A DECOMPOSITION THEOREM FOR E^{4}

BY
Mary-Elizabeth Hamstrom ${ }^{1}$
In [3, Theorem 8], it was shown that if G is an upper semicontinuous decomposition of E^{3} into continua each lying in a horizontal plane but not separating that plane, then the decomposition space associated with G is E^{3}. The proof of this result depended on the theorem in that paper to the effect that if f is a regular mapping (see definition below) of a complete metric space X onto a finite-dimensional, locally compact, separable and contractible metric space Y and each inverse under f is homeomorphic to a 2 -sphere, M, then X is homeomorphic to $M \times Y, f$ corresponding to the projection map of $M \times Y$ onto Y. This result on regular mappings has been extended to the case where M is a 3 -sphere [5]. It is now possible to prove

Theorem 1. If π is a fixed hyperplane of E^{4}, and G is an upper semicontinuous decomposition of E^{4} into continua such that
(1) each element of G lies in a hyperplane parallel to π,
(2) if the element g of G lies in the hyperplane π^{\prime} parallel to π, then $\pi^{\prime}-g$ is homeomorphic to the complement in π^{\prime} of a point, and
(3) for each hyperplane π^{\prime} parallel to π, the decomposition space associated with the subcollection of G consisting of those elements that lie in π^{\prime} is E^{3}, then the decomposition space associated with G is E^{4}.

Remarks. Condition (3) is required because there is no theorem for E^{3} analogous to Moore's theorem for E^{2} [8] to the effect that the decomposition space associated with an upper semicontinuous decomposition G of E^{2} is E^{2} provided that each of the elements of G is a continuum that does not separate E^{2}. That no such theorem exists for E^{3} follows from an example of Bing [2] modified by Fort [4] to obtain a decomposition of E^{3} into points and polygonal arcs whose decomposition space is not even a manifold. However, Bing [1] and McAuley [7] have established some conditions on the elements that imply that the decomposition space is E^{3}. For instance, the space is E^{3} if each element of the decomposition is a point or a convex body (Bing) or if each element is a point or a straight line interval and there exists a countable collection Z of straight line intervals such that each interval in the decomposition is parallel to some element of Z (McAuley).

That condition (2) is required is demonstrated by the example to be found following the proof of Theorem 1.

[^0]Proof of Theorem 1. Let Y be the decomposition space associated with G and q the associated mapping of E^{4} onto Y, i.e., g is an element of G if and only if there is an element y of Y such that $q^{-1}(y)=g$. Let C_{1} and C_{2} be concentric 3 -spheres in E^{4}, K the set of points between C_{1} and C_{2}, and L the common part of K and a ray terminating at the common center of C_{1} and C_{2}. For each point y of L, denote by S_{y} the sphere concentric with C_{1} that contains y. There is a homeomorphism t of E^{4} onto $K-L$ that carries each hyperplane parallel to π onto some set $S_{y}-y$. The collection H such that h belongs to it if and only if either $h=t(g)$ for some element g of G or h is a point of L is an upper semicontinuous decomposition of K. Let X be the decomposition space associated with H and f the associated proper mapping of K into X (inverses of compact sets are compact). Let g denote the mapping of X onto L such that $g f\left(S_{y}\right)=y$ for each point y of L. Note that, by hypothesis, each inverse under g is a 3 -sphere. It will be proved that X is homeomorphic to $L \times S^{3}$ by first proving that g is h-2-regular.

Definition. The proper mapping f of a metric space X onto a metric space Y is said to be homotopy n-regular (h-n-regular) provided that if $\varepsilon>0$, $y \in Y$, and $x \in f^{-1}(y)$, then there exists a $\delta>0$ such that each mapping of a k-sphere, $k \leqq n$, into $f^{-1}\left(y^{\prime}\right) \cap \mathrm{S}(x, \delta), y^{\prime} \in Y$, is homotopic to 0 in $f^{-1}\left(y^{\prime}\right) \cap S(x, \varepsilon)$, where $S(x, \varepsilon)$ denotes, as usual, the open ε-neighborhood of x.

It is proved first that g is 0 -regular. Let ε denote a positive number and let p denote a point of $g^{-1}(y)$, for some point y of L, where $p=f(h)$ for some h of H. There is a positive number d, such that if x is in the d-neighborhood, V_{d}, of $f^{-1}(p)$ in K, then $\rho(p, f(x))<\varepsilon$. (The letter ρ will be used consistently to denote the metric in X.) But $f^{-1}(p)$ is connected; hence $V_{d} \cap S_{y}$ is arcwise connected. (V_{d} is a union of open, spherical 4-cells of radius d, each intersecting $f^{-1}(p)$ and meeting S_{y} in an open 3-cell.) Thus there is a positive number $e<d$ such that if a, b are in $S_{x} \cap V_{e}$, where x is any point of L, then there is an arc from a to b in $S_{x} \cap V_{d}$. There is a positive number δ such that if $\rho(p, q)<\delta$, then $f^{-1}(q) \in V_{e}$. Thus, if q and q^{\prime} are points of X in $f\left(S_{x}\right)$ such that $\rho(p, q)<\delta$ and $\rho\left(p, q^{\prime}\right)<\delta$, then there is an arc $a b$ in $S_{x} \cap V_{d}$ from a point a of $f^{-1}(q)$ to a point b of $f^{-1}\left(q^{\prime}\right)$, where $a \mathbf{u} b \subset V_{e}$. It follows from the definition of d that $f(a b)$ is in the common part of $f\left(S_{x}\right)=g^{-1}(x)$ and the ε-neighborhood of p in X. Since f is continuous, $f(a b)$ contains an arc with endpoints q and $q^{\prime}(=f(a)$ and $f(b)$ respectively). Thus g is h-0-regular.

To see that g is h-1-regular, let p, h, and ε be as above, and consider a 4-cell Z in K such that $h\left(=f^{-1}(p)\right)$ is a subset of the interior of Z, Z meets each S_{y} in a 3 -cell or not at all, and $\rho(f(x), p)<\varepsilon$ for each x in Z. The existence of Z is a consequence of condition (2) in the statement of the theorem. There is a positive number δ such that if $p^{\prime} \in X$ and $\rho\left(p, p^{\prime}\right)<\delta$,
then $f^{-1}\left(p^{\prime}\right) \in Z$. Suppose that ϕ is a mapping of the 1 -sphere S^{1} (bounding the disc R^{2}) into $g^{-1}\left(y^{\prime}\right) \cap S(p, \delta)$ (the $S(p, \delta)$ being a δ-neighborhood in X). For each x in S^{1}, let T_{x} be an open spherical neighborhood of $\phi(x)$ in $g^{-1}\left(y^{\prime}\right) \cap f(Z)$. A finite subcollection, $T_{x_{1}}, T_{x_{2}}, \cdots, T_{x_{n}}$ covers $\phi\left(S^{1}\right)$. Since ϕ is ε-homotopic to a piecewise linear homeomorphism for each ε, it may be assumed that ϕ is a piecewise linear homeomorphism. Furthermore, it may be assumed that $x_{1}, x_{2}, \cdots, x_{n}$ lie in that order on S^{1}, and that there are points $c_{1}, c_{2}, \cdots, c_{n}$ on S^{1} such that for each $i, T_{x_{i}} \cap \phi\left(S^{1}\right)$ is connected, c_{i} lies between x_{i} and x_{i+1} (addition of subscripts being taken $\bmod n$), $\phi\left(c_{i}\right) \in T_{x_{i}} \cap T_{x_{i+1}}$, and $T\left(x_{i}\right) \cap T\left(x_{i+1}\right)$ is connected. The set $f^{-1}\left(T_{x_{i}}\right)$ is open and connected. Thus there are points $a_{1}, a_{2}, \cdots, a_{n}$ of $S_{y^{\prime}}$ such that for each $i, a_{i} \in f^{-1}\left(T_{x_{i}}\right) \cap f^{-1}\left(T_{x_{i+1}}\right)$ and there is an arc $a_{i-1} a_{i}$ in $f^{-1}\left(T_{x_{i}}\right) \cap S_{y^{\prime}}$. Let $b_{1}, b_{2}, \cdots, b_{n}$ denote points in that order on S^{1} and let α denote a mapping of S^{1} into $f^{-1}\left(\cup T_{x_{i}}\right)$ carrying each arc $b_{i-1} b_{i}$ homeomorphically onto $a_{i-1} a_{i}$. The mapping α can, since $f^{-1}\left(\cup T_{x_{i}}\right) \subset Z \cap S_{y}{ }^{\prime}$, be extended to a mapping α^{*} of the 2 -cell R^{2} into $Z \cap S_{y^{\prime}}$. Then $f \alpha^{*}$ is a mapping of R^{2} into $g^{-1}\left(y^{\prime}\right) \cap f(Z)$. Consider $f_{\alpha}\left(b_{i-1}\right), f \alpha\left(b_{i}\right), \phi\left(c_{i-1}\right)$, and $\phi\left(c_{i}\right)$. For each i, there is an arc t_{i-1} in $T_{x_{i-1}} \cap T_{x_{i}}$ with endpoints $f_{\alpha}\left(b_{i-1}\right)$ and $\phi\left(c_{i-1}\right)$. The set $t_{i-1} \cup t_{\imath} \cup f \alpha\left(b_{i-1} b_{i}\right) \cup \phi\left(c_{i-1} c_{i}\right)$ is a closed curve that is contractible in $T_{x_{i}}$. If these n contractions are fitted to $f \alpha^{*}$, an extension of ϕ to a mapping of R^{2} into $g^{-1}\left(y^{\prime}\right) \cap f(Z)$, which lies in $S(p, \varepsilon)$, is obtained. Thus g is h-1-regular.

If ϕ maps S^{2}, the 2 -sphere, into $g^{-1}\left(y^{\prime}\right) \cap S(p, \delta)$ and is not homotopic to 0 in $g^{-1}\left(y^{\prime}\right) \cap S(p, \varepsilon)$, then the Sphere Theorem (Papakyriakopoulous [9] and Whitehead [10]) is used to obtain a nonsingular 2 -sphere in $g^{-1}\left(y^{\prime}\right) \cap S(p, \delta)$ that is not contractible in $g^{-1}\left(y^{\prime}\right) \cap S(p, \varepsilon)$. An argument similar to that above could now be used to prove that g is h-2-regular. However, it follows from [5] and [6, Theorem 6.1] that since g is h-1-regular, it is h-2-regular.

It now follows from the remarks in the opening paragraph that X is homeomorphic to $L \times S^{3}$ and thus, from the construction, that Y is homeomorphic to $K-L$ and, consequently, to E^{4}.

Example. Let T^{*} be a torus bounding the solid torus V^{*} and let g^{*} be a core of V^{*} (i.e., g^{*} is a simple closed curve in int V^{*} and V^{*} is a union of two 3 -cells meeting in two disjoint discs such that each disc meets g^{*} in a point and each 3 -cell meets g^{*} in an unknotted arc). Let h_{1}^{*} be a latitudinal simple closed curve on T^{*} that together with g^{*} bounds an annulus A^{*} in V^{*} that meets T^{*} only in h_{1}^{*}. Let h_{2}^{*} be a meridian simple closed curve on T^{*} bounding a disc D^{*} in V^{*} that meets g^{*} in a point, T^{*} in h_{2}^{*}, A^{*} in an arc, and h_{1}^{*} in a point. Each of these sets should be polyhedral with respect to some triangulation of V^{*}. Denote $h_{1}^{*} \mathrm{u} h_{2}^{*}$ by h^{*}. There is a homeomorphism ϕ of $T^{*} \times[0,1)$ (note the half-open interval) onto $V^{*}-g^{*}$ such that $\phi(x, 0)=x$, $\phi\left(h_{1}^{*}, t\right) \subset A^{*}, \phi\left(h_{2}^{*}, t\right) \subset D^{*}$, and that can be extended to a mapping ϕ^{*} of $T^{*} \times[0,1]$ onto V^{*} such that $\phi^{*}\left(T^{*}, 1\right)=g^{*}, \phi^{*} \mid h_{1}^{*} \times 1$ is a homeomorphism,
and $\phi^{*}\left(h_{2}^{*}, 1\right)$ is a point. In particular, considering T^{*} as $h_{1}^{*} \times h_{2}^{*}, \phi^{*}$ carries each $h_{1}^{*} \times x \times 1$ homeomorphically onto g^{*} and each $y \times h_{2}^{*} \times 1$ onto a point. Let H^{*} be the decomposition of V^{*} whose elements are g^{*}, each $\phi\left(h^{*}, t\right)$ for $0 \leqq t<1$, and the remaining points of V^{*}. Then H^{*} is an upper semicontinuous decomposition of V^{*} and the associated decomposition space is a 3-cell. (Note that the decomposition of T^{*} whose elements are h^{*} and the points of $T^{*}-h^{*}$ has a 2 -sphere as its associated decomposition space.)

Let $V^{* *}$ be a copy of V^{*} bounded by $T^{* *}$ and $H^{* *}$ the decomposition of $V^{* *}$ corresponding to H^{*}. Sew V^{*} and $V^{* *}$ together along their boundaries, sewing h_{1}^{*} to $h_{2}^{* *}$ and $h_{1}^{* *}$ to h_{2}^{*}. In this way a 3 -sphere, S^{\prime}, is obtained with a decomposition H^{\prime} whose decomposition space is also a 3 -sphere (the two 3-cells, H^{*} and $H^{* *}$, are sewed together along their boundaries to yield H^{\prime}). If a degenerate element of H^{\prime} is removed from S^{\prime}, a decomposition H of E^{3} is obtained whose decomposition space is E^{3} but each of whose nondegenerate elements has a complement in E^{3} that is not simply connected. ${ }^{2}$

Now consider E^{4} as $E^{3} \times E^{1}$ and let G be a decomposition of E^{4} whose elements are the points of $E^{4}-\left(E^{3} \times 0\right)$ and the continua $h \times 0$ for h in H. Suppose that the decomposition space associated with G is E^{4}. It will be proved that this assumption leads to a contradiction. Let f be the mapping of E^{4} onto E^{4} associated with G, i.e., the point inverses under f are the elements of G. The subset K of E^{4} consisting of those points whose inverses under f are nondegenerate is an arc.

Let U_{1} be a regular neighborhood in E^{4} of a figure-eight element g of G such that U_{1} contains neither of the simple closed curve elements of G but contains each element of G that it intersects. (I.e., g is a strong deformation retract of U_{1}.) The set U_{1} may be considered as the union of two sets each of which is the topological product of a circle and an open 3 -cell and whose intersection is an open 4-cell. Then $U_{1}^{*}=f\left(U_{1}\right)$ is an open neighborhood of $f(g)$ in E^{4}. Let V be a neighborhood of g such that $\bar{V} \subset U_{1}, f^{-1}(f(V))=V, f(V)$ is an open 4-cell, and $f(\bar{V})$ is a 4-cell. Let U_{2} be a regular neighborhood of g, as above, such that $f^{-1}\left(f\left(U_{2}\right)\right)=U_{2}$ and $U_{2} \subset V$.

There is a simple closed curve C in $f\left(U_{2}\right)-\left(K \cap f\left(U_{2}\right)\right)$ that fails to bound (homologically mod the integers) in $f\left(U_{1}\right)-\left(f\left(U_{1}\right) \cap K\right.$). (The curve $f^{-1}(C)$ may be constructed by looping around the common part of U_{2} and some $E^{3} \times t, t \neq 0$, which is possible by the construction of U_{2}.) However, $f(V)$ is a 4 -cell and K is an arc, so it follows from the Alexander duality theorem that C does bound in $f(V)-(K \cap f(V))$. This contradiction implies that the decomposition space associated with G is not E^{4}, and thus that condition (2) may not be completely removed from the hypotheses of Theorem 1.

In fact, going back to the 3 -dimensional case of Theorem 1, we can state the following.

[^1]Theorem 2. If G is an upper semicontinuous decomposition of E^{3} into continua each of which lies in a horizontal plane, then in order that the decomposition space associated with G be E^{3} it is necessary that no element of G separate the horizontal plane in which it lies.

Proof. Suppose that the decomposition space is E^{3} and denote by f the mapping of E^{3} onto itself whose point inverses are the elements of G. If an element g of G separates the horizontal plane π, it follows from the theorem of R. L. Moore [8] on decompositions of the plane that either (1) $f(\pi)$ is the union of an open disc and certain 2 -spheres no one of which intersects the disc in more than one point, or (2) $f(\pi)$ contains an arc each noncut-point of which is an interior point of the arc relative to $f(\pi)$. If (2) holds, then an arc locally separates E^{3}; if (1) holds, then $f(\pi)$ separates E^{3} into more than two components. Each of these situations is an obvious contradiction. Thus g fails to separate π.

References

1. R. H. Bing, Upper semicontinuous decompositions of E^{3}, Ann. of Math. (2), vol. 65 (1957), pp. 363-374.
2. ——, A decomposition of E^{3} into points and tame arcs such that the decomposition space is topologically different from E^{3}, Ann. of Math. (2), vol. 65 (1957), pp. 484-500.
3. E. Dyer and M.-E. Hamstrom, Completely regular mappings, Fund. Math., vol. 45 (1957), pp. 103-118.
4. M. K. Fort, Jr., A note concerning a decomposition space defined by Bing, Ann. of Math. (2), vol. 65 (1957), pp. 501-504.
5. Mary-Elizabeth Hamstrom, Regular mappings and the space of homeomorphisms on a 3-manifold, Mem. Amer. Math. Soc., no. 40 (42 pp.), 1961.
6. ——, Regular mappings whose inverses are 3-cells, Amer. J. Math., vol. 82 (1960), pp. 393-429.
7. Louis F. McAuley, Some upper semicontinuous decompositions of E^{3} into E^{3}, Ann. of Math. (2), vol. 73 (1961), pp. 437-457.
8. R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc., vol. 27 (1925), pp. 416-428.
9. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2), vol. 66 (1957), pp. 1-26.
10. J. H. C. Whitehead, On 2-spheres in 3-manifolds, Bull. Amer. Math. Soc., vol. 64 (1958), pp. 161-166.

University of Illinois
Urbana, Illinois

[^0]: Received March 14, 1962.
 ${ }^{1}$ Presented to the American Mathematical Society January 22, 1962. Supported in part by the National Science Foundation.

[^1]: ${ }^{2}$ This example has also been described by Bing. See page 6 of Topology of 3-manifolds, M. K. Fort, Jr., editor, Englewood Cliffs, N. J., Prentice-Hall, 1962.

