MODULES OVER REGULAR LOCAL RINGS

BY
M. PavamMaNn MURTHY

Introduction
In [1] M. Auslander has proved the following:

TureoreM. Let R be an unramified regular local ring, and M a torsion-free
R-module of finite type. If Torf (M, N) = 0 for some R-module N of finite
type, then Tory (M, N) = 0 for all j = <.

In this paper we shall prove that for an arbitrary regular ring R and for
two R-modules of finite type M and N, if Tor? (M, N) = Torf (M, N) = 0,
then Torf (M, N) = 0 for all j = 7. In fact we shall prove a general result
for complete intersections.’ In Section 2 using this result and following
methods of M. Auslander we shall show that for a regular local ring R and
for any two R-modules of finite type M and N if M and M ® N are torsion-
free and Tory (M, N) = 0, then

(i) N is torsion-free.
(i) Tor{ (M,N) =0 for¢> 0.

(iii) hd M+ hd N = hd (M ® N) < dim R.

Here hd M denotes the homological dimension of M, and dim E denotes the
Krull dimension of B. We shall also give some sufficient conditions for an
R-module to be reflexive.

Let R be a local ring (not necessarily regular). Let M and N be R-modules
of finite type such that hd M < «. Let ¢ be the largest integer such that
Tory (M, N) # 0. In[l, Theorem 1.2] the formula

codim N = codim Tory (M,N) +hd M — ¢,

was established under the hypothesis codim Tor; (M, N) =1 or ¢ = 0,
where for an arbitrary R-module E, codim £ denotes codimension of E (for
notation and basic concepts of homology theory of local rings see for example
[3], 4], or [5]). In Section 3 we give an example to show that the above
formula is not universally valid. This answers in the negative a question
raised by M. Auslander in [1].

My thanks are due to Dr. C. 8. Seshadri for his keen interest in this work.

1. A property of Tor over regular rings

Throughout this paper we shall consider only commutative noetherian
rings with identity and modules which are unitary and of finite type. We
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1 In the first version of this note the author proved this result for regular local rings.

He is thankful to the referee for the remark that a similar proof yields a generalisation to
complete intersections.
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recall (see [1]) that a chain complex X over a ring R is rigid with respect
to an R-module M if H;,(X ® M) = 0 for some ¢ implies H{(X ® M) =0
for all j = ¢ (where for a chain complex Y, H;(Y) denotes its j* homology
module). Thus to say that a projective resolution (and therefore any
projective resolution) of an E-module M is rigid with respect to an R-module
N is to say that for any 4, Torf (M, N) = 0 implies Tor; (M, N) = 0 for
all j = 7. Let R = k[[X,, -, X.]] be the ring of formal power series over
a discrete valuation ring k. Let M be an R-module such that the prime ele-
ment 7 of k is not a zero divisor for M. For the sake of completeness we in-
clude here the proof of the fact that any projective resolution of M is rigid
with respect to all modules (see [1, proof of Corollary 2.2]).

Let N be any R-module, and let M be as above. Then we have (see
[5, Chapter V]),

Tori!'"" ™ (M ®: N, R) ~ Tor{ (M, N) fori = 0,
where k[[X, Y]] = k[[X1, -+, Xu, Y1, -+, Y,]] is the ring of formal power
series in 2n variables and M ®; N is the complete tensor product of M and
N over k (for definition see [5, Chapter V]) and R is considered as a k[[X, Y]]
module by identifying it with K[[X, Y]]/(Xi— Y1, -, X, — V,). As
X, —Yy, -, X,— Y, form a k[[X, Y]]-sequence, the Koszul complex of
X, — Y, -+, X, — Y, provides a projective resolution of R as a k[[X, Y]]
module (for definition see [4] or [5]). As the Koszul complex is rigid with
respect to all modules (see [4, 2.6]), we have

ProrositioN 1.1. Let R be a ring of formal power series over a discrete
valuation ring k, and let M be a torsion-free R-module. Then any projective
resolution of M s rigid with respect to all R-modules.

Lumma 1.2. Let R be an integral domain which has the following property:
for any torsion-free module M, every projective resolution of M s rigid with
respect to all modules. Then, for any © = 2 and for any two modules M, N,
Torf (M, N) = 0 implies Tor;y (M, N) = 0 for all j = 3.

Proof. There exist R-modules L and F such that F is free and the sequence
0—-L—>F—->M-—0
is exact. Then by the exact sequence of Tor, we have
Torfy, (M, N) ~ Tory (L, N) for allj > 0.
Since ¢ = 2, we have
Tor; (M, N) ~ Torf, (L, N) = 0.
Now L is torsion-free, and therefore
Tor; (L, N) =0 forallj =17 —1,
ie., Torf (M, N) = 0for allj = i.



560 M. PAVAMAN MURTHY

CoroLLARY 1.3. Let R be as in Proposition 1.1; then Lemma 1.2 holds.

Let R be a local ring, and let M and N be R-modules. Then we have
[Tor? (M, N)]" =~ Torf (I, W),
where for an R-module E, E denotes the completion of E. Further £ = 0
if and only if £ = 0 (these are consequences of the fact that R is R-flat (see
for example [5])). We here recall that a regular local ring R is said to be

unramified if it is of equal characteristic, or of unequal characteristic with
p ¢m” (m is the maximal ideal of R, and p is the characteristic of R/m).

COROLLARY 1.4. Let R be an unramified regular local ring. Let M, N be
R-modules such that Tor? (M, N) = Oforsomet = 2. ThenTory (M,N) =0
forallj = 1.

Progf. By the above remark we may assume R is complete. By a well-
known structure theorem of Cohen [7], R is then a ring of formal power series
over a complete discrete valuation ring. Now the result follows from
Corollary 1.3.

Lemma 1.5. Let A be a local ring, and let R = A/(x) where x is not a zero
divisor in A. Suppose A has the property: for any two A-modules A, B and
forany i = 2

Toriy, (4, B) = 0, 0<k=d,
implies Tor; (A,B) = 0 for j = 4. Then for any two R-modules M, N of
finite type and for any 1,

(I) Torlyx (M, N) = 0, 0<k=d-+1,
implies Tor; (M, N) = 0 for all j = 1.
Proof. Let (I) hold. If I =0, then M ® N = 0, and therefore M = 0

or N = 0. Hence we may assume [ > 0. Choose A-modules L, F such that
the sequence

(1) 0->L—>F—>M-—0
is A-exact. Since z annihilates M, we have M ® y R =~ M. Since x is not a
zero divisor in A, the sequence

0—-A-25A—>R—0
is exact. By tensoring this sequence with M we get Tory (M, R) ~ M.
Now by tensoring the exact sequence (i) with R over A we have the exact
sequence
(ii) 0— M — L/aL 25 F/aF — M — 0.
Set a(L/xL) = L'. Since F/xF is R-free and the sequence
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0—->L —-F/aF >M—0
is R-exact, we have
(a) Torf (L', N) =~ Tor}y, (M, N), for j > 0.
As 2 is not a zero divisor for L, we get Tor; (L,R) = 0,for7> 0. Hence
(b) Tor; (L, N) ~ Torf (L/xL,N), forj =0
(see [2, VI, 4.11]). Again by (i) we have
(¢) Tory: (M, N) ~ Tor;} (L, N), for all j > 0.
By tensoring the exact sequence

0—->M-—>L/zL—>L —0

with N over R, and because of the isomorphisms (a), (b), and (c), we get
the exact sequence:

(¥) --- —Torf (M, N) — Torjs: (M, N) — Torfy (M, N)

— Torfy (M, N) — Tor; (M, N) — Tor} (M,N) — --- (forj = 2).
Since Toriys (M, N) = 0,0 < k < d + 1, using (%) we have
Tori (M, N) = 0, 1<k=<d+1.

Hence Tor? (M, N) = 0, for all j = [ 4+ 1. Therefore

Torfy, (M, N) ~ Tory—, (M, N) forallj =14 1.
Hence

Torf (M, N) ~ Toris- (M, N) and Toriy, (M, N) = Toriysrs (M, N).

Therefore Tor; (M, N) = 0forallj = I.
Using Lemma 1.2 and Lemma 1.5, by an easy induction we have

TurorEM 1.6. Let A be a local domain which has the following property: any
projective resolution of a torsion-free A-module is rigid with respect to all A-

modules. Let R = A/(xy1, -+, xq), wherexy, -+, %a,d > 0 is a A-sequence.
Then for any two R-modules M, N and for any ¢
Torry (M, N) = 0, 0<Fk=d,

tmplies Tor; (M, N) = 0, for all j = 1.

We recall that a local ring R is said to be a complete intersection if
R = A/(x1, - ,2,), where A is a regular local ring and x;, :--,z, is a
A-sequence.

CorOLLARY 1.7. Let R = A/(x1, -+, 24),d > 0 be a complete intersection
with A, an unramified regular local ring, and 1, -+ -, xa & A-sequence. Then
the conclusions of Theorem 1.6 hold.
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We say that a ring R is regular if R, is a regular local ring for every maximal
ideal m of R.

CorOLLARY 1.8. Let R be a regular ring. Then for any two R-modules
M and N
Tory (M, N) = Torfy, (M,N) =0

implies Tor; (M,N) = 0 for all j = 1.
Proof. Since for any maximal ideal m of R, R,, is R-flat, we have
R, ® Torf (M,N) ~ Tor;™ (Mm, Nn).

Further for any R-module E, if E,, = 0 for all maximal ideals m of R, then
E = 0. Hence we may assume R is a regular local ring. By the remark
following Corollary 1.3 we may assume R is complete. Then by a structure
theorem of Cohen (see [7]), R =~ A/(x), where A is a ring of formal power
series over a discrete valuation ring k. Now the corollary follows from Prop-
osition 1.1 and Theorem 1.6.

Using Lemma 1.5 and Corollary 1.8, we have by induction

CoroLLARY 1.9. Let R = A/(a1, -+, z4) be a complete intersection with R,
an arbitrary regular local ring, and xy , - - -, 24 & A-sequence. Then for any two
R-modules M and N,

Toriy, (M, N) = 0, 0<k=d+1,

implies Tor; (M,N) = 0for allj = 3.
2. Some applications of Theorem 1.6
We give here some applications of Theorem 1.6 on the lines of [1].

ProprosiTION 2.1. Let A be a local domain which has the property that any
projective resolution of a torsion-free module is rigid with respect to all A-modules.
Let R = A/(z1, -+, x4) be an integral domain with x,, ---, xa a A-sequence.
Let M and N be R-modules such that M and M ® N are torsion-free
and Tory (M,N) =0,1 =i =d. Then

(i) Torf (M,N) =0 fori> 0.

If further M is of finite homological dimension, then

(ii) N ds torsion-free.
If N is also of finite homological dimension, then

(i) hd M +hd N = hd (M ® N) < codim R.

Proof. (i) As M is torsion-free, we have an exact sequence

0O-M—>F—>F/M—0

with F free and /M a torsion-module. Hence the sequence
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0— Tory (F/M,N) > M ® N-F®N — (F/M) ® N—0

isexact. As M ® N is torsion-free and Tory (F/M, N) is a torsion-module,

we have Torf (F/M,N) = 0. Further Torf (M,N) =~ Tor 1 (F/M,N)

for all 4= 1. By hypothesis Torf (M,N) =0, 1 <%= d. Hence

Tory (F/M,N) =0, 1 <j=<d+ 1. Therefore by Theorem 1.6 we have

Tor; (F/M,N) =0 for all j > 0, ie., Tor; (M,N) =0 for all j > 0.
(ii) is now a consequence of the following lemma.

Lemma 2.2. Let R be a local domain. Let M and N be R-modules such that
(a) hdM < «,
(b) M ® N is torsion-free,
(¢) Torf (M,N) =0 fori>0.
Then M and N are torsion-free.

Proof. We prove the lemma by induction on dim R. If dim R = 0,
then R is a field, and there is nothing to prove. Letdim R = k£ > 0. Assume
that the lemma is valid for all local domains of dimension < k. Then by
induction hypothesis M, and N, are torsion-free for every nonmaximal prime
ideal p of B. Hence no nonzero nonmaximal prime ideal is associated with
M or N. Now since Tori (M, N) = 0 for all ¢ > 0, we have [1, Theorem
1.2]

codim N = codim (M ® N) + hd M.

As M ® N is torsion-free, codim (M ® N) > 0. Since for any R-module
X of finite homological dimension we have [3, Theorem 3.7]

hd X + codim X = codim R > 0,
we have
codim M + codim N = codim (M ® N) + codim R.

As codim M = codim R, codim N < codim R, we have
codimM >0 and codimN > 0.

Thus (0) is the only prime ideal associated with M and N, i.e., M and N
are torsion-free.

(iii) As Tor{ (M, N) = 0 for all ¢ > 0, we have (see [1, Corollary 1.3])
hdM +hdN = hd (M ® N).
As M ® N is torsion-free, we have codim (M ® N) > 0. Hence
hd (M ® N) < codim R.

CoROLLARY 2.3. Let R be a regular local ring. Let M and N be R-modules
such that M and M ® N are torsion-free and Tory (M, N) = 0. Then
(i) N is torsion-free,
(i) Torf (M,N) =0 foralli>0,
(i) hdM 4+ hdN =hd (M ® N) < dim R.
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Proof. Using the remark following Corollary 1.3, we may assume that B
is complete. Then R = A/(x) where A is a ring of formal power series over
a discrete valuation ring. Now the corollary follows from Proposition 1.1
and Proposition 2.1.

Remark 1. The hypothesis (in Corollary 2.3) that Tory (M, N) = 0 and
that M is torsion-free is not necessary in the case of unramified regular local
rings. We do not yet know if it is true for arbitrary regular local rings.

Remark 2. A result similar to Corollary 2.3 can be stated for complete
intersections.

TaEOREM 2.4. Let R be a regular domain. Let M be an R-module such that
M and M ® M are torsion-free and Tory (M, M) = 0. Then M is reflexive.

Proof. Since M is reflexive if and only if M, is reflexive for every maximal
ideal m of R, and since our hypothesis is preserved under localizations, we
may assume R is a regular local ring. 'We now prove the theorem by induction
on R. If dim R = 2, then by Corollary 2.3, 2 hd M < 2. Hence M is free
and therefore reflexive. Suppose dim R =n > 2. If M is free, there is
nothing to prove. Assume M is not free. Since M is torsion-free, we have
the exact sequence

0> ME M*™ > M*™/M -0,

where M** denotes the bidual of M, and « is the canonical mapping of M into
M™*. By induction hypothesis (M**/M), = 0 for all nonmaximal prime
ideals p of R. Therefore the maximal ideal m of R is the only prime ideal
associated with M**/M. Therefore if M**/M 5 0, then

codim M**/M =0 and hd M*™/M = n — codim M**/M = n.

Now codim M™* > 2>(see 6, 4.71). Hence hd M** < n — 2. Because of
the exact sequence
0— M — M**— M*™/M — 0,

we have hd M = n — 1. But by Corollary 2.3 (iii) we have hd M < n/2, a
contradiction. Hence M**/M = 0, i.e., M is reflexive.

3. Formula for codimension

Let R be a local ring, and let M be an R-module. Let z;, ---, 2, be a
minimal set of generators for M. Let F = -y Ry; be a free R-module of
rank 7 with the y; linearly independent. The sequence

0—-L—>F5M—0

is exact where ¢(y:) = 2;. The submodule L is uniquely determined up to
an isomorphism and does not depend upon the minimal set of generators
chosen (see [8, Chapter IV]). We call L the 1°¢ syzygy of M and denote it
by syz' M. We define syz’ M = M, and syz'"™' M = syz'(syz' M), by
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induction. Thus all the syz‘ M are uniquely determined up to an isomor-
phism.
In [1, Theorem 1.2] the following was proved:

(*) Let R be a local ring, M an R-module of finite homological dimension,
and ¢ the largest integer such that Tor; (M, N) = 0. If

(i) codim Torf (M,N) <1 or (i) ¢=0,
then
codim N = codim Tory (M,N) +hd M — q.

Now by writing the exact sequence of Tor we immediately see that
Tor? (syz' M, N) ~ Torg: (M, N) for 7 > 0.
Hence by (*) (ii) we have

ProrosiTioN 3.1.  Let R be a local ring, and M a module of finite homological
dimension. Let N be any module, and q the largest integer such that
Tory (M,N) ¢ 0. Then codim N = codim syz’ (M ® N) +hd M — q.

Finally we give an example to show that (*) is not true in general. Let
R be a regular local ring of dimension = 3. Let x be a prime element in R,
and p a nonmaximal prime ideal of height = 2, such that x ¢ p. Set

M =R/(z) and N = R/(z) ® R/p.
Then hd M = 1, and Torf (M, N) = R/(x) # 0. Hence g = 1. Now
codim N = min (codim R/(x), codim R/p) = codim B/p = n — 1,
whereas codim Torf (M, N) = n — 1.
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