -t- 1/(a- a_))].
For x e En, let

an(x) =inf[[y--xl’yeE and yCxl.

Fori>0andN>01et

E(,N) {x[xeEn[-N,N] and a(x) <}.

Since e _-< 2Ix for x > 0, it follows that

,(.) exp [-- (1/(ai+l a) + 1/(a a_l))]

Thus or fixed s, M, , and N, there is a 0 such that for n __> 1

Pl.’t_-< Tn(x;M) and aE(i,N)

Lx(x ;t, a) L(Xn ;s(x ;t), a)

Now Lx (x ;t, y) is uniformly bounded in n and y for _-< M. Thus by
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making i somewhat smaller if necessary, we can assume that

P{ __< M and a e En (, N)

Lx(X ;t, a) Lw(X ;Sw(X ;t), ai) >- 2I
Let

E’(6, N) [xlxeEa[--N,N] and z(x) >}.

Clearly each E’ (, N) is a finite set. Let {x(1), x ()} E)(i, N). By
En such thatcondition (i) for each x()

e E (t, N) we can find x( e

as n-+ . Again by condition (i), there is an n > 0 such that if n > n,
then E’n (, N) C {X(nl), x(k)} For fixed j, 1 =< j =< /, let n’ be an in-
creasing sequence of positive integers such that x( e E’,(,N). With
probability 1, the number of visits of X,(x ;t) to x( is uniformly bounded
in n. Consequently, with probability 1,

limn,_) Lx, (x, t, x() Lw, (xn, sw, (x,, ;t), x()) 0

uniformly for _-< M.
We can choose N large enough so that for all n => 0

P{t<= M IX(x;t) >= N} < e.

Since En I--N, N] E (ti, N) o E’,(ti, N), there is an no > 0 such that for
n>_no

P{ <_ M nd

Observe that
L, (x, ;t, o) Lw (x ;Sw, (x, ;t), ai) -> 2el < 3a’.

Lx(x t, y)m(dy)

s,,,(x ;t) [ L,(x,, ;s,(x ;t), y) m,(dy).

Thus for every > 0

limP{t M ]s(x;t) -t[ ’ and t to(xo;Bo)- e} =0.

But Lxo(Xo;t, y) is uniformly continuous in and y and constant for
t to(xo;Bo). Thus there is an no > 0 such that for n no

P{ M and , eE Lx(x t, a) Lw(x t, a) 3e} < 3e.

Together with (2) of Theorem 1, this result yields

LnMMA 3. For any > 0 and M > O there exist no > O and > 0 such
.that if n no, then with probability greater than 1

L(x ;t,y) Lxo(Xo ;t, y0) < "
uniformly for M, y, e E and y yo < .
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From Lemma 3 it is easy to verify that for every e > 0 and > 0

limn_ P{I Vxn(Xn ;t) Vxo(Xo ;t) >-- e} 0,
and

limn P{I sup [T Vw(Xn T) _-< t] sup [ Vxo(Xo r) <-_ t] >= el O.

We have now formulated and verified convergence in probability state-
ments corresponding to (1)- (4) of Theorem 1. (5)- (7) of Corollary 1 are
immediate consequences.

If E0 is an interval and d (N, ) < for each N > 0 and B > 0, then the.
arguments preceding Lemma 3 can easily be modified to give convergence.
with probability 1, including ,/-convergence, of the path functions. This
completes the proof of Theorem 2.
A simplified version of Lemma 3 is that for every e > 0 and M > 0

lim_ P{sup0_<t_<u sup,a,0 Lwn (Xn t, y) Lxo (xo t, y) >= } O.

Example 1. Let Wn (Xn t) W (t) be the simple random walk normalized
to have state space En {i/v/n[ < i < }, time unit 0. 1/2n, and
initial state xn 0. Then

1/2 pn) rn) P{W((lc - 1)/2n) (i + 1)//nlW(k/2n) i//n}
P{W((k zr 1)//2n) (i- 1)//n W(k/2n) i///n},

(n)q’ O, a n) i/x/n, m{a)} 1//n, and k{a,i 0.

In this case we can take Xo(xo;t) Xo(t) Y(t) to be the Brownian
motion process with state space < x < , speed measure mo (dx) dx,
and killing measure ko(dx)= 0. We can take p(x,y)= Ix--y [. J-
convergence is now simply uniform convergence in bounded time intervals.
It is obvious that conditions (i)-(ix) are satisfied, and that d(N, ) <
for all N > 0 and > 0. Let N, (t, i//n) be the number of visits of W= (t)
to i//n by time t. Then in the above construction we have that, with
probability 1, for every M > 0

lim_. sup0<t_<M Wn (t) Y (t) O,
and

limn_. sup0.<_t_<u sup_,<< (1/2v/n)N, (t, i/%/n) L (t, i/x/n) O.

Example 2. Let W(x. ;t) be the random walk with En {i/%/n[O <-_
i < }, 0, 1/2n, and x eEl. We suppose that pn)= rn)= 1/2 and
q!n)= 0 for i-->_ 1, r(on)= 0, p0()-> 0, q0()-> 0, p0()-t q(0)-< 1, and if
p(o n) 0, then q(o n) 0. We have an)= i/x/n, ran!iX! n)} 1/%/n, and
k/an)} 0 for i >= 1, m10} 1/2p(on)/n, knlO} q(o’)/n//p(on) if t,o() 0,
and kn{0} 0 if po() 0.

Let Xo (x t) be the diffusion process with Eo [x 0 =< x < }, Xo Eo,
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mo(dx) dx and ko(dx)- 0 for x>O, too/O} >=0, /colO} >= O, and if
molO} -k , then/co{O} + . This process has the infinitesimal genera-
tor Gf f" for x > 0 with boundary condition

f’ (0) mo{Olf" (0) ko/Olf(O) O.

In order to have convergence
]x

1/2p (o)/n --> m0/0}

of W(x ;t) to Xo(xo ;t) we take

and q(o n) /It/p(o n)
--+ ]o101.

Again conditions (i)- (ix) are satisfied, and d (N, ) < for all N > 0
and > 0. Let N, (x ;t, i/%/n) be the number of visits of W,(x, ;t) to
i//n by time t. Then, with probability 1, for every M > 0

limn sup0_<

supl__<i<__ (1/2%/n)N (x t, i/x/n) Lxo (Xo t, i/x/n) 0
and

lim_oo supo=<t__< (p(on)/x/n)N (x ;t, O) Lxo (Xo ;t, O) O.

With probability 1, t (x A) -- to (Xo A).
then to (x0 A) , and, with probability 1,

If kolO} 0 or molO}--

lim_ supo_<_t =<M Wn (Xn t) Xo (Xo t) O.

If/col 0} > 0 and too{O} < , then to(xo A) < . With probability 1,

lim sup [I W,(x ;t) Xo(xo ;t) < t(x, ;A) andt < to(xo A)] 0.

5. Asymptotic limits as t-

Let X0 (x;t) be the conservative diffusion process with speed measure

mo(x) --pl (3 -- 1)- (--X)-bl if x -< O,

p (3-1- 1 )--lz’nt-1 if X -->__ O,

where f + 1, Pl and o2 are positive constants. X0 (x;t) has the infinitesimal
generator G Dmo Dx (m (x) )-lf/dx (cf. [1]). Associated with G is the
equation Gv (x) tv (x), t > 0, which can be written explicitly as

d2v (x) /dx gol (- x)Ov (x) if x =< 0,

tp2 xv (x) if x -> 0.

The general solution to this equation is

(v2.po Ix I]/") (up (x I1/)
+ +

n=O r(n + 1 + )n’

where A nd B re rbitmry constants, , (fl + 2) -t, (x) i for-- <x <0, sndz= a(x) 2for0 x < .
From the general theory of diffusion equstions, we know that there exist
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constants A1, A, B1, and B2 such that if Vl (X; ) corresponds to A and B.,
and v (x; t) corresponds to A2 and B2, then vt (x, ) is a positive increasing
function and v2 (x, ) is a positive decreasing function. To find these con-
stants we first obtain, with the aid of Stirling’s formula, the asymptotic
expansion valid as y-- -t-

End=0 yn/I (n + 1 -t- ,)n! y:/ (1/2r) n=0 (ey)n/n2n+.

If v2(x; t) is a positive decreasing function, it is necessarily bounded as
x -- + . Consequently

A2 xl/,),/2/ x1[-/2

i.e B -A., (, p) Similarly B A(p) We set A1 F (1 )
and A F(1 + )/(,:) (p + p:), so that vi v- viv 1.

For future reference, we set va(x, ) 1 for x 0 and

(p]xl F(n+ 1-- )n!, x 0,

Y3 (X, ) Yl (X, ) if pl 0. Also we let

E() n=0 (--,)/r(n- + 1).

Let p (t, x, y) be the density with respect to too(y) of the distribution of
Xo(x;t). Let

g(tt, x, y) f e-’tp(t, x, y) dr.
,1o

Then (cf. McKean [6])

g(t,x,Y) v(x, tt)v(y,t) if x_-< y,

=v2(x,)v(y,) if x=> y.

In particular g (t, 0, 0) tit-’, where
r (1 + )/r (1 )( + ).

Let X (x; t) be a conservative random walk or conservative general diffusion
process, with speed measure re(x)- Ix I+iL(x), -- < x < c, where
L (x) is finite and

limc_.+ L (cx)/L (x) 1 if x > 0,

Pl /P2, if x < 0.
Setg(c) pl( + 1) cm(c).

Let b (x), < x < , be a distribution function on E, and set

V(x; t) Lx(x; t, y) db(x).

In the following theorem 2 denotes the Laplace transform.

THEOREM 3. Let x E, cxc E, Cyc E, xc ---* Xo and y --+ yo < Xo as
c---+ -4-. Then as c
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()
(2)
(3)

()
(5)
(6)
(7)

if O e E and O < to < t,
(8) PIll e [to, t]: X(x; g(c)t) O}

(1 (P) 1 (1 P) )--1 f
tltl

if Pi P2 and y > 0,
(9) (inf[t X(x; g(c)t) >= cy]) - 1/v,(y, ).

c-iX (cxc g (c t) is weakly convergent to X0 (x0 t);
2 (c- (V (CXc g (c)t) -- 2 (Lxo (Xo ;0, t)) for >= 0;
2(sup [!c-Y(cxc;g(c)r) <- t]) -- 2(sup [rlLx0(x0;0, ).=< t])
fort> 0;

(inf [t IX (cx g (c)t) <= cy]) -- v. (Xo, )/v (yo, t);
2(inf [t lX(cy g(c)t) >-_ cx]) ---+ v(yo, )/v(xo, t);
2 (-lt-’c-lV (x; g (c)t)) -- E () for > 0;
2(5/t-/sup [" c-lV(x; g(C)T) t]) ---> exp (--t[) for > O;

s (1 + s)- ds;

Proof. We can assume g (c) > 0 for c > 0. Let m (x) c (g (c))-IDt (CZ).
Then

lim_+ m (x)

If X (x; t) is a general diffusion process, let Xc (x; t) be the conservative
general diffusion process with speed measure me (x). If X (x; t) is a random
walk, let Xc(x; t) be the conservative random walk with speed measure

m (x) nd time parameter

LEMMA. Letc > Oandcx eE. ThenX(x;t) .c-lX(cx;g(c)t).

ProoJ’. (For definition of see [8]). We prove the lemma for any fixed
positive function g (c), not necessarily the function defined above. If X(x; t)
is a birth and death process, the lemma follows immediately from the equa-
tions:

P{X (ai ;t) a_} a + o(t), P{X(a ;t) a+} - o(t),

(Oi oli-1)m{oi} -1--" i ((o/i-{-1- oli)mloli} -1= i

If X (x; t) is a random wlk, the lemma follows from the analogous equations.
Suppose X (x; t) is a general diffusion process. Let X(n) (x; t) be conserva-

tive birth and death processes with speed measure m() (x) such that
re(n) (x) - m (x) as n -- at all continuity points of (x). Let cx e E. Then
X() (x; t) is weakly convergent to X(x; t) and c-iX() (cx; g(c)t) is weakly
convergent to c-IX (cx; g (c)t) as n-- But X) (x; t) c-X() (cx; g (c)t)
und hence X(x; t) =- c-X (cx; g (c)t) as desired. Alternatively, this lemma
may be proved by a direct application of the construction of Section 1.

Let CXc E and Xc Xo as c -- . Then, by (5) of Theorem 1, X (x t)
is weakly convergent to Xo (Xo t) as c -- ((5)-(7) of Theorem 1 hold for
X(xc t) even if X(x; t) is a random walk). Since

-XXc (x t) =- c (cx g (c
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c-lX (cxc g(c)t) is weakly convergent to Xo(xo t).
Theorem 3.
For any Borel set A

M{7.10 __< 7.-< and c-IX(cxc;g(c)7.)eA}

Let

Since

This proves (1) of

(g(c))-M{7. 0 <= 7. <= g(c)t and c-lX(cxc 7") A

(g(c))-i cA Lx(cxc ;g(c)t, y) dm(y)

f c-lLx(cx cy, g(c)t) dmc(x).
" A

V(xc ;t) Lxc(X t, y) db(cx)

- c-lLx(cz g(c)t, cy) db(cx)

--1 lc Lx(cXc ;g(c)t, y) db(x)

--1

lim_+b(cx) b(--) if x < 0,

--b(-t-) if x>0,

(2) and (3) of Theorem 3 now follow from (5) and (6) of Theorem 1 applied
to V(xc t).
The remaining statements of Theorem 3 are now consequences of the fact

that we know the distribution, or at least its Laplace transform, of the relevant
functionals of X0(x; t) (see [8]).
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