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For a linear diffusion process X(t), the sojourn times

fo V(X(t’),E) dt’,

where V(x, E) is the indicator function of E, form mesure on the Borel
sets E of the line, for ech pth X(. nd for ech t. A basic property of
diffusion [3], [9] is that for lmost every pth nd for each t, the sojourn time
mesure hs density 3(x, t) relative to the speed mesure m of the process:

V(X(t’),E) dt’ 3(x, t)m(dx).

The density is continuous function of (x, t), nd vrious estimates hve
been mde of its modulus of continuity [6], [9].
The msin result of this psper is the following property of the sojourn

time density: Let T be 8 stopping time for the diffusion, which depends
only on position (for 8 precise definition see Section 1). Then, conditions1
on X(0) x nd X(T) y, 3(x’, T) is a Markov process with parameter
x’. In fct, change of vrible transforms 3(x’, T) into the mdis1 process
of Browniun motion in two dimensions if x’ is between x 8nd y, in four di-
mensions otherwise (Section 4).
A number of properties follow immediately from this representation. For

instance, for lmost every pth nd for ech t, the set of x’ for which 3(x’, t)
is positive is n open interval; that is, the sojourn time density vnishes
only on the closed complement of the range of the pth. Also, one curt

write down the precise local and global moduli of ctinuity of the density:
If the scule on the line is the ntuml scale for the diffusion, then with prob-
ability one, for ech > 0,

lim sup
3(x’+ A, t) 3(x’, t)] 23(x’,t)
Clal ogl ogt ll

if 3(x’,t) > 0;

lim sup [3(x’ + A, t) 5(x’, t)
2

 ogla 

if 5(x’, t) > 0 for x’ in the closed bounded interval I;
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lim sup
3(x’ -+- A, t)

I l ogl ogl l

if x’ is an endpoint of the range of the path X(t’), 0 <_- t’ -< t. The last
relation holds if x’ is an absorbing barrier; if x’ is a finite natural barrier,
the same relation holds for H. If the diffusion starts at an entrance
point, say x + H, then for each > 0,

lim,_,sup x’ log log x’

A word is in order about why one should suspect that 3(x’, T) is Markovian,
since the proof given here is completely unmotivated. Consider as a special
case Brownian motion starting at the origin and stopped at the passage time
P across the point 1. For each positive integer n, let Xk,n ]c2-n, ]c 0,
1, 2n; and for each path, let Nk,n be the number of returns from X+l,n
tO X, that the path makes before it reaches 1. By the strong Markov
property, the successive portions of the path after a return to X,n until the
next passage of xk+l,n are independent copies of a Brownian motion; and
this property remains in force conditional on the value of N,. Hence the
sojourn time in the interval (X--,n, Xk,n) is written as the sum of Nk,n in-
dependent variables, and only Tchebycheff’s inequality is needed to show
that as n -- H and xk, -- x’, the soiourn time, divided by 2-nN,n, con-
verges to 1 with probability one. The same reasoning can be applied to
N, if m > /c, N, is written as the sum of N, independent variables,
and so with probability one, 2-nN,n converges to a random variable as
n --+ H. This reasoning actually says that for each n, N.n is a Markov
chain with parameter lc; hence in the limit one has the Markov property
for the sojourn time density.

Note added in proof. The method outlined above hs been used inde-
pendently by F. B. Knight to prove the Markov property of the sojourn
time density for certain Brownian motion processes. His work will appear
in the Transactions of the American Mathematical Society.

The above technique was used to investigate the asymptotic behavior of
the soiourn time of planar Brownian motion in small circles in [7]. It is
probable that the Markov property of the sojourn time density should be
powerful tool in treating such problems. However, since the speed measure
of the particular diffusion enters, rather than just the density, it seems that
each problem must still be given individual study.

In this paper we have chosen to use an analytic approach, which consists
of writing down a set of linear equations satisfied by the Laplace transform
of the ioint distribution of soiourn time densities at finitely many points,
and inferring the Markov property from this. This approach has the
vantage that the most general diffusion can be handled as easily as Brownian
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motion. In fact, we allow birth and death processes as well, since these
have exactly the same analytic properties [1].

1. Diffusion processes

This brief discussion of diffusion processes is intended only to make the
terminology and scope of the paper precise, and to introduce certain con-
ventions. It is essentially a sketch of the presentation in [3], to which we
refer the reader for further details.
The state sp(ce of the diffusion process will be a closed subset 9C of the line;

the left and right boundaries x_ and x+ are respectively the infimum and
supremum of the points of C. The usual case is that C is a finite or infinite
interval, and we have a diffusion with continuous paths; or that C is discrete,
with x_ and x+ the only possible limit points, and we have a birth and death
process.
A Markov process on 9C with stationary transitions is a diffusion if the

process is strongly Markovian and if the paths X(t) are right continuous,
have limits from the left, and have the intermediate value pro’perry" If x 9C

and X(t) < x < X(t’), then X(t’) x for some t" with < t" < t’
or < t" < t.
The conditional probability measures ({. {. X(0) } are uniquely

determined for each x in C by the transition function, and in what follows
we shall assume that each point in 9C is a possible initial value. We as-
sume further that whenever z_ < X(0) < +, each point y in 9C, z_ < y < x+,
is a possible value of the path; in other words, the diffusion is not a transla-
tion, and the state space 9C is minimal.

In this pper we reserve the name diffusion for such a process when the
paths are defined and in 9C for all => 0. A positive random variable T is
a stopping time depending only on position if the event T > is independent
of the future path X(t’), t’ > t, conditional on the present value X(t), and
if the stopped process X(t), 0 <= < 7’, is Markovian with the stationary
transition function

(,o{T > + t’, X(t -t- t’) E IT > t’, X(t’), t" _<_ t’}

(Px(t,){T > t, X(t)

Except for the use of passage times in this section, we shall assume that C
is the minimal state space for the stopped process; this is equivalent to the
assumption (9x{T 0} 0, x_ < x < x+.

There seems to be no way to avoid some special discussion of boundary
points. For instance, a boundary point x x+/- is a trap if X(0) x ira-
plies X(t) x, >= O. Under our assumptions, a boundary point must be
a trap unless every point x’ in C, x_ < x’ < x+, can be reached from it. For
this paper, there is no loss of generality in assuming that for a stopping time
7’, (Pl T 0} 1 when x is a trap; and for a stopped diffusion we shall use
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the word trap to mean any boundary point x for which (Px{ T 0} 1. A
trap may be accessible or inaccessible; in the former case it is an absorbing
barrier; in the latter a natural barrier. We call a natural barrier x finite
if with positive probability X(t) ---> x as - . An entrance boundary is
an inaccessible boundary point which is not a trap.
Of the two types of stopping times depending only on position which occur

most frequently, the one is an exponentially distributed time S independent of
the paths of the process:

(xIS > t, X(t) eE} e-txlX(t eE

The other is the passage time across a point of 9C from the left or from the
right"

P+(b) Inf lt" X(t) >= bl, P_(a) Inf It" X(t) <-_ al,

with the usual convention that the value is -t- if the corresponding set is
empty. Because of the intermediate value property,

X(P+(b) b if X(0) _<_ b and P+(b) < ,
X(P_(a)) -a if X(0) >= a and P_(a) < .

According to the strong Markov property, when T is a stopping time
depending only on position, the renewed process X+r(t) X(T + t), >= 0,
is a diffusion with the original transition function and with the initial point
X+r(0) X(T); and conditional on the value of X(T), the stopped and
renewed processes are independent. In particular, a functional which
depends only on the renewed process will satisfy

Using this type of equation one can easily fill in the proofs of the following
statements"

First, the scale x of the line may be chosen so that whenever
x_ < a <x < b <x+,

({P+(b) < P_(a)} 1 (xlP-(a) < P+(b)}
(1.1)

(x a)/(b a).
In this scale, a boundary point is finite if it is an absorbing barrier or a finite
natural barrier, infinite if it is an entrance boundary.

Second, let T be a stopping time which depends only on position. Then
there corresponds a pair of positive continuous functions h+ and h_, respec-
tively increasing and decreasing, and strictly positive on (x_, x+), such that,

(%lP+(b) <- T} h+(x)/h+(b), x < b,

(9{P_(a) <= T} h_(z)/h_(a), a < .
It is important to think of h+(x) as defined for all x < x+, and h_(z) for all

x > x_, so as to be positive and linear on the complementary intervals of C.
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Third, either h+ and h_ are both constant, the process is recurrent with
T or h+ and h_ are linearly independent on every interval, the stopped
process is transient, and for a path with T , X(T) limt_. X(t) exists
and is a finite natural barrier. We will naturally assume the latter situation.

Fourth,
A(x, y) h+(x)h_(y) h_(x)h+(y)

never vanishes for x < y, and is a convex function in the natural scale in
each variable. It follows that there is a measure lc on 9C, the lcilling measure,
such that

(1.3) dh’+(x) h+(x)lc(dx), dhP_(x) h_(x)k(dx),

in the sense that for x < y

h x’ lc dx’
<x’ <=y

for h h+ or h_, where h’ denotes the right-hand derivative of h. The
measure ]c is finite on every compact subinterval of (x_, x+); if x is a finite
boundary point every neighborhood of which has infinite measure, then x
is a trap. If x is a trap, then ]c({x} , while the corresponding function
h h+ or h_ vanishes at x; thus the equations (1.3) remain valid at such
point with the convention that h(x)](dx) is defined by the left side:

h+(x)lc({x} lim0 (h’(x + ) h’(x ()).
In general the first equation (1.3) holds for x < x+ and the second for x > x_,
and the functions h+ and h_ are determined up to a constant factor by the
killing measure

Fifth, the Wronskian W h+(x)h_(x) h_(x)h+(x) is constant, and
we assume h+ and h_ normalized so that W --- 1. Set

(1.4) h(x, y) h+(Min(x, y))h_(Max(x, y)).

Then for every bounded continuous function f on the line and point x in

(1.5) E{f(X(T))} f h(x,y)f(y)lc(dy).

Here X(T) limtvr X(t) is a finite natural barrier if T , as before;
while h(x, y)lc(dy) is to be interpreted by (1.4) and the end of the preceding
paragraph if y is a trap.

Sixth, there is a measure m on 9, the speed measure, such that for every
bounded continuous function f vanishing at traps, and for each point x in

(1.O) 1,,’, j’(X(t)) dt h(x,y)f(y)m(dy).

The speed measure has closed carrier 9C and is finite on every compact sub-
interval of (x, x); we set m({x}) when x is trap for the unstopped
diffusion. Then m depends only on the unstopped diffusion.
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Seventh, the original diffusion may be reconstructed from the speed measure
m, by taking the killing measure lc sm for an arbitrary positive value of
the parameter s. For then the corresponding stopping time is exponentially
distributed with parameter s and independent of the paths. The kernel
h(x, y) is uniquely determined by (1.3), and h(x, y)m(dy) is the Laplace
transform, with parameter s, of the transition function of the diffusion. Since
this stopping time does not satisfy our convention that (P{ T 0} 1 when
y is a trap, it is necessary to define h(z, y)m(dy) at such a point; this is done
simply by noting that if lc sin, then h(z, y)m(dy) (1/s)h(x, y)k(dy)
can be interpreted as in (1.5).

Similarly, if k is the killing measure corresponding to a stopping time T,
one may construct the transition function of the stopped process by consider-
ing the new killing measure k, k -+- sm.

2. Sojourn time densities

Let X(t) be a diffusion with state space c, and 7’ a stopping time depending
only on position. We assume the conventions and notation of Section 1;
in particular we have the speed measure m, the killing measure /c, and the
density h(x, relative to /c of the distribution of the place of stopping for
initial point x.

For each path define the sojourn time of the stopped path in the Borel set
/’ to be

T

V(X(t),E) dt,

V (x, E) being the indicator function of E. For ech pth, the sojourn times
define mesure on the line.

For almost every path, the sojourn time measure has a density 5(x, T) relative
to the speed measure m"

i V(X(t),E) dt 5(x’, T)m(dx’).

The density can be talcen to be continuous in probability in the spatial parameter
x’; and for this version the joint distribution of 3(x, T), 1 <= lc <= n, and of
X( T) is determined by

n(X) Cn(X; y; Xl Xn Zl Zn)

(2.1)
h(z,x)h(z ,y)

1 2_, z ,(y),
h(x, y)

for positive numbers Zl, Zn and .]br points x, y, Xl

in the closed carrier oj" the killing measure Ic.
.., x in a: with y
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In (2.1) the ratio h(x, xk)h(xk, y)/h(x, y) is to be interpreted by (1.4)
so that its value may be determined even when numerator and denominator
both vanish. For instance, if y x+,

h(x, xk)h(xk y)/h(x, y) h(x, x)h+(x)/h+(x).

Let 3(x, T) be provisionally the density of the absolutely continuous part
of the sojourn time measure, relative to m" Let zX, be the dyadic interval
[/2-p, (k -- 1)2-p) and say A. -- x if as n , ] k is such that x A..
Then [8] for ech pth

5(x, T) lim
m(A,.)

V(X(t),A,,) dt
p,l

exists for lmost every point x in , relative to m. Since 3(x, T) is the
limit of fixed sequence of functions ech mesumble jointly on the smple
spce of the diffusion nd on , 3(x, T) is jointly mesumble, nd by Fubini’s
theorem there is subset ’ of with m( ’) 0 such that for ech x
in ’, 3(x, T) is defined s the limit bove for lmost every pth.
We use technique developed by Kc [4] to show that (2.1) is stisfied

by 5(x, T) whenx,... ,xrein’. LetEbeBorelset,adlet Vbe
positive Borel mesumble function. Then since the stopped process is

Mrkovin with sttionry transition function,

F(x,E) E exp V(X(t’)) dt’ ;X(T) e

E 1 V(X(t)) exp V(x(t’)) dt’ dt ;X(T) e

{X(T) E}

E dt V(X(t) )Ex(t) exp V(X(t’) dt’ ;X(T)

= f h(x, y)lc(dy)- f h(x, x’) V(x’)F(x’, E)m(dx’)

by (1:5) and (1.6). In particular, as a measure of the set E, F(x, E) has a
continuous density relative to k, and

/(x, y) E exp Y(X(t’) gt X( T) y}
1- f V(x’) h(x,x’)h(x’, y) f(x’, y)m(dx’),

h(x, y)

for y in the closed carrier of k.
Note that f(x, y) is continuous in x, and for any collection of functions

V with f V(x’)m(dx’) bounded, the corresponding functions f are uniformly
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equicontinuous in x.

Ox
j’(x, y) V(x’) h+(x’)

’<. h_(x) f(x y)m(dx),

y(x’) h_(x’)
<x’ .h_(x) f(x’, y)m(dx’),

o f- f(x, y) <= V(x’)m(dx’).

Indeed, using (1.4) and the fact that (h+/h_)’ h-2,

x<y,

Now let xl, xn be points in 9’. Let

V(x; xk) V(x, A,.)/m(A,.),

where j is chosen so that xl e A,., and let

V(x) V,(x) z V(x; x).

As p becomes infinite, the corresponding functions fp(x, y) approach
Cn(x; y; xl, x z, z), and are uniformly equicontinuous in x.
Thus

lim f Vp(x; x) h(x,x’)h(x’, y) ., )m(dxf(x ,h(x,y)

lira
1 f/ h(x, x’)h(x’, y)

_,: m(hv.) . h(x, y)
f(x’, y)m(dx’)

h(x,x)h(xo ,y)
h(x, y)

and this implies (2.1) whenever Xl Xn are in C’.
It is now quite easy to show that the sojourn times are absolutely continuous

relative to m. By putting n 1 in (2.1), for z small,

E{e-’(’r) X( T) y} 1 z h(x,x)h(x ,y)
h(x, y)

E[5(x,T) IX(T) y} h(x,x)h(x ,y)
h(x, y)

+ O(z),

EI(x T)} h(x,x),

E 5(x, T)m(dXl) E{5(x, T)}m(dx)

h(x, xt)m(dxl),

}E V(X(t); (a, b)) dt
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by (1.6), when (a, b) is an open interval containing no traps.
every path, by definition

p T

] 5(x, T)m(dx) <= ] V(X(t); (a,b)) dt..

But for almost

Because of the above, equality must hold with probability one. If x is a
trap, the sojourn time at x vanishes for all paths, and 5(x, T) 0, in
agreement with (2.1). Thus 5(x1, T) is indeed a version of the density of
the sojourn time measure.
To prove the continuity in probability of 5(x, T), consider (2.1) with

n 2, xi and x: points in 9. Multiplying by h(x, y)lc(dy) and integrating,
we obtain

b(x) Ex{e-zl(xl’r)-z(x2’r)}
1 z h(x, x)g,(x) z. h(x, x2)6(x).

Setting first x Xl, then x x2, and finally letting x be arbitrary, for
small z and z, we have

(Xl) 1 Zl h(Xl, Xl) Z2 h(x, x) + O(z, z),

(X2) 1 Zl h(xi, x2) z2 h(x2, x) + O(zi, z),

(X) I Zl h(x, Xl) z2 h(x, xe)

"k z h(x, x)h(xl Xl) + Z2 h(x, x)h(x x.)

+ Zi z2(h(x, xi) - h(x, x2))h(xi, X2) -- O(z, Z2);
it follows that

Ex{ (5(xk, T))} 2h(x, xk)h(x, x),

E{ 5(x, T)5(x, T)} (h(x, x) + h(x, x))h(Xl x2),

Ex{(5(xi T) 5(x2, T))} 2[h(x, xi)(h(x, x) h(x, x2))

h(x, x:)(h(x, x.) h(x, x:))]

Thus 5(x, T) is continuous in probability, and this enables us finally to
define 5(x, T) for all xi in 9 so that (2.1) holds.

3. The Markov property of the sojourn time density
Since the kernel h(x, y) is defined for all x and y in Ix_, x+], we need not

restrict xl, x to the state space 9 in the equations (2.1). The solu-
tions Cn are defined for all values of Xl, xn in [x_, x+] and for fixed x
and y determine the joint distribution of a process 5(x’, T) with parameter
x’ ranging over x_ _-< x’ __< x+.
We will show in this section that conditional on X(O) x and X( T) y,
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5(x’, T) is a Markov process. The absolute probabilities are given by

(3.1)
h(x’,x’)h(x,y)

e

the transition probabilities by

(xl t; x. z) Ex(e-z(x’’) 5(xl, T) t, X(T) y}
(a.2)

A exp -h_(z)(1 -t-w.((- 1))

for x < x2, where

we set also

then

h

_
w2-- z , h+(x)/h_(x,,)

x Max(x, y), x. Min(x, y),

/

h(x, y)
Min h+(x) h+(y)

h_(x)h_(y) k,h_(x) -_( ]

A--I
1 q- w2(2 ) )-1,

(3.3) 1 q- w2(2 ) )-2,

x* =<x <x2,

< < *g, Xl < x2 x

x_ < 2 <= x.,t > O,

xl <x2<x, t=O.

The formula (3.1) for the absolute probabilities is easily proved by solving
the equations (2.1) for n 1. The statement that 5(x’, T) is Markovian
with the transition probability given by (3.2) is equivalent to

(3.4)
+(x) E{exp{- ’+1 z 5(xk, T)}IX(T) y}
E{expl- zk 5(x, T)}(x=, 5(x=, T); x=+ ,z+)lX(T) y}

for n => 1, and we will prove (3.4) by solving the equations (2.1) more or
less explicitly for arbitrary n. We fix points Xl < < Xn+ in [x_, x+]
for the remainder of this section.

First suppose x _-< y. In this case h(x, y) h+(x)h_(y) by (1.4),
and by letting x x., j 1, n in (2.1),

(3.5) h+(x)(xj) h+(x) h(xy x,)z h+(x)n(X).
This system of equations has the solution

(n X.i O /n
where a and are determined by
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(3.6) n n--1 + Zn h+(xn)h_(xn)a,

(3.7)
fln- (h_(xn)/h+(x) -z h(x)a

with 0 a 1. We set n h+(xn)/h_(x,) as before, and

h(3.8) 1 + Zn (Xn)(n- n--1)

h_(x_).(3.9)

Then from (3.6) and (3.7),

(3.10) n+
(3.11) n+ a+ +1 a + +(n+l n),

(3.12) n+ n+(-- + (Z + 7+)h+(x)h_(x)a).

If x
for some j n. Then (x) a/, and by (3.6)

E exp _-1 z5(x, T)}; 5(Xn, T) e dt] X(T) y}

h+(x,)h_(x)a
exp -- dr.

h+(x)h_(x)a)
By (3.12)

n/l(X) Olj/n/l

(1/(n+l)Exlexpl-- z 5(Xk,, T) --5’n+ 5(Xn, T)}IX(T) y}.
In view of (3.8) and (3.9), this is just the desired result (3.4) in the specified
range.

If xn <: Xn+l -< x, y,

4)n(X) 1
h_(x)h_(y)

zh_(x)(x)h(x, y)

1
h_(x)h_(y) h+(xn)

h(x, y) h_(xn)
(1 Cn (Xn)

1-, ,.;
@n+(x) 1 ,+ n-t-1, , +1

1 n+ - n+l a, ,+ ,++’
As in the preceding paragraph, (3.6) and (3.12) again show thatby (3.11).

(3.4) holds.
Now suppose y =< x. In this case, (2.1) becomes
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h+(xj)h+(y)n(Xj) 1 znh2__(Xn) --(x-j:-5 n(Xn)

n--IE zk
h(xj xk)h(xk, y) (X).

h(x, y)

Considering ,(x,) a parameter for the moment, this is a system of n 1
equutions which is a combinution of (2.1) and (3.5). Again we can write
down the solution"

h+(x)h+(y) an(Xj) n--l(Xj) znh-(xn)n(Xn) . n--1
for j 1, n 1; by substitution one sees that this formula holds also
whenj n. But whenx x,

Cn(X) 1- h+(x)h(x, y) Zn(X)
h+(y)

is independent of x. Thus putting j n above and using (3.6), we obtain

where a is independent of z.
Ifx x Xn Xn+and y x,

_i(x) a*a + a

nnn--1
by (3.6). And by using (3.10) and (3.6),

Cn+l(X) Cn(X)- z+lh_(xn)a
,

a *a a a n+.n--(X)
--1 +

Again, these equations, along with (3.6) and (3.12), imply (3.4).
Finally, if y Xn < Xn+ X,

and (3.4) follows.. The soiorn time density as a division
To describe the properties of the Markov process 3(x’, T) most effectively,

we make the change of variable

(4.1) $ h+(x’)/h_(x’), $() 23(x’, T)/h_(x’).

The formula (3.2) becomes
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with A given by (3.3). This and the absolute probabilities (3.1) determine
$() for 0 -< < m, although the range [x_, x+] of x’ may correspond to a
smaller interval. It is an easy matter to invert the Laplace transform and
compute the transition density

Set
f( s s) ds. (PI$($) e ds $() s X(T) y}.

f2(sl,s2,) -exp 4 \2]

1 s + s2- 2sls cos
2s dOexp 4

f(s,s,)=exp 4 k2/

sinO4rs dO
(4()

exp
4

Then when s > 0 and $ and $ are in the ranges indicated

f( s ;5, s) f(s s., ), 5 < . <= ,
(4.2) ---f2(sl, s., - ), , <= 1 < <= *,

(s/s)’j’(s, s, ,), * <= a < ..
Recall that , is the point corresponding to Min(x, y) under (4.1), * to
Max(x, y).
But f, N 2, 4, as defined above, is the transition density of the radial

process R() IW($)I of a Brownian motion W in dimension N. And
applying the change of variable (4.1) to the formula (3.1), we see that in
the range , =< =< *, the absolute probabilities of $($) are those of the
radial process R:() of planar Brownian motion with initial point R(0) 0.

In the range -<_ ,, it is convenient to describe the process in terms of a
random initial parameter value [2]. Since the origin is an entrance boundary
forR4, 8() > 0forsome < ,impliesS(’) > 0, =< ’ _-< ,. Define

Inf {$" ($) > 0};

then by (3.1)

{ 1X(T) y} (ex{$() > O IX(T) y} /,,

We have
() =0, _-< ,
s() R(- ), X =< =< ,,
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where R4 iS the radial process of Brownian motion in four dimensions, with
initial point R4(0) 0; and 1 is uniformly distributed on [0, (,] and inde-
pendent of R4.

(4.4’) S() R2(), , =< _-< *,
where R2 is the radial process of planar Brownian motion, with initial point
R.(,) R4(, 1), but otherwise independent. As noted above, the dis-
tribution of R(,) is the same as if R,.(0) 0.

Finally, let R be a copy of R4, and let Y. be uniformly distributed on the
interval [0, 1/*], and independent. Then

() R((/) Z,), * -< -_<
(4.4")

() o, 1/ _< <
We have the matching condition

(*R4* ((1/(*) 2) R((*),
but the distribution of this variable is the same as if R’ and 2= were com-
pletely independent of $((), ( <- (*, as well as of each other.

It is not hard to compute the absolute probabilities and transition function
of (R4*((1/() ) and check that they agree with (3.1) and (4.2). The
pertinent formulas are

1 s s 1 1 812 82f4 s exp 1) f4(s, s, ),

Of course, ig is possible hag (. 0, (* , or bogh. In ghis ease ghe

corresponding range of ( disappears, bug ghe deseripgion of g(() is ogherwise

unchanged. In general, ghe values of z’ eorresponding go ghe inigial and final
values 21 and 2 are respeegively MinX(), 0 N N T, and Max X(),
0 N N T. To see ghis, noe ghag wigh probabiligy one, 2 is hOg less ghan

ghe value of ( eorresponding o he minimum of he pagh, and gha ghe gwo
variables have ghe same disgribuion.

Because of ghis represenagion, he known propergies of Brownian moion
are refleeged in ghose of ghe sojourn gime densigy (z’, T). or instance g(()
may be assumed eonginuous, and sgriegly posigive on (2, 1/2) and ghe cor-
responding version of (z’, T) sgill serves as a densigy of ghe sojourn gime

measures, since he lagger is eonginuous in probabiligy. Hence eondigional on

X(T) , (z’, T) is a continuous funegion of z’ and is sgriegly posigive on
any ingerval ingerior o he range of he pagh X(). Bug his propergy is
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independent of y, and so by Fubini’s theorem it holds with probability one
unconditionally. Similarly, we may take T to be exponentially distributed
and independent of the path, and it follows that with probability one, 5(x’, t)
is continuous in x’ and strictly positive on the interior of the range of the path
X(t’), 0 <= t’ <- t, for almost every t. Finally, 5(x’, t) is an increasing func-
tion of t, for each path, and 5(x’, + A) 5(x’, t) unless for the corresponding
path X(t’) x’ for some t’, -< t’ __< + A. It follows that with probability
one, 5(x’, t) is jointly continuous in (x’, t).
We also have the precise Lipschitz condition for Brownian motion [5]"

With probability one,

I( + zx) ()
2,lima-suP %/] X i] log X

(4.6) lim sup 15(’) $()1 2,
*0 -,< /I ’ll ]og l ’11

(4.7) lim sup
(

2._. log log (

Note that (4.5) and (4.6) are invariant under the change of variable relating
and R4 in the range -> *.
Under the change of variable (4.1), (4.5) and (4.6) become the first two

of the corresponding statements given in the introduction, with T and
with the result holding conditional on the value of X(T). But exactly as in
the preceding case, we may remove the conditions; the Lipschitz conditions
given in the introduction hold with probability one, simultaneously for each
t_>0.

The third nd fourth statements in the introduction come from (4.5) when
5(x’, T) 0; that is, when x’ is n endpoint of the range of the pth X(t’),
0 _-< t’ _-< T. If the endpoint is not trap or n entrance boundary, then the
preceding reasoning pplies without further digiculty.

FinMly, if x’ is boundary point nd h+(x’)/h_(x’) is zero or infinite,
,then (4.5), or respectively (4.7), becomes

5(x", T)
1’(4.8) liSxU,P h+(x")h-(x") log log h+(x")/h-(x")[

under (4.1). If x’ is a trap, we may take T to be the passage time of x’, and
h+(x")h_(x") Ix’ x" h+(x")/h_(x") Ix’ x"lor Ix’ x"l -1.
Also the condition that x’ is in the range of the path up to time is the same
as the condition that => T, or alternatively 5(x", T) 5(x", t). Hence
in this case (4.8) translates exactly into the third statement of the introduc-
tion. If x’ is an entrance boundary, then x’ is infinite, and the diffusion must
start at x’ if x’ is in the range of the path. If x’ is, say, + , take T to be
the passage time of a finite point a. Then h_(x") 1, h+(x") x a.
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Since a may be arbitrary and since the result does not depend on a
or P_(a) T, the previous reasoning implies the result as stated in the
introduction.
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