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Introduction

Let Y(t) be stable process of index a, 1 < -< 2, such that Y(0) 0,
EY(t) O, nd Y(t) is continuous from the right nd has limits from the
left. Then

logE{exp(iY(t))} --tll(1 -kiO(/jl)tan1/2-ra), oo < <
where 0 and " are constants such that 1 __< 0 __< 1 and " > 0.

In his 1962 Princeton thesis E. Boylan, in generalizing a theorem of H.
Trotter [12], has demonstrated the existence and smoothness of local time for
a large class of Markov processes, including the above stable processes.

Let M denote Lebesgue measure.

TEOREM (Boylan). With probability 1, there is a function L(t, x) jointly
continuous in and x such that for any Borel set A

M{rlO <- r <= tand Y(r) e A} L(t, x) dx.

The random variables Y(t) and L(t, x) are defined on the same probability
space. We remove from this space the set of probability zero where the
statement of Boylan’s theorem fails to hold.

Let re(x), --oo x oo, be a right-continuous strictly increasing func-
tion. Let

S(t) L(t, x) dm(x),

S-1 (t) sup [r S(r) _-< t], and X(t) Y( t.-1 (t)). S(t) and t.-l(t) are
continuous and strictly increasing, and X(t) is continuous from the right and
has limits from the left. If re(x) is absolutely continuous, then

S(t) fo m’( Y(r) dr.

X(t) is a stationary strong Markov process. If m’(x) 1, then X(t)
Y(t). If a 2, X(t) is a diffusion process with infinitesimal generator
D, D (cf. [51).
This method of construction has been fundamental in the theory of diffusion

processes as developed by It5 and McKean [5]. In Section 1 we shall see that
some of the results for diffusion processes carry over to these more general
processes.

Received June 29, 1962.

631



632 CHARLES STONE

In Section 2 we consider X(t) corresponding to rn’(x) of a specific form.
Many of the classical properties of Brownian motion in L6vy [8] are shown to
bold also for these processes.
As a special ease of this form, m’(x) 1, so that the results of Section 2

are valid for the above stable processes. Some of these results for the sym-
metric stable processes (0 0) are in papers by Blumenthal and Getoor [2]
and Getoor [4].

In the ease a 2, the results of Section 2 are all used in [11] to obtain
limit theorems for the processes being considered there. Under the further
mild restriction pl p, most of these results have been obtained by It6 and
MeKean [5] and Lamperti [6].
The processes in Section 2 satisfy the following property (see Theorem 2):

for any c > 0, c-1/"+X(ct) has the same finite-dimensional distributions as
X(t). Lamperti [7] calls any process satisfying such a property "semi-stable."
He shows that semistable processes arise naturally in certain limit theorems
(as in [11]). He also investigates the set of zeros of such a process.

Xo

1. Results for general re(x)
Let Lx(t, x) L(S-l(t),.x). Then Lx(t, x) is jointly continuous in and
For any Borel set A

M{rlO <-_ r <= tandX(r) eA} [Lx(t,x) dm(x).

absolutely continuous. Then

f(x() d f( Y(S-()

-f0’
To prove that

Let f(x) be a continuous function. Suppose first that re(x) is

f(Y(r))m’(Y(r)) dr f(x)L(t,x) rim(x).

S( t) f_oY( Y(S-(r) dr f(x)L(t, x) dm(x)

for general re(x), it suffices to approximate m(x) by absolutely continuous
functions and pass to the limit on both sides. By another extension we can
show that the above equation is valid whenever f(x) is the characteristic
function of a Borel set A. This completes the proof.

LetL(t) Lx(t, 0) and L-l(t) sup Iv L(r) <= t]. Then L-l(0) 0;

By Theorem 1 the statements in this paragraph involving L-l(t) hold with prob-
ability 1.
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L-l(t) is strictly increasing and continuous from the right and has limits from
the left.

L(t) sup [r L-l( r) -< t] inf[rlL-l(r) >- t].

Let Z(t) {r]" <= and X(r) 0}, and let R(t) be the set of points of
increase of L(t) up to time or equivalently the closure of the intersection of
[0, t] with the range of L-i(t).
THEOREM 1.
(1)
(2)
(3)
(4)
(5)
(6)
(7)

With probability 1
Z(t) Irl r <= tandX(r-) 0};
L(t) > 0 ;for > 0;
z(t) R(t)
inf [t lt > 0 and X(t) O] O;
sup [t IX(t) O] +
L -- -- as -- --L-( t) is an additive process.

Proof. We first prove (1)-(6) for the process Y(t), which corresponds to
re(x) x. In this case we have S(t) S-i(t) t, X(t) Y(t), and
L(t) Lx(t, O) L(t, 0).

Choose e > 0. With probability 1, J It: Y(t) Y(t-)l > e} isa
countable set. By the independence properties of the jumps of Y(t) (cf.
LoSve [9, p. 550])

P{tinJ" Y(t--) 0 or Y(t) O} O.

Since e can be made arbitrarily small, this proves (1).
Suppose (2) is false. Then, with probability 1, L(t, 0) 0 for > 0.

This follows from the Blumenthal zero-one law, the continuity of L(t, 0), and
the strong Markov property of Y(t). Using the homogeneity in space of
Y(t), we obtain that if {Xn} is a countable dense set of (- m, ), then with
probability 1, L(t, Xn) 0 for all and x. Since L(t, x) is jointly continuous
in and x, it follows that with probability 1, L(t, x) 0 for all and x. But
this is impossible since

f L(t, x) dx t.

It is now easy to show that Z(t) and R(t) are both closed and each is dense
in the other, so that Z(t) R (t). (4) follows trivially from (2) and (3).
(5) and (6) follow from the interval recurrence of Y(t).
This completes the proof of (1)-(6) for Y(t). These results can be im-

mediately extended to X(t).
We now prove (7) of Theorem 1 for general X(t).

L-i(t-) inf Iv L(r) t]

is a Markov time, and with probability 1, X(L-I(t-)) O. Thus with
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probability 1, L(r) > for r > L-(t-) and L-l(t) L-l(t-); hence
L-(t) is a Markov time. Therefore, for 0 =<

L-’(t2) L-l(ti) sup Iv L(r-t- L-l(tl)) L(L-(tl)) <-_ t2- t]

is independent of X(r) for 0 _-< =< L-(t) and consequently of L-l(r) for
0 _-< r __< t. This completes the proof of (7).

2. Semistable processes

In this section we assume that m(x) is absolutely continuous and m’ (x) is
of the specific form

m’(x) pl(-X) if - < x <0,

p2x

where -k 1, pl, and p are positive constants.
Let a 1/a + ft. We make the notational convention that

A -k B/C -k D (A - B)/(C -k D).
Let

E(X) :=0 (-x)n/r(nv + 1).

E,(},) is the Laplace transform of the Mittag-Leffler distribution, which has
density zero for x =< 0 and

(1/r) n=l ((--1)-l/n!) sin rnr(n, + 1)x-1, x => 0.

Given two stochastic processes, X(t) and X(t), whose paths are continuous
from the right and have limits from the left, we say they are equivalent
(Xl(t) X(t) if they have the same finite-dimensional distributions. Two
such equivalent processes assign the same measure to the space of path
functions.
We now eliminate the exceptional set of probability zero where the state-

ments of Theorem 1 fail to hold. Given > 0, let

t’= inf[rlr =>- and X(r) 0].

Then Z(t’) is a closed set. Its complement in [0, t’] is an open set and hence
the union of a countable number of disjoint open intervals. Let N(t, v) be
the number of these intervals of length greater than e. Let

N(t) lim.0 eN(t,

provided that this limit exists.

THEOREM 2. If C > 0, then

X(ct) c/+X(t), L(ct) - cL(t), and L-(ct) c/L-(t).
L-(t) is an increasing stable process of order v. For > 0 and > 0

log E{exp(-M/t-/L-(t)
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and
E{exp(-h-lt-L(t))} E(h),

where is a positive constant independent of and h. For 0 < to < tl
tl-to/to

P{. in (to, tl) X(t) 0} (F()F(1 ))-1 fo s-(1 q- s)- ds

(= (2/)cos- (to/t)/ for u ).

With probability 1, for > O, Z(t) has Hausdorff-Besicovitch dimension u, N(t)
exists, and 6F 1 )N(t) L (t), and hence

E{exp(--XF(1 u)t-"N(t))} E,(X).

Proof. Observing the expression for log E{exp(iY(t))}, we see that
Y(ct) c/"Y(t) forc > O. Ingeneral

(X(ct) Y(S- (ct)) Y sup Y(s) ds ct

y(c"/"+supI-
Y (c/"+ sup Iv
cl/a+Y sup 7" (Y(s)) ds <

Let= + 1/pl+p. Then

m (Y(s)) ds <= ct
,10

c-+ f. m’(Y(c+)) d

m’ c-+Y c +) d <=

L(ct) limoKe-e-M{r O <= r <= ct and IX(r) <= e}

c-e-1/"+elimo Ke-e-lM{ r 10 < r =< ct and IX(r) =< cl/"+ee}
c"-l/+limto Kt;-t-lM{ 7" O =< r <= and X(cr)<= cl/aTfle}
climo--lM{r ]0 and IX(r) } c"L(t).

Consequently

L-(ct) sup [ L(v) ct] cl/sup [ L(ci/r) ct]

cl/sup [ [L(r) t] c/L-l(t).
Therefore, by (7) of Theorem 1, L-(t) is an increasing stable process of order, and its Laplace transform is of the desired form. Since

-xt-’L(t) L(-1/) sup [ I/L-I(T) 1],

the Laplace transform of -t-’L(t) is also of the desired form (cf. Pollard
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[10]). By (3) of Theorem 1, the next two statements of Theorem 2 are
equivalent to analogous statements for the range of an increasing stable
process, for proof of which see [1] and [2].

Let M(s, e) N(L-I(s), e). Then N(t, ) M(L(t), ). M(s, ) is
the number of jumps of L-l(r) of length greater than up to and including
time s. M(s, e) has a Poisson distribution (cf. [9, pp. 329-330 and 550])
with mean

__8(i(__y) )--1 X
-u-1 dx s(iF(1 v))-le-.

1/,

Since the number of jumps of L-l(r) of lengths belonging to disjoint intervals
are mutually independent, we can apply the strong law of large numbers. We
obtain that with probability 1

r(1 )lim_0 eM(s, e) s.

With probability 1, this limit holds simultaneously for all s -> 0.
can let s L(t) and obtain

Thus we

r(1 u)lim,_,o e"N(t, e) L(t).

This completes the proof of Theorem 2.
Finally, we shall consider the computation of t. We note first that

E{L(t)} --tE’(O) tt(F(u -+- 1)) -1.

Suppose that the distribution of X(t), > O, has a density p(t, x) with
respect to the measure m(dx), and that this density is jointly continuous in
and x. Under these conditions it is not hard to show that

E{L(t)} foo p(r, O) dr.

Consequently

i -lF(v + 1)t1- d
t E{L(t)} r()p(1, 0),

or alternatively

fo e-tE{L(t) dt Jo" e-tp(t’ O) dt.

In the special case m’(x) 1, X(t) Y(t), and the above supposition is
valid. Using the Fourier inversion formula and recalling that a 1/a
in this ease, we obtain

( 0i r 1- --1 l+iOtan dO

--1 (1--) (1 + )--l/a Re ((1 + iO tan

If we specialize still further by setting 2, 0 0, and f , then
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Y(t) is now Brownian motion, and the results of Theorem 2 agree with those
found in L6vy [8, pp. 209-241].

Let m’(x) be as defined at the beginning of this section, but choose a 2
.and f 1. Then the above supposition is again valid. We can obtain

r(1 q- v)e-tp(t, O)dt
r(1 )(p - p)"

This computation is given in [11].
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