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The projective forms of the three classical plane geometries (the euclidean,
elliptic, and hyperbolic plane) are topological planes, i.e., the set of points
and the set of lines are topological spaces (the topology being uniquely de-
termined by the order relation in the plane), and the operations of ioining
and intersecting are continuous (in both variables). A (not necessarily
arguesian) topological proiective plane is called "flat", if the point set P
is a locally compact topological space of the topological dimension 2. In a
flat plane P (P, ) both the set P of points and the set of lines are
homeomorphic to the point set P. of the real projective plane [10, Satz P].
The dual (, P) of the flat plane P is, therefore, likewise a flat plane. Each
quadrangle of such a flat plane generates an everywhere dense subplane [9].
Furthermore all collineations are continuous [9], and these two facts imply
that the only collineation leaving any quadrangle fixed is the identity. It
turns out that for the group F Fp of all collineations of a flat plane P the
topologies of uniform convergence and of convergence on an arbitrary fixed
quadrangle coincide with the topology of pointwise convergence. In this
"natural" topology the group F becomes a Lie group of dimension at most 8;
see [11, Satze 3.1-3.4 and 4.1]. If the flat plane P is not arguesian, then any
nonsimple connected closed subgroup of Fp has a fixed point and, by duality,
a fixed line [13, Satz 1.3].
The flat planes with a collineation group of dimension not less than 3 have

been determined completely [12]-[14]" The only planes with a collineation
group of dimension >- 4 are the Moulton planes [7], [5, 23]. There are
three classes of flat planes with 3-dimensional collineation group, each class
containing continuously many different planes. The planes of the first
class generalize the Moulton planes and have a: collineation group leaving
exactly two points and two lines fixed. The second class consists of planes
with one and only one flag (incident point-line-pair) fixed by all collineations.
The planes of the third class have a simple collineation group isomorphic to
the group 2 of proper (-- even) hyperbolic motions, i.e., the commutator
subgroup 23(R, f) of the orthogonal group with respect to a symmetric bilinear
form f of index 1 over the reals [3]. If the group 2 operates as a group of
collineations of a flat plane 1 (P, ), possibly as a subgroup of the full
collineation group I’, then 2 leaves no point and no line fixed, and there are
three domains of transitivity in the point set P, namely a simple closed curve
K, its interior H, and its exterior. The points of H and the line segments
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L n H with L e form an incidence structure H isomorphic to the ordinary
hyperbolic plane, but the projective extension 1) of H need not be arguesian.
For a detailed description of these "not necessarily arguesian hyperbolic
projective planes" see [12, Sitze 14, 17, and 18]. The plane 1) is arguesian
and therefore isomorphic to the real projective plane if and only if t < r
[12, Satz 15].
Using these results we shall now characterize the real euclidean, elliptic,

and hyperbolic plane in a similar fashion"

THEOREM. A pair (P, A) consisting of a fiat plane I (P, ) and a
"motion group" A satisfying the following conditions:

a A is a 3-dimensional connected closed subgroup of the collineation group
F, in the natural topology,

(b) A is not simply connected,
c A leaves no point of P fixed,

is a classical plane geometry; more precisely,
(1) If A is not simple, then A fixes a line of P, and P, A) is the euclidean

plane, A being the group of its proper motions.
(2) If A is simple and compact, then A is flag-transitive on P, and (P, A)

is the elliptic plane.
(3) If A is simple and not compact, then P, A) is a not necessarily arguesian

hyperbolic projective plane, i.e., A fixes a simple closed curve K in P, the interior
H of K is the real hyperbolic plane, and A is its group of proper motions. I is
arguesian if and only if A has index 2 in its normalizer 0 in F, and 0 is then
the full group of hyperbolic motions.

A related characterization of the euclidean and hyperbolic plane has been
given by Hilbert [5, Anhang IV] in his solution of the plane case of the Rie-
mann-Helmholtz-Lie problem; see also Siiss [15].
For the proof of the theorem we need the following

LEMMA. A connected group of collineations of a fiat plane P either fixes a

point of P or has trivial center Z 1.

Proof. Let 1 be an element of the center Z(). Because of the
continuity of all collineations, is a homeomorphism of the point set P.
Therefore has a fixed point p; see e.g. [4, p. 373]. The transitivity domain
pC is a connected subset of P consisting only of fixed points of i*, for ) is a
connected topological transformation group of P and p" p" p" for
all a e . A connected set containing three points not on a line contains
also a quadrangle. Consequently pC is contained in a line L, since i" cannot
leave any quadrangle fixed. Either pC p is a fixed point of , or the line L
is uniquely determined and x is a connected subset of L for each x e L.
A homogeneous connected proper subset of L is a point or an open interval.
Hence either there exists a point x e L with x x, or pC L. But if is
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transitive on L, then is a perspectivity with axis L and some center a,
and " implies a a.

Proof of the theorem. Let A be a group satisfying conditions (a) and (c).
Then A, being a closed subgroup of Fp, is a 3-dimensional Lie group. By
(c) and the lemma, Z(A) 1. The commutator subgroup A’ of A is a
connected normal subgroup 1. By using Lie algebra methods it is easy
to see that either A’ is commutative, or A’ A; see [6, pp. 11-14]. In the
latter case the Lie algebra of A is simple; hence every proper normal sub-
group of A is discrete and contained in the center Z(A) 1, and A is iso-
morphic to one of the 3-dimensional simple groups SO or 2, both of which
are not simply connected.

(1) If the motion group A is not simple, it has, therefore, a commutative,
connected normal subgroup A’ 1. By the lemma, A’ fixes a point p of 1).
Since A leaves no point fixed and p"’ p’" p for each A, an argu-
ment completely analogous to the proof of the lemma shows that p is con-
tained in a unique line L fixed by A, that A is transitive on L, and A’ is a
group of perspectivities with axis L. The group A’ cannot contain any
homology v 1; for if 1 7 e and a’ a t L, then there is an element
t e A with a a and 7"’ 7, which contradicts the fact that A’ is a com-
mutative normal subgroup of A. Hence A’ is a group of translations with
axis L. Let 2; be a one-parameter subgroup of A’. As 2; contains locally
cyclic everywhere dense subgroups, e.g. the rationals, all the elements of 2;

have the same center a e L, and 2; is the transitive translation group with
center a; see [14, Hilfssatz 3]. The transitivity of A on L implies now that
the translation group T A’ is transitive on the affine plane P L, and
1) is arguesian by [8, 12]. The stability subgroup Ao of A fixing some point
o t L is then a complement of T in A. Since T is 2-dimensional, the group
Ao is by (a) a connected 1-dimensional Lie group that is transitive on L.
In the real plane there are continuously many nonisomorphic 3-dimensional
connected collineation groups containing the group T of translations with
axis L as a normal subgroup such that a complement of T is transitive on
L, namely the groups

{(1 x y) } fA(r) pt q t, x, y e R with
p, cos

_q P
q r sin

All of these groups except A(1) are simply connected. Thus condition (b)
which had not been assumed before, implies that A --- A(1) is the group of
orientation-preserving euclidean motions.

(2) If the motion group A is simple and compact, it is isomorphic to the
rotation group SO, i.e., the group of elliptic motions. Let 2; be a l-dimen-
sional connected subgroup of A. Then 2; ----- S02, and 2; contains one and
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only one involution z. Since z cnnot leave ny quadrangle fixed, it is a
reflection with some xis W nd center a t W, and is uniquely determined
by a nd W; see [11 Folgerung 2.4]. By theorem of Ber [2, p. 103, Lemm
1], the product of two reflections with the same axis and different centers is
translation. Because every translation of flat plane generates n infinite
discrete group of collineations, the compact group A cannot contain more
than one reflection with given xis or given center. The orbits of 2 form a
fibmtion of the point set D {x e P; a x W}, and ny open half-line
with end-point a is a cross-section for this fibmtion; see [12, Lemma 6]. Hence
the transitivity domain a is either the whole plane P or the point a or an
open or closed disk, because the connected set a is union of orbits of 2;. If
a a, then z , which contradicts the simplicity of A. Since a is
compact homogeneous subset of P, it cn be neither an open nor closed
disk. Therefore A is transitive on the point set P and dually also on the set
of lines. Thus every point p and every line L of 1 is the center or the xis
of unique reflection a(p), respectively (L), of A, nd p e L if nd only if
a(p)(L) is an involution. This proves that 1 is isomorphic to the real
elliptic plane; see Bachmann [1, 16, 17]; also [11, Satz 4.3].

(3) If the motion group A is simple nd not compact, it is isomorphic
to the group 2 PSL2(R). As mentioned already in the introduction, ,this

case has been discussed completely in [12].
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