A SUPPLEMENT TO "MARKOV PROCESSES WITH IDENTICAL HITTING DISTRIBUTIONS"

BY

R. M. Blumenthal, R. K. Getoor, and H. P. McKean, Jr. ${ }^{1}$

The purpose of this note is to correct a definition in [1] and to elaborate on a point which was given insufficient attention in the proof of Theorem 7.2 of [1]. The reader is referred to [1] for definitions, notation, and background material.

We say that two Hunt processes X and X^{*} on an enlarged state space $\bar{E}=E$ u Δ have identical hitting distributions if for all x in E, and all Borel subsets B of \bar{E}

$$
P_{x}\left(X\left(T_{K}\right) \in B, T_{K}<\infty\right)=P_{x}^{*}\left(X\left(T_{K}\right) \in B, T_{K}<\infty\right)
$$

whenever K is a compact subset of E or the complement in \bar{E} of such a set. In [1] we merely required this equality to hold for compact K. But then it does not follow that X and X^{*} have the same traps; and, what is more important, it does not follow that if K is compact and $P_{x}\left(T_{\bar{E}-K}<\infty\right)=1$, then also $P_{x}^{*}\left(T_{\bar{E}-K}<\infty\right)=1$. Both of these facts are needed for the proofs, so the above change in the definition is essential.

As to Theorem 7.2, it should state that X and X^{*} have identical hitting distributions if and only if there is a continuous additive functional ϕ of X with $\phi(t)=\phi\left(\sigma^{\prime}\right)$ for $t \geqq \sigma^{\prime}$ such that (i) for each x with P_{x} probability 1, ϕ is strictly increasing in $\left[0, \sigma^{\prime}\right]$, and (ii) if τ is the functional inverse to ϕ, then the processes $X^{*}(t)$ and $X(\tau(t))$ are identical in law. In [1] the functional ϕ is constructed by transfinite induction, but the proof of (i) based on Proposition 5.5 is not valid unless we first show that $\phi(t)$ is finite for $t<\sigma^{\prime}$. It is not at all obvious that the finiteness of ϕ is preserved during the passage to limit ordinals, so this point needs some attention. One can prove the finiteness directly, but it is also possible to modify slightly the construction of ϕ so that this issue does not arise. We will follow the second course, at the expense of a little extra effort. Also to save a few words we will assume that Δ is the only trap, that is, $\sigma=\sigma^{\prime}$.

To start with, let $\left\{N_{i}\right\}$ be a family of open sets with compact closures forming a base for the topology of E, and let

$$
v_{i}(x)=\int_{0}^{\infty} e^{-t} P\left(t, x, \bar{N}_{i}^{c}\right) d t
$$

The sets $U_{i j}=N_{i} \cap\left\{v_{i}>1 / j\right\}$, as i and j range over the positive integers, form a nearly open cover of E. If $W_{i j}$ denotes $\bar{N}_{i} \cap\left\{v_{i} \geqq 1 / j\right\}$, then $W_{i j}^{c}$ is

[^0]nearly open, and for each $x, P_{x}\left(T_{i j}<\infty\right)=1$, where $T_{i j}$ denotes the time of first hitting $W_{i j}^{c}$. From this it follows without much difficulty that for each $x, P_{x}^{*}\left(T_{i j}<\infty\right)=1$. Let
$$
\Phi_{i j}(x)=E_{x} e^{-T_{i j}} \quad \text { and } \quad W_{i j k}=\left\{\Phi_{i j}<1-1 / k\right\}
$$

The function $\Phi_{i j}$ is 1-excessive, and the union over k of the $W_{i j k}$ is the state space for X terminated when it leaves $W_{i j}$ (that is, $W_{i j}$ less the points regular for its complement). In particular, every point of $U_{i j}$ is in some $W_{i j l}$. Now list the $W_{i j k}$ in some sequential order, and let $L(x)=(i, j)$ if $W_{i j k}$ is the first set in this list containing the point x. Define an increasing sequence of stopping times by

$$
\begin{aligned}
R_{1}(w) & =T_{L(X(0, w))}(w), & & X(0, w) \in E \\
& =0, & & X(0, w)=\Delta
\end{aligned}
$$

and

$$
R_{n+1}(w)=R_{n}(w)+R_{1}\left(\theta_{R_{n}} w\right)
$$

for $n \geqq 1$. Let R be the limit of the R_{n}.
Now let $\phi_{i j}$ denote the continuous additive functional constructed in Section 5 of [1], but relative to the terminal time $T_{i j}$, and note that

$$
P_{x}\left(\phi_{\imath j}\left(T_{i j}\right)<\infty\right)=1 \quad \text { for all } x
$$

In a moment we will prove that $P_{x}(R=\sigma)=1$. Thus we may obtain our additive functional ϕ by piecing together the $\phi_{i j}$ as we did in [1],

$$
\begin{aligned}
\phi(t, w) & =\phi_{L(X(0, w))}(t, w), & & 0 \leqq t \leqq R_{1} \\
& =\phi\left(R_{n}, w\right)+\phi_{L\left(X\left(0, \theta R_{n} w\right)\right)}\left(t-R_{n}, \theta_{R_{n}} w\right), & & R_{n} \leqq t \leqq R_{n+1}
\end{aligned}
$$

and of course $\phi(t)=\phi(\sigma-)$ for $t \geqq \sigma$. The finiteness properties of the $\phi_{i j}$ imply that $P_{x}\left(\phi\left(R_{n}\right)<\infty\right)=1$ for all n, and so the fact that $P_{x}(R=\sigma)=1$ will yield the desired $P_{x}(\phi(t)<\infty$, for all $t<\sigma)=1$. The verification of the other properties of ϕ proceeds as in Section 7 of [1].

Theorem. For all $x, \quad P_{x}(R=\sigma)=1$.
Proof. Assume the contrary. Then for some x and (i, j), to be held fixed, $P_{x}\left(X(R) \in U_{i j}\right)>0$. Now $X(t)$ has left-hand limits at finite values of t, and since $R_{n}<R$, if $R<\sigma$, we have as t increases to R,

$$
\lim X(t)=\lim X\left(R_{n}\right)=X(R)
$$

on $\{R<\sigma\}$. Also $v_{i}(X(t))$ has left-hand limits because v_{i} is 1 -excessive, and

$$
\lim e^{-R_{n}} v_{i}\left(X\left(R_{n}\right)\right) \geqq e^{-R} v_{i}(X(R))
$$

Of course the limit assertions hold almost everywhere P_{a}. What we have just said, together with the facts that N_{i} is open and $U_{i j}$ is nearly open, imply that for some $\beta>0$ the event

$$
X(t) \in U_{i j} \text { for all } t \text { such that }|t-R|<\beta
$$

which we will call Λ, has strictly positive P_{x} measure. Since $\Phi_{i j}$ is 1-excessive, the composition $\Phi_{i j}(X(t))$ has left-hand limits. We will now show that

$$
P_{x}\left(\lim _{t \uparrow R} \Phi_{i j}(X(t))=1 ; \Lambda\right)=0
$$

Indeed it is clear that if $\delta>0$, then we can find $\alpha<1$ such that for every y in $E, \Phi_{i j}(y)>\alpha$ implies $P_{y}\left(T_{i j} \geqq \beta\right)<\delta$. Then for every n

$$
\begin{aligned}
P_{x}\left(\Phi_{i j}\left(X\left(R_{n}\right)\right)>\right. & \left.\alpha ; R-R_{n}<\beta, \Lambda\right) \\
& \leqq P_{x}\left(\Phi_{i j}\left(X\left(R_{n}\right)\right)>\alpha ; T_{i j}\left(\theta_{R_{n}} w\right) \geqq \beta\right) \\
& <\delta
\end{aligned}
$$

and from this the assertion follows immediately. Therefore we can find integers k, L, and q such that

$$
P_{x}\left(X(t) \in W_{i j k} \text { for all } t \in\left[R_{L}, R\right], R<q\right)>0
$$

It is obvious that for any i, j, k there are strictly positive numbers ξ and η such that $P_{y}\left(T_{i j}>\xi\right)>\eta$ for all y in $W_{i j k}$. Now there are only a finite number of W^{\prime} 's appearing before $W_{i j k}$ in our list, and so we may actually choose ξ and η so that $P_{y}\left(T_{L(y)}>\xi\right)>\eta$ for all y in $W_{i j k}$. But then for $n \geqq L$ we have

$$
\begin{aligned}
\eta P_{x}\left(X(t) \epsilon W_{i j k}\right. & \text { for all } \left.t \epsilon\left[R_{L}, R\right], R<q\right) \\
& \leqq \eta P_{x}\left(R_{n}<q, X\left(R_{n}\right) \epsilon W_{i j k}\right) \\
& \leqq E_{x}\left(P_{X\left(R_{n}\right)}\left(R_{1}>\xi\right) ; R_{n}<q, X\left(R_{n}\right) \epsilon W_{i j k}\right) \\
& \leqq P_{x}\left(R_{n+1}-R_{n}>\xi, R_{n}<q\right)
\end{aligned}
$$

which is impossible, since the last expression approaches 0 as $n \rightarrow \infty$. This contradiction completes the proof of the theorem.

Reference

1. R. M. Blumenthal, R. K. Getoor, and H. P. McKean, Jr., Markov processes with identical hitting distributions, Illinois J. Math., vol. 6 (1962), pp. 402-420.

University of Washington
Seattle, Washington
Massachusetts Institute of Technology
Cambridge, Massachusetts

[^0]: Received October 18, 1962.
 ${ }^{1}$ The work of all three authors was supported, in part, by the National Science Foundation.

